首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two test kits for the identification of spring viraemia of carp virus (SVCV), one an enzyme-linked immunosorbent assay (ELISA) using a rabbit polyclonal antiserum, and the other an indirect fluorescent antibody test (IFAT) using a mouse monoclonal antibody, were assessed for specificity using a range of virus isolates. The test viruses were selected from 4 recently described genogroups of piscine rhabdoviruses: Genogroup I (SVCV), Genogroup II (grass carp rhabdovirus), Genogroup III (pike fry rhabdovirus) and Genogroup IV ('tench rhabdovirus'). The test viruses included SVCV isolates from all 4 subgroups of Genogroup I. The ELISA was non-specific for these viruses and did not distinguish between SVCV and isolates from the other 3 Genogroups. However, the IFAT was too specific and detected SVCV isolates from only 1 of the 4 SVCV subgroups. Reliance on these test kits alone could result in misidentification of this OIE notifiable disease.  相似文献   

2.
3.
A simple nylon membrane-based DNA macroarray was developed to genotype spring viraemia of carp virus (SVCV) and related viruses. Twenty-six viruses were genotyped using the array, and the results were confirmed by phylogenetic analysis of a 426 bp partial glycoprotein gene sequence. The array was not only capable of discriminating between the 4 main genogroups of cyprinid vesiculo-type viruses described previously, but also accurately sub-type the SVC viruses assigned to Genogroup I. The assay offers a practical solution for diagnostic laboratories that currently lack a sequencing capability to confirm the nature of PCR products generated in suspected SVCV cases.  相似文献   

4.
5.
6.
Tobacco leaf curl is widespread in several states in India including Andhra Pradesh, Gujarat, Karnataka, Bihar and West Bengal. Tobacco leaf curl virus (TbLCV) isolates collected from five different parts of India induced four distinct symptom phenotypes (group I, II, III & IV) on tobacco cultivars Samsun and Anand 119 (Valand & Muniyappa, 1992). PCR was performed on DNA extracted from group I and IV leaf curl‐affected tobacco from Karnataka, India using degenerate begomovirus‐specific primers. Subsequent cloning and sequencing of PCR products revealed preliminary evidence for the presence of at least three begomoviruses in the affected material following alignment of a 333 bp region of the coat protein gene (CP). The complete CP and common region (CR) of two putative begomoviruses, Tobacco leaf curl virus‐Karnataka1 (TbLCV‐Kar1) and Tobacco leaf curl virus‐Karnataka2 (TbLCV‐Kar2), were sequenced using PCR clones obtained with designed sequence‐specific primers. Phylogenetic analysis of the CP and CR of TbLCV‐Kar1 and TbLCV‐Kar2 placed them in the Asian Old World begomovirus cluster. The two viruses differed from each other significantly in both the CP gene and the CR (< 90% nucleotide sequence identity). This difference, in conjunction with distinct iterative sequences strongly suggests that these begomoviruses are distinct from one another. Group I and IV tobacco were also found to harbour a possible third begomovirus following the 333 bp CP alignment. Comparison of TbLCV‐Kar1 and TbLCV‐Kar2 with other geminiviruses, showed that both sequences shared high nucleotide sequence identity (> 90%) with other begomoviruses in either the CP or CR, thereby suggesting these viruses to be possible strains of other reported begomoviruses. Combined comparison of the CP and CR sequences however, suggests that the two viruses are not strains of other reported begomoviruses, but may be distinct begomoviruses that could have arisen through recombination events during mixed infections. Phylogenetic comparison demonstrated no significant homology between the Indian tobacco begomoviruses and a tobacco‐infecting begomovirus from Zimbabwe, again showing that as with other geminiviruses, there is a geographic basis for phylogenetic relationships rather than an affiliation with tobacco as a host.  相似文献   

7.
8.
The genetic diversity of representative members of the Lyssavirus genus (rabies and rabies-related viruses) was evaluated using the gene encoding the transmembrane glycoprotein involved in the virus-host interaction, immunogenicity, and pathogenicity. Phylogenetic analysis distinguished seven genotypes, which could be divided into two major phylogroups having the highest bootstrap values. Phylogroup I comprises the worldwide genotype 1 (classic Rabies virus), the European bat lyssavirus (EBL) genotypes 5 (EBL1) and 6 (EBL2), the African genotype 4 (Duvenhage virus), and the Australian bat lyssavirus genotype 7. Phylogroup II comprises the divergent African genotypes 2 (Lagos bat virus) and 3 (Mokola virus). We studied immunogenic and pathogenic properties to investigate the biological significance of this phylogenetic grouping. Viruses from phylogroup I (Rabies virus and EBL1) were found to be pathogenic for mice when injected by the intracerebral or the intramuscular route, whereas viruses from phylogroup II (Mokola and Lagos bat viruses) were only pathogenic by the intracerebral route. We showed that the glycoprotein R333 residue essential for virulence was naturally replaced by a D333 in the phylogroup II viruses, likely resulting in their attenuated pathogenicity. Moreover, cross-neutralization distinguished the same phylogroups. Within each phylogroup, the amino acid sequence of the glycoprotein ectodomain was at least 74% identical, and antiglycoprotein virus-neutralizing antibodies displayed cross-neutralization. Between phylogroups, the identity was less than 64.5% and the cross-neutralization was absent, explaining why the classical rabies vaccines (phylogroup I) cannot protect against lyssaviruses from phylogroup II. Our tree-axial analysis divided lyssaviruses into two phylogroups that more closely reflect their biological characteristics than previous serotypes and genotypes.  相似文献   

9.
Lymphocystis disease virus (LCDV) is the causative agent of lymphocystis disease. The viruses have been divided into three genotypes (genotype I for LCDV-1, II for Japanese flounder isolates, and III for rockfish isolates) on the basis of major capsid protein (MCP) gene sequences. In this study, we developed a multiplex PCR primer set in order to distinguish these genotypes. We also analyzed the MCP gene of a new LCDV isolate from the sea bass (SB98Yosu). Comparison of sequence identities between SB98Yosu and eight Japanese flounder isolates, revealed identity of more than 90.1% at nucleotide level and 96.5% at deduced amino acid level, respectively. Phylogenetic analyses based on the MCP gene showed that SB98Yosu belongs to genotype II, along with Japanese flounder isolates. Multiplex PCR based on the MCP gene allowed us to identify these genotypes in a simple and rapid manner, even in a sample that contained two genotypes, in this case genotypes II and III.  相似文献   

10.
The Saccharomyces cerevisiae nuclear gene, ADH3, that encodes the mitochondrial alcohol dehydrogenase isozyme ADH III was cloned by virtue of its nucleotide homology to ADH1 and ADH2. Both chromosomal and plasmid-encoded ADH III isozymes were repressed by glucose and migrated heterogeneously on nondenaturing gels. Nucleotide sequence analysis indicated 73 and 74% identity for ADH3 with ADH1 and ADH2, respectively. The amino acid identity between the predicted ADH III polypeptide and ADH I and ADH II was 79 and 80%, respectively. The open reading frame encoding ADH III has a highly basic 27-amino-acid amino-terminal extension relative to ADH I and ADH II. The nucleotide sequence of the presumed leader peptide has a high degree of identity with the untranslated leader regions of ADH1 and ADH2 mRNAs. A strain containing a null allele of ADH3 did not have a detectably altered phenotype. The cloned gene integrated at the ADH3 locus, indicating that this is the structural gene for ADH III.  相似文献   

11.
Analysis of six monoclonal antibody-resistant (mar) mutants in herpes simplex virus type 1 glycoprotein B identified two type-common (II and III) and two type-specific (I and IV) antigenic sites on this molecule. To derive additional information on the location of these sites, mar mutations were mapped and nucleotide alterations were identified by DNA sequencing. Each mutant carried a single amino acid substitution resulting from a G-to-A base transition. Alterations affecting antibody neutralization were identified at residues 473, 594, 305, and 85 for mutants in sites I through IV, respectively. Two clonally distinct site II antibodies each selected mar mutants (Gly to Arg at residue 594) that exhibited a reduction in the rate of entry (roe) into host cells. A site II mar revertant that regained sensitivity to neutralization by site II antibodies also showed normal entry kinetics. DNA sequencing of this virus identified a single base reversion of the site II mar mutation, resulting in restoration of the wild-type sequence (Arg to Gly). This finding demonstrated that the mar and roe phenotypes were the result of a single mutation. To further define structures that contributed to antibody recognition, monoclonal antibodies specific for all four sites were tested for their ability to immune precipitate a panel of linker-insertion mutant glycoprotein B molecules. Individual polypeptides that contained single insertions of 2 to 28 amino acids throughout the external domain were not recognized or were recognized poorly by antibodies specific for sites II and III, whereas no insertion affected antibody recognition of sites I and IV. mar mutations affecting either site II or III were previously shown to cause temperature-sensitive defects in glycoprotein B glycosylation, and variants altered in both these sites were temperature sensitive for virus production. Taken together, the data indicate that antigenic sites II and III are composed of higher-order structures whose integrity is linked with the ability of glycoprotein B to function in virus infectivity.  相似文献   

12.
用RT-PCR法快速检测鲤春病毒血症病毒基因   总被引:9,自引:1,他引:8  
用逆转录多聚酶链式反应(RT-PCR)方法快速,灵敏、特异地检测鲤春病毒血症病毒(SVCV),根据SVC病毒糖蛋白基因序列设计的引物经过RT-PCR和半嵌套PCR(semi-nested-PCR)引扩增出SVC病毒核酸中的714bp和606bp片段,与其他弹状病毒IHNV、VHSV、PFRV没有交叉,没有特异性,灵敏度检测,表明不小于1000个病毒就可检测出阳性结果。本文还对复性温度、引物、Mg^2 、Tag酶以及反转录酶的浓度对检测结果的影响进行了探讨。  相似文献   

13.
The nonstructural protein NSm of Bunyamwera virus (BUNV), the prototype of the Bunyaviridae family, is encoded by the M segment in a polyprotein precursor, along with the virion glycoproteins, in the order Gn-NSm-Gc. As little is known of its function, we examined the intracellular localization, membrane integrality, and topology of NSm and its role in virus replication. We confirmed that NSm is an integral membrane protein and that it localizes in the Golgi complex, together with Gn and Gc. Coimmunoprecipitation assays and yeast two-hybrid analysis demonstrated that NSm was able to interact with other viral proteins. NSm is predicted to contain three hydrophobic (I, III, and V) and two nonhydrophobic (II and IV) domains. The N-terminal nonhydrophobic domain II was found in the lumen of an intracellular compartment. A novel BUNV assembly assay was developed to monitor the formation of infectious virus-like-particles (VLPs). Using this assay, we showed that deletions of either the complete NSm coding region or domains I, II, and V individually seriously compromised VLP production. Consistently, we were unable to rescue viable viruses by reverse genetics from cDNA constructs that contained the same deletions. However, we could generate mutant BUNV with deletions in NSm domains III and IV and also a recombinant virus with the green fluorescent protein open reading frame inserted into NSm domain IV. The mutant viruses displayed differences in their growth properties. Overall, our data showed that the N-terminal region of NSm, which includes domain I and part of domain II, is required for virus assembly and that the C-terminal hydrophobic domain V may function as an internal signal sequence for the Gc glycoprotein.  相似文献   

14.
Viruses belonging to the genus Megalocytivirus in the family Iridoviridae have caused mass mortalities in marine and freshwater fish in Asian countries. In this study, partial major capsid protein (MCP) gene of seven Japanese and six Korean megalocytiviruses was sequenced and compared with the known megalocytiviruses to evaluate genetic variation and geographic distribution of the viruses. Comparison of MCP gene nucleotide sequences revealed sequence identity of 92.8% or greater among these 48 isolates. A phylogenetic tree clearly revealed three clusters: genotype I including nine Japanese isolates, thirteen Korean isolates, one Chinese isolates, one Thailand isolate and one South China Sea isolate; genotype II including five freshwater fish isolates in Southeast Asian countries and Australia; and the remaining genotype III mainly consisted of flatfish isolate in Korea and China. This suggests that viruses belonging to the genotype I widely distribute among various fish species in many Asian countries. Conversely, the epidemic viruses belonged to genotype II and III are may be still locally spreading and constrained in their prevalence to the limited host fish species, i.e., genotype II viruses mainly distribute in Southeast Asian countries, whereas genotype III viruses distribute in flatfish species in Korea and China.  相似文献   

15.
根据斑马鱼、大西洋鲑和人等物种巴知的瘦素受体基因核苷酸保守区序列设计一对简并引物,通过RT-PCR法从草鱼肝胰脏中首次克隆获得草鱼瘦素受体基因的片段序列.该片段序列长713 bp,编码237个氨基酸,氨基酸序列分析表明草鱼瘦素受体基因片段氨基酸序列与其他物种的相似性在35% -86%之间.通过邻接法(Neighbor Joining,NJ)构建系统进化树显示,鱼类的瘦素受体独立聚成一支,草鱼与金鱼、斑马鱼聚成一支,再与日本青鳉、黑点青鳉、红鳍东方鲀和大西洋鲑聚成一支.通过实时荧光定量PCR分析草鱼瘦素受体基因的组织差异表达,结果表明,草鱼瘦素受体基因在肝胰脏、肌肉、脑、心脏、脾和肠系膜脂肪组织中均有表达,其中在脾脏组织中表达量最多,显著高于其他组织(P<0.05),其次是心脏、脑、肌肉和肠系膜脂肪组织,在肝胰脏组织中表达量最低,且显著低于其他组织(P<0.05).  相似文献   

16.
The evolution of yellow fever virus over 67 years was investigated by comparing the nucleotide sequences of the envelope (E) protein genes of 20 viruses isolated in Africa, the Caribbean, and South America. Uniformly weighted parsimony algorithm analysis defined two major evolutionary yellow fever virus lineages designated E genotypes I and II. E genotype I contained viruses isolated from East and Central Africa. E genotype II viruses were divided into two sublineages: IIA viruses from West Africa and IIB viruses from America, except for a 1979 virus isolated from Trinidad (TRINID79A). Unique signature patterns were identified at 111 nucleotide and 12 amino acid positions within the yellow fever virus E gene by signature pattern analysis. Yellow fever viruses from East and Central Africa contained unique signatures at 60 nucleotide and five amino acid positions, those from West Africa contained unique signatures at 25 nucleotide and two amino acid positions, and viruses from America contained such signatures at 30 nucleotide and five amino acid positions in the E gene. The dissemination of yellow fever viruses from Africa to the Americas is supported by the close genetic relatedness of genotype IIA and IIB viruses and genetic evidence of a possible second introduction of yellow fever virus from West Africa, as illustrated by the TRINID79A virus isolate. The E protein genes of American IIB yellow fever viruses had higher frequencies of amino acid substitutions than did genes of yellow fever viruses of genotypes I and IIA on the basis of comparisons with a consensus amino acid sequence for the yellow fever E gene. The great variation in the E proteins of American yellow fever virus probably results from positive selection imposed by virus interaction with different species of mosquitoes or nonhuman primates in the Americas.  相似文献   

17.
Genetic relationships between 35 spring viremia of carp virus (SVCV) genogroup Ia isolates were determined based on the nucleotide sequences of the phosphoprotein (P) gene and glycoprotein (G) genes. Phylogenetic analysis based on P gene sequences revealed 2 distinct subgroups within SVCV genogroup Ia, designated SVCV Iai and Iaii, and suggests at least 2 independent introductions of the virus into the USA in 2002. Combined P- and G-sequence data support the emergence of SVCV in Illinois, USA, and in Lake Ontario, Canada, from the initial outbreak in Wisconsin, USA, and demonstrate a close genetic link to viruses isolated during routine import checks on fish brought into the UK from Asia. The data also showed a genetic link between SVCV isolations made in Missouri and Washington, USA, in 2004 and the earlier isolation made in North Carolina, USA, in 2002. However, based on the close relationship to a 2004 UK isolate, the data suggest than the Washington isolate represents a third introduction into the US from a common source, rather than a reemergence from the 2002 isolate. There was strong phylogenetic support for an Asian origin for 9 of 16 UK viruses isolated either from imported fish, or shown to have been in direct contact with fish imported from Asia. In one case, there was 100% nucleotide identity in the G-gene with a virus isolated in China.  相似文献   

18.
19.
Structural Proteins of Pichinde Virus   总被引:10,自引:9,他引:1       下载免费PDF全文
Pichinde virus, a member of the arenovirus group, was found to have four polypeptides by polyacrylamide gel electrophoresis. Two components, V(I) and V(II), had molecular weights of about 72,000, whereas V(III) had a molecular weight of 34,000. A minor component, V(IV), had a molecular weight of about 12,000. Glucosamine was incorporated into V(II) and V(III), suggesting that these components were glycopeptides whereas V(I) and V(IV) were polypeptides. Treatment of the virus with Nonidet P-40 removed V(III), but V(I) and V(II) remained associated with the virus nucleic acid. This suggests a functional role of a ribonucleoprotein for V(I) and an envelope glycoprotein for V(III). V(II), the major glycopeptide, could function both as a membrane component and as a nucleoprotein.  相似文献   

20.
The structural glycoprotein gene gp41 homologue of Spodoptera litura nucleopolyhedrosis virus (SpltNPV-I *) was identified in the 4.0 kb EcoRI-L fragment of the viral genome. The nucleotide sequence of 2063 bp of this fragment revealed an open reading frame of 1014 nucleotides to encode a polypeptide of 337 amino acids. Analysis of nucleotide and deduced amino acid sequences of the putative ORF indicated its identity with gp41 protein of other baculoviruses sharing maximum homology with that of Spodoptera frugiperda nucleopolyhedrosis virus (SfNPV). The coding sequence was preceded by an AT-rich region containing the consensus baculoviral late promoter motif RTAAG. The putative SpltNPV gp41 ORF was abundantly expressed as a 37 kDa apoprotein in E. coli and as a 50 kDa glycoprotein in Sf9 cells. The recombinant protein expressed in insect cells was glycosylated (20%) and has GlcNAc as the terminal sugar. The gene is conserved among baculoviruses and places SpltNPV-I close to Spodoptera frugiperda and Spodoptera exigua NPVs in phylogenetic tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号