首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between week-by-week variations in the in situ egg production rates of Acartia tonsa Dana and changes in chlorophyll concentration in several size fractions was investigated by incubating adult females in natural sea water for 24-h periods. Our results indicate that the egg production of A. tonsa in Long Island Sound was better related to the 10 μm chlorophyll size fraction than to the total chlorophyll concentration. The < 10 μm size fraction comprised the greatest percentage of the chlorophyll during July and August when the water column was stratified. Egg production rates were lowest (8.7 eggs · female−1 · day−1) in early August when less than 0.5 μg chlorophyll 1 −1 was observed in the 10 μm chlorophyll a size fraction. Following destratification in late August, the “fall” diatom bloom occurred and egg production rates increased to the maximum observed rate of 56.6 eggs · female−1 · day−1. At this time, the concentration of the 10μm chlorophyll size fraction was 5.5 μg 1−1. Maximum egg production rates were observed at chlorophyll concentrations as low as 0.8 μg 1−1 in the 10 μm size fraction.  相似文献   

2.
The Patagonian fjords have been recognized as a major region of relatively high primary productivity systems during spring–summer bloom periods, where iron‐organic matter forms may be essential complexes involved in key growth processes connected to the carbon and nitrogen cycles. We used two dissolved organic matter (DOM) types, marine polysaccharide and siderophore, as a model to understand how they affect the bioavailability of Fe to phytoplankton and bacteria and to assess their ecological role in fjord systems. A 10‐day microcosm study was performed in the Comau Fjord during summer conditions (March 2012). Pico‐, nano‐, and microphytoplankton abundance, total chlorophyll‐a and bacteria abundance, and bacterial secondary production estimates were analyzed in five treatments: (i) control (no additions), (ii) only nutrients (NUT: PO4, NO3, Si), (iii) nutrients + Fe(II), (iv) polysaccharide (natural diatoms extracted: 1–3 beta Glucan), and (v) Hexandentate Desferroxiamine B (DFB, siderophore). Our results showed that while DFB reduced Fe bioavailability for almost all phytoplankton assemblages in the fjord, polysaccharide did not have effects on the iron bioavailability. At Nutrients + Fe and Polysaccharide treatments, chlorophyll‐a concentration abruptly increased from 0.9 to 20 mg m?3 during the first 4–6 days of the experimental period. Remarkably, at the Nutrients + Fe treatment, the development of the bloom was accompanied by markedly high abundances of Synechococcus, picoeukaryotes, and autotrophic nanoflagellates within the first 4 days of the experiment. Our study indicated that small plankton (phytoplankton <20 μm and bacteria) were the first to respond to dissolved Nutrients + Fe compared to large sized micro‐phytoplankton cells (>20 μm). This could be at least partially attributed to biological utilization of Fe (2 to 3 nM) by <20 μm phytoplankton and bacteria through the interaction with organic ligands released by bacteria that eventually could increase solubility of the Fe dissolved fraction thus having a positive effect on the small‐sized phytoplankton community.  相似文献   

3.
If Southern Ocean plankton communities are changing in response to climate, biases in various nets need to be evaluated to help understand regional and temporal differences between historical and contemporary sample collections. A comparison of the catching ability of a Bongo net (mesh aperture 200?μm) and a reconstructed version of an N70 net (upper mesh aperture 445?μm, lower mesh aperture 195?μm) as used by the Discovery Investigations was therefore undertaken. Forty Bongo and forty N70 samples were obtained from 10 stations in the Southern Ocean during December 2009. Bongo net catch abundance was ~3 times greater than the N70 and ~4 times greater when only copepod instars <0.5?mm body length were considered. The Bongo net captured more plankton at all chlorophyll a (Chl a) concentrations encountered, although the difference was less at high Chl a when the N70 appeared to filter all size classes of copepod more efficiently, as well as retaining a relatively greater proportion of non-copepod plankton. Application of these findings was made to a previous study in which N70 samples from 1926/1927 were compared to a series of Bongo net hauls made post-1995. By ‘correcting’ abundances for net bias among a common set of 45 taxa, N70 data were within the range of variability seen in the Bongo net samples. Making such inter-net comparisons allows us to use historical collections and better judge the nature and magnitude of change in these plankton communities.  相似文献   

4.
During the 1995 spring bloom in Bedford Basin, Nova Scotia,dissolved organic carbon (DOC) in the photic zone was separatedinto low-molecular-weight and colloidal size fractions by cross-flowultrafiltration. DOC, colloidal organic carbon (COC) and low-molecular-weightorganic carbon (LOC) were then analyzed by high-temperaturecatalytic oxidation. COC (associated with the production ofphytoplankton exudates) did not follow the concentration ofbulk chlorophyll a (chi a) or the total number of phytoplanktoncells. Instead, surface-active COC (that adhered to the ultrafiltrationsystem) was produced early during the bloom when the diatomSkeletonema costatum was at a maximum. Later on, as the bloombegan to decline, less surface-active COC (that remained largelyfree of the ultrafiltration surfaces) was produced and was associatedmore with variations in cell number of Chaetoceros socialis,the predominant diatom for most of the bloom. These resultssuggest that chl a or the total number of phytoplankton cellsmay not be reliable indices of the production of COC. On thecontrary, the results suggest that relatively high COC concentrationswere associated with specific diatom species. In addition, themaximum amount of COC was associated during the early stagesof the bloom with a diatom (S.costatum) that was a small fraction(<5.6%) of total phytoplankton cell number. This finding,that relatively large amounts of colloids were associated withexopolymer production during the onset and development of abloom, does not agree with reports suggesting that the productionof exopolymers by diatoms is primarily an end-of-bloom occurrence.  相似文献   

5.
To investigate the impact of microzooplankton grazing on phytoplankton bloom in coastal waters, an enclosure experiment was conducted in Saanich Inlet, Canada during the summer of 1996. Daily changes in the microzooplankton grazing rate on each phytoplankton group were investigated with the growth rates of each phytoplankton group from the beginning toward the end of bloom using the dilution technique with high-performance liquid chromatography (HPLC). On Day 1 when nitrate and iron were artificially added, chlorophyll a concentration was relatively low (4.3 μg l−1) and 19′-hexanoyloxyfucoxanthin-containing prymnesiophytes were predominant in the chlorophyll biomass. However, both the synthetic rates and concentrations of 19′-hexanoyloxyfucoxanthin declined before bloom, suggesting that 19′-hexanoyloxyfucoxanthin-containing prymnesiophytes weakened. Chlorophyll a concentration peaked at 23 μg l−1 on Day 4 and the bloom consisted of the small chain-forming diatoms Chaetoceros spp. (4 μm in cell diameter). Diatoms were secondary constituents in the chlorophyll biomass at the beginning of the experiment, and the growth rates of diatoms (fucoxanthin) were consistently high (>0.5 d−1) until Day 3. Microzooplankton grazing rates on each phytoplankton group remarkably increased except on alloxanthin-containing cryptophytes after the nutrient enrichments, and peaked with >0.6 d−1 on Day 3, indicating that >45% of the standing stock of each phytoplankton group was removed per day. Both the growth and mortality rates of alloxanthin-containing cryptophytes were relatively high (>1 and >0.5 d−1, respectively) until the bloom, suggesting that a homeostatic mechanism might exist between predators and their prey. Overall, microzooplankton grazing showed a rapid response to the increase in phytoplankton abundance after the nutrient enrichments, and affected the magnitude of the bloom significantly. High grazing activity of microzooplankton contributed to an increase in the abundance of heterotrophic dinoflagellates with 7-24 μm in cell size, the fraction of large-sized (>10 μm) chlorophyll a, and stimulated the growth of larger-sized ciliates after the bloom.  相似文献   

6.
Combined methods of size fractionation and single-cell isolationwere used to investigate the seasonal variation of phytoplanktondynamics in Tokyo Bay with an emphasis on primary productivity.Red tides occurred in Tokyo Bay from spring to autumn; a diatom,Skeletonema costatum, and a raphidophycean, Heterosigma akashiwo,were the most important primary producers. Small diatoms andflagellates, including these species, were dominant and showedrapid changes of phytoplankton community structure within severaldays in summer. The nanoplankton (3–20 µm) fractioncontributed most to chlorophyll a concentration and primaryproductivity during spring to autumn, whereas the microplankton(>20 µm) contribution was remarkable in winter. Picoplankton(<3 µm phytoplankton) remained relatively constantthroughout the year. A significant reverse relationship wasobtained between assimilation rate and chlorophyll a contentfor the total and nanoplankton population; the assimilationrate was high at the initial phase of the bloom, then decreasedto a minimum level at the peak of the bloom. Factors controllingthe reduction of assimilation rates at the peak, and changesin phytoplankton community structure, are discussed.  相似文献   

7.
Enriched bottle experiments were conducted in situ during winter (January and February) and summer (July and August) 2001 to examine the effects of nutrient enrichments (+ N, + P and + NP) on phytoplankton in Bizerte Lagoon, Tunisia. Chlorophyll a (Chl a), ranging from 3.05 μg L−1 in winter to 4.52 μg L−1 in summer, was dominated by the small size-faction (<5 μm) during both seasons. However, the contribution of the large size-fraction (5-200 μm) to Chl a increased from winter (26%) to summer (37%). Similarly, the carbon biomass of the 5-200 μm algae increased during the July/August period that was characterised by the high proliferation of several diatom taxa. In winter, N was the limiting element for phytoplankton growth. Its addition alone (+ N) or with P (+ NP) increased both the <5 μm and 5-200 μm Chl a concentrations. There was no change in the phytoplankton size structure, with the small cells dominating the final algal biomass in all treatments after 5 days. In summer, N and P limited the phytoplankton, but small and large algae exhibited diverse responses to different nutrient enrichments: addition of P increased the Chl a only in the 5-200 μm fraction, the + N treatment enhanced both size classes, and the NP fertilisation mostly stimulated the biomass of large cells. Consequently, the N and P addition in summer was followed by a significant change in the phytoplankton size structure, since both size-fractions contributed equally to the final Chl a biomass. Within the 5-200 μm algal community, various taxa had diverse responses to the nutrient supply during both seasons, leading to a change in the final community composition. The autotrophic flagellates appeared to grow well under N-deficient conditions. In contrast, diatom growth and biomass were mostly stimulated by the N enrichment while dinoflagellates exhibited the highest increase in their growth and biomass with P fertilisation. Our results suggest that the increasing anthropogenic supply of nutrients in the lagoon may influence algal dynamics as well as productivity in different ways depending on the nutrient composition.  相似文献   

8.
The development of a phytoplankton bloom was studied by placing a drogue in a patch of cold upwelled water and following the water mass for 4–5 days. Chaetoceros compressus Laud and Skeletonemacostatum (Grev.) Cleve dominated the bloom which reached its peak in 3 days. In this period chlorophyll a concentrations increased by 19.2 mg · m?3 in the euphotic zone while the concomitant decrease in nitrate concentration was 18.7 mg-at. NO3-N · m?3. There was an overall increase in the concentration of protein with the highest concentration (412.9mg · m?3) being measured just prior to the peak of the bloom. Carbohydrate concentrations increased rapidly during the day but decreased at night. The pattern of carbon-14 assimilation at the 50% light intensity was characterised by high activity in the polysaccharide fraction as the bloom developed, but at the peak of the bloom a greater percentage of the label was found in the ethanol-soluble fraction. The percent incorporation into protein was greater at night than during the day. These physiological changes are related to the growth pattern of the bloom.  相似文献   

9.
Plankton community structure and major pools and fluxes of carbon were observed before and after culmination of a bloom of cyanobacteria in eutrophic Frederiksborg Slotssø, Denmark. Biomass changes of heterotrophic nanoflagellates, ciliates, microzooplankton (50 to 140 μm), and macrozooplankton (larger than 140 μm) were compared to phytoplankton and bacterial production as well as micro- and macrozooplankton ingestion rates of phytoplankton and bacteria. The carbon budget was used as a means to examine causal relationships in the plankton community. Phytoplankton biomass decreased and algae smaller than 20 μm replacedAphanizomenon after the culmination of cyanobacteria. Bacterial net production peaked shortly after the culmination of the bloom (510 μg C liter?1 d?1 and decreased thereafter to a level of approximately 124 μg C liter?1 d?1. Phytoplankton extracellular release of organic carbon accounted for only 4–9% of bacterial carbon demand. Cyclopoid copepods and small-sized cladocerans started to grow after the culmination, but food limitation probably controlled the biomass after the collapse of the bloom. Grazing of micro- and macrozooplankton were estimated from in situ experiments using labeled bacteria and algae. Macrozooplankton grazed 22% of bacterial net production during the bloom and 86% after the bloom, while microzooplankton (nauplii, rotifers and ciliates larger than 50 μm) ingested low amounts of bacteria and removed 10–16% of bacterial carbon. Both macro-and microzooplankton grazed algae smaller than 20 μm, although they did not control algal biomass. From calculated clearance rates it was found that heterotrophic nanoflagellates (40–440 ml?1) grazed 3–4% of the bacterial production, while ciliates smaller than 50 μm removed 19–39% of bacterial production, supporting the idea that ciliates are an important link between bacteria and higher trophic levels. During and after the bloom ofAphanizomenon, major fluxes of carbon between bacteria, ciliates and crustaceans were observed, and heterotrophic nanoflagellates played a minor role in the pelagic food web.  相似文献   

10.
The relative photosynthetic efficiencies of net vs. nanoplankton and diatom vs. non-diatom plankton were estimated weekly in Woodcock Creek Reservoir, Pennsylvania, from April to November 1979, using carbon-14 in conjunction with size fractionation and germanium as a diatom inhibitor. The nanoplankton contributed a proportionally greater share of the community carbon assimilation than their share of the community biomass would indicate. Diatoms, specifically Asterionella formosa Hass. were photosynthetically inefficient and contributed significantly less than expected. The mechanism of periodic diatom dominance in lakes remains unexplained.  相似文献   

11.
The investigation was carried out at one station in Korsfjorden,a typical deep silled fjord of western Norway. During 14 cruisesfrom 4 February to 30 June 1977 ATP, chlorophll a, phaeopigmenta, and in situ 14C-assimilation were measured in the net (>30µm), nano and ultraplankton (<5 µm). Sampleswere collected from five light depths within euphotic zone.The impact of hydrographical conditions and light regime onthe bloom dynamics was also studied. In the periods 4 February-7 March and 13 April-30 June, ultraplankton contributed >60%to the total primary production while net and nanoplankton dominatedfrom 7 March to 13 April. The diatoms Skeletonema costatum,Chaetoceros compressits and C. debilis, and Rhizosolenia hebetatavar. semispina made up the main part of the biomass on 21 March,28 March and 4 April respectively. A shade adapted diatom societywas located at the top of the nutricline in late June with S.costatum, Chaetoceros spp., and Thalassiosira spp. as the dominantspecies. The highest assimilation number of eight for the netplankton and four for the ultraplankton were found at the depthof 32% light intensity on 28 March and 24 May respectively.Linear relationships were found between chlorophyll a and ATPfor the different size fractions with regression slopes rangingfrom 4.3 to 5.8. The total primary production for the periodof investigation was calculated to 74 g C m–2. Light regimeand water column stability were decisive factors for the outburstof the first diatom bloom in late March. Grazing on net planktondiatoms increased during late March-early April. Changes inthe longshore wind-stress component were found to be essentialfor the understanding of the bloom dynamics.  相似文献   

12.
The dynamics of phytoplankton biomass were studied in an Eastern Mediterranean semi-enclosed coastal system (Maliakos Gulf, Aegean Sea), over 1 year. In particular, chlorophyll a (chl a) was fractionated into four size classes: picoplankton (0.2–2 μm), nanoplankton (2–20 μm), microplankton (20–180 μm) and net phytoplankton (>180 μm). The spatial and temporal variation in dissolved inorganic nutrients and particulate organic carbon (POC) were also investigated. The water column was well mixed throughout the year, resulting in no differences between depths for all the measured parameters. Total chl a was highest in the inner part of the gulf and peaked in winter (2.65 μg l–1). During the phytoplankton bloom, microplankton and net phytoplankton together dominated the autotrophic biomass (67.2–95.0% of total chl a), while in the warmer months the contribution of pico- and nanoplankton was the most significant (77.5–93.4% of total chl a). The small fractions, although showing low chl a concentrations, were important contributors to the POC pool, especially in the outer gulf. No statistically significant correlations were found between any chl a size fraction and inorganic nutrients. For most of the year, phytoplankton was not limited by inorganic nitrogen concentrations. Electronic Publication  相似文献   

13.
Investigations on phytoplankton communities in a nearshore region off the Cape Peninsula revealed three types of upwelled water. During active upwelling temperatures were < 10 °C and concentrations of inorganic nutrients were high (Type 1). Maturing upwelled water was characterized by temperatures > 10°C and nitrate concentrations varying between 2 and 15 μg-at. NO3-N · 1?1 (Type 2), while aged upwelled water (Type 3) contained low concentrations of nitrate (<2 μg-at. NO3-N · 1?1) at temperatures > 10°C. During the summer of 1978–1979 diatoms dominated the communities from October to January but microflagellates were dominant in February and March. In both types of community, low concentrations of ATP, chlorophyll a, protein and carbohydrate were measured in Type 1 water with protein/carbohydrate ratios being > 1. In Type 2 water concentrations of chlorophyll a, ATP and protein were high and the protein/carbohydrate ratio was > 1. Concentrations of chlorophyll a and ATP remained high in Type 3 water but the protein/carbohydrate ratio decreased to < 1 due to an increase in the concentration of acid-soluble glucan. It was concluded that the communities were in an active phase of growth in Type 1 and Type 2 water when adequate nutrients were available, but were in a slow-growing phase in Type 3 water when nitrate concentrations were low. Correlation coefficients, simple linear regressions and stepwise multiple regressions between biochemical and environmental variables confirmed that nitrate was the nutrient most closely related to the biochemical composition of phytoplankton. Using linear regression equations of biochemical variables on glucan it was estimated that chlorophyll a existed in a ratio of ≈ 1: 1 between living phytoplankton and bacteria/detritus, while the percentage of ATP was high in the phytoplankton component of Type 1 water but low in that of Type 2 water. The percentage of protein in detritus was greater than in living phytoplankton, and the carbohydrate content of living phytoplankton increased as the upwelled water matured from Type 1 and Type 2 to Type 3.  相似文献   

14.
Cell size and temperature influenced the division rate and chemical content of the diatom Chaetoceros curvisetum Cleve when grown at 15, 20 and 25°C in nutrient replete media. Cell-size dependent trends of division rate in individual clones changed with temperature in a complex fashion. Considerable interclonal variability in division rate within a restricted range of cell sizes was also found. Cellular levels of carbon, nitrogen, protein, chlorophyll a, and silicon were linearly related to cell size. Cellular levels of carbon and chlorophyll per unit volume and silicon per unit surface area changed with temperature. No temperature effect on cellular levels of nitrogen and protein was found.  相似文献   

15.
The summertime North Pacific subtropical gyre has widespread phytoplankton blooms between Hawaii and the subtropical front (~30°N) that appear as chlorophyll (chl) increases in satellite ocean color data. Nitrogen-fixing diatom symbioses (diatom-diazotroph associations: DDAs) often increase 10(2)-10(3) fold in these blooms and contribute to elevated export flux. In 2008 and 2009, two cruises targeted satellite chlorophyll blooms to examine DDA species abundance, chlorophyll concentration, biogenic silica concentration, and hydrography. Generalized observations that DDA blooms occur when the mixed layer depth is < 70 m are supported, but there is no consistent relationship between mixed layer depth, bloom intensity, or composition; regional blooms between 22-34°N occur within a broader temperature range (21-26°C) than previously reported. In both years, the Hemiaulus-Richelia and Rhizosolenia-Richelia DDAs increased 10(2)-10(3) over background concentrations within satellite-defined bloom features. The two years share a common trend of Hemiaulus dominance of the DDAs and substantial increases in the >10 μm chl a fraction (~40-90+% of total chl a). Integrated diatom abundance varied 10-fold over <10 km. Biogenic silica concentration tracked diatom abundance, was dominated by the >10 μm size fraction, and increased up to 5-fold in the blooms. The two years differed in the magnitude of the surface chl a increase (2009>2008), the abundance of pennate diatoms within the bloom (2009>2008), and the substantially greater mixed layer depth in 2009. Only the 2009 bloom had sufficient chl a in the >10 μm fraction to produce the observed ocean color chl increase. Blooms had high spatial variability; ocean color images likely average over numerous small events over time and space scales that exceed the individual event scale. Summertime DDA export flux noted at the Hawaii time-series Sta. ALOHA is probably a generalized feature of the eastern N. Pacific north to the subtropical front.  相似文献   

16.
Reactive phosphorus, polyphosphate, monophosphate ester, dissolved organic phosphorus, and alkaline phosphatase activity were measured in Loch Creran and Loch Etive. Argyll, Scotland during the spring outburst of 1976. In addition, data on chlorophyll a, phacopigment, and salinity were obtained on each occasion.The mean levels of reactive phosphorus initially present in Loch Creran and Loch Etive were 0.50 and 0.22 μg-at. PO4?P/I, respectively. As the diatom bloom progressed, it fell below the limit of detection. The mean values of polyphosphate were between 0.05–0.08 μg-at. PO4?P/l in Loch Creran and 0.04 μg-at. PO4?P/l in Loch Etive, and although present at the initiation and decline of the bloom, it was absent when chlorophyll a was high and the reactive phosphorus was low or undetectable. Monophosphate ester, was found in Loch Creran only, and then in the same concentration as that of the polyphosphate fraction. The mean levels of the dissolved organic phosphorus in Loch Creran and Loch Etive ranged between 0.08–0.18 μg-at. PO4-P/l and 0.05–0.08 μg-at. PO4?P/l, respectively. Alkaline phosphatase activity was detected when there was no reactive phosphorus in the water: the highest values in Loch Creran and Loch Etive were 0.003 and 0.005 I.U. of enzyme/4 ml of sample, respectively. The highest mean values of chlorophyll a were 8.0 μg/l in Loch Creran, and 6.0 μg/l in Loch Etive. The mean percentages of phaeopigment fluctuated between 20–55% in Loch Creran and 30–65% in Loch Etive. The highest values were found at the end of the bloom. The mean surface salinities ranged from 22.0 to 31.0‰ in Loch Creran and 3.7 to 17.0‰ in Loch Etive. The lowest values were recorded at the end of the bloom. The statistical treatment of the data, suggests a strong relationship between zooplankton grazing and levels of dissolved phosphorus compounds and phaeopigment.  相似文献   

17.
The development of a filamentous, nitrogen-fixing cyanobacterial bloom was followed during July–August 1990 in a stratified basin in the central Gulf of Finland, Baltic Sea. Hydrography, dissolved inorganic, particulate and total nutrients, chlorophyll a, alkaline phosphatase activity, 32PO4-uptake and phytoplankton species were measured. The study period was characterized by wind-induced mixing events, followed by marked nutrient pulses and plankton community responses. Phosphate uptake was highest throughout the study period in the size fraction dominated by bacteria and picocyanobacteria (< 2 µm) and the proportion of uptake in the size fraction 2–10 µm remained low (2–6%). Higher phosphate turnover times were observed in a community showing signs of enhanced heterotrophic activity. The bloom of filamentous, nitrogen-fixing cyanobacteria Aphanizomenon flos-aquae was promoted by a nutrient pulse with an inorganic nutrient ratio (DIN:DIP) of 15. The results show that the quality, frequency and magnitude of the physically forced nutrient pulses have an important role in determining the relative share of the different modes of phosphorus utilization and hence in determining the cyanobacterial bloom intensity and species composition in the Baltic Sea.  相似文献   

18.
A light-harvesting pigment-protein complex was isolated from the diatom Phaeodactylum tricornutum using the zwitterionic detergent CHAPS (3-[3-cholamidopropyl)dimethylammonio]-1-propanesulfonate). Detergent-solubilized membranes were fractionated by sucrose density gradient centrifugation into three components. The medium density fraction contained chlorophyll a, chlorophyll c, and fucoxanthin. This fraction was purified by DEAE-ion exchange chromatography, and contained chlorophyll a, chlorophyll c, and fucoxanthin in a molar ratio of 2.4:1.0:4.8. Fluorescence emission and excitation spectra of the isolated complex demonstrated that light energy absorbed by chlorophyll c and fucoxanthin was coupled to chlorophyll a fluorescence. Upon denaturation, the apoprotein yielded a polypeptide doublet at 17.5 to 18.0 kilodaltons which accounted for 30 to 40% of the toal membrane protein. These findings indicate that this pigment-protein complex is a major component of the diatom photosynthetic lammellae. The quantitative amino acid composition of the apoprotein was very similar to those reported for other membrane-bound pigment-protein complexes. Based on the protein to chlorophyll a ratio of 7700 grams protein per mole chlorophyll a for the complex, each apoprotein molecule contains, to the nearest integer, two chlorophyll a, one chlorophyll c, and five fucoxanthin molecules. Polyclonal antibodies raised against the 17.5 to 18.0 kilodaltons apoprotein showed a monospecific reaction with only the 17.5 to 18.0 protein zone from denatured P. tricornutum membranes as well as to the nondenatured pigment-protein complex. It appears that this complex is common to other diatom species.  相似文献   

19.
Variations in the concentrations of chlorophyll a, ATP, protein, and carbohydrates in phytoplankton have been investigated in a nearshore upwelling region off the Cape Peninsula. During active upwelling temperatures <10 °C, high nutrient concentrations and low concentrations of the biochemical constituents were measured. When upwelling lessened and conditions stabilized temperatures increased and blooms of phytoplankton appeared. High concentrations of chlorophyll a and ATP and a high protein/carbohydrate ratio were then recorded. At very low nutrient levels chlorophyll a and ATP concentrations were still high but an increase in the acid-soluble carbohydrate content and a corresponding decrease in the protein/carbohydrate ratio was observe. It was concluded that the ratio of protein to carbohydrate was a suitable indicator of the physiological state of a phytoplankton community in the local upwelling region.  相似文献   

20.
In situ technologies were employed to monitor suspended particle flocculation and floc settlement and utilization by a cohort of sea scallops (Placopecten magellanicus) during the 2000 spring phytoplankton bloom in Bedford Basin, Nova Scotia, Canada. The objectives were to determine the effect of bloom flocculation and settling on food acquisition and utilization by scallops, and to assess the potential role of flocculation in enhancing the bioavailability of trophic resources and particle-reactive contaminants to bivalve filter feeders. The development and flocculation of the phytoplankton bloom were monitored within the surface layer (10 m depth) by in vivo chlorophyll fluorescence and silhouette camera observations. Sedimentation rate, seston abundance and composition, and sea scallop functional responses were monitored at 20 m depth (below the bloom) to provide insight into the potential forcing of feeding and digestion processes by changes in the abundance, composition and properties of the ambient food supply. The bloom began in mid-March and median floc diameter at 10 m depth increased rapidly from 200 μm to greater than 400 μm between 21 and 28 March. Flocs were observed to be abundant in the surface layer up to 4 April. Daily vertical particle flux was high during the last week of March and declined to near zero by 1 April. Clearance rates of scallops held at 20 m depth were relatively high (average ± S.D.; 11.7 ± 4.0 L h− 1) during the period of bloom settlement and declined rapidly to low levels (0.4 ± 0.9 L h− 1) after 31 March. Average absorption efficiency also declined (0.88 ± 0.01 to 0.78 ± 0.05) after bloom settlement. Daily biodeposition rates by scallops were poorly correlated with temporal variations in the quantity (total particulate matter and chlorophyll a concentration) or quality (organic content) of seston available to the scallops, but were significantly correlated with sedimentation rate. Comparison of disaggregated inorganic particle size distributions for suspended particulate matter, settled particles, and scallop feces indicated that fine-grained particles (1 to 4 μm) were effectively ingested by sea scallops—an indication of whole floc ingestion. The settlement of flocs produced during the spring bloom appears to be important in regulating this species physiological energetics and for enhancing the bioavailablility of fine particles (including picoplankton) and particle-reactive contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号