首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gibberellins and Light-Stimulated Seed Germination   总被引:3,自引:0,他引:3  
Bioactive gibberellins (GAs) promote seed germination in a number of plant species. In dicots, such as tomato and Arabidopsis, de novo GA biosynthesis after seed imbibition is essential for germination. Light is a crucial environmental cue determining seed germination in some species. The red (R) and far-red light photoreceptor phytochrome regulates GA biosynthesis in germinating lettuce and Arabidopsis seeds. This effect of light is, at least in part, targeted to mRNA abundance of GA 3-oxidase, which catalyzes the final biosynthetic step to produce bioactive GAs. The R-inducible GA 3-oxidase genes are predominantly expressed in the hypocotyl of Arabidopsis embryos. This predicted location of GA biosynthesis appears to correlate with the photosensitive site determined by using R micro-beam in lettuce seeds. The GA-deficient non-germinating mutants have been useful for studying how GA stimulates seed germination. In tomato, GA promotes the growth potential of the embryo and weakens the structures surrounding the embryo. Endo-b-mannanase, which is produced specifically in the micropylar endosperm in a GA-dependent manner, may be responsible for breaking down the endosperm cell walls to assist germination. Recently, a role for GA in overcoming the resistance imposed by the seed coat was also suggested in Arabidopsis from work with a range of seed coat mutants. Towards understanding the GA signaling pathway, GA response mutants have been isolated and characterized, some of which are affected in GA-stimulated seed germination.  相似文献   

2.
Imbibed seeds of Arabidopsis thaliana (L.) Heynh., passed annuallythrough a pattern of changes in dormancy. Dormancy was brokenin summer and re-induced in autumn-winter. A second small germinationflush occurred in early spring. The role of sensitivity to light,nitrate and gibberellins (GAs) in regulating annual dormancypatterns and germination was studied with the use of GA-deficient(gal-2) and wild-type seeds. Dark-incubated seeds were exposedto a natural temperature regime for periods up to 18 monthsand at regular intervals germination capacity of portions ofseeds was tested at laboratory conditions. Germination datafitted as logistic dose response curves showed that sensitivityto light varied with the seasons in both genotypes. From interpretationof curve parameters, it is proposed that the observed sensitivitychanges involve alterations in the number of receptors, in thebinding characteristics of the receptors and/or in the responsechain initiated by ligand-receptor interaction. In this responsechain GA biosynthesis is stimulated (wild type) and sensitivityto GAs is enhanced (wild type, gal -2). GA sensitivity is alsodirectly influenced by temperature, thus without the interferenceof light. However, the significance of direct regulation ofGA requirement seemed to diminish with prolonged incubationoutdoors, whereas reversible changes in light sensitivity remainedclear. Therefore, we propose that seasonal dormancy patternsare mainly regulated by changes in sensitivity to light. GAsensitivity contributes to this pattern but is not primarilycontrolling dormancy. The GA requirement for germination isobvious as gal-2 seeds did not germinate at any time of theyear when deprived of applied GAs. However, GA biosynthesisis not required for dormancy control, as a dormancy patternwas also observed in the absence of the capacity to synthesizeGAs. Nitrate or sensitivity to nitrate did not contribute tothe regulation of dormancy and germination of this species.Copyright1994, 1999 Academic Press Arabidopsis thaliana (L.) Heynh., curve fitting, dormancy, fluence response curve, germination, gibberellin, gibberellin dose response curve, hormone mutant, light, mouse-ear-cress, nitrate, phytochrome, receptor, seasonal dormancy pattern, sensitivity  相似文献   

3.
S. P. C. Groot  C. M. Karssen 《Planta》1987,171(4):525-531
The germination of seeds of tomato [Lycopersicon esculentum (L.) Mill.] cv. Moneymaker has been compared with that of seeds of the gibberellin-deficient dwarf-mutant line ga-1, induced in the same genetic background. Germination of tomato seeds was absolutely dependent on the presence of either endogenous or exogenous gibberellins (GAs). Gibberellin A4+7 was 1000-fold more active than commercial gibberellic acid in inducing germination of the ga-1 seeds. Red light, a preincubation at 2°C, and ethylene did not stimulate germination of ga-1 seeds in the absence of GA4+7; however, fusicoccin did stimulate germination independently. Removal of the endosperm and testa layers opposite the radicle tip caused germination of ga-1 seeds in water. The seedlings and plants that develop from the detipped ga-1 seeds exhibited the extreme dwarfy phenotype that is normal to this genotype. Measurements of the mechanical resistance of the surrounding layers showed that the major action of GAs was directed to the weakening of the endosperm cells around the radicle tip. In wild-type seeds this weakening occurred in water before radicle protrusion. In ga-1 seeds a similar event was dependent on GA4+7, while fusicoccin also had some activity. Simultaneous incubation of de-embryonated endosperms and isolated axes showed that wild-type embryos contain and endosperm-weakening factor that is absent in ga-1 axes and is probably a GA. Thus, an endogenous GA facilitates germination in tomato seeds by weakening the mechanical restraint of the endosperm cells to permit radicle protrusion.Abbreviations GA(s) gibberellin(s) - GA3 gibberellic acid  相似文献   

4.
Effects of light and temperature on gibberellin (GA)-induced seed germination were studied in Arabidopsis thaliana (L.) Heynh. with the use of GA-deficient ( gal ) mutants, mutants with a strongly reduced sensitivity to GA ( gai ) and with the recombinant gai/gal . Seeds of the gal mutant did not germinate in the absence of exogenous GAs, neither in darkness, nor in light, indicating that GAs are absolutely required for germination of this species. Wild-type and gai seeds did not always require applied GAs in light. The conclusion that light stimulates GA biosynthesis was strengthened by the antagonistic action of tetcyclacis, an inhibitor of GA biosynthesis. In wild-type, gal and gai/gal seeds light lowered the GA requirement, which can be interpreted as an increase in sensitivity to GAs. In gai and gai/gal seeds light became effective only after dormancy was broken by either a chilling treatment of one week or a dry after-ripening period at 2°C during some months. The present genetic and physiological evidence strongly suggests that temperature regulates the responsiveness to light in A. thaliana seeds. The responsiveness increases during dormancy breaking, whereas the opposite occurs during induction of dormancy (8 days at 15°C pre-incubation). Since light stimulates the synthesis of GAs as well as the responsiveness to GAs, temperature-induced changes in dormancy may indirectly change the capacities to synthesize GAs and to respond to GAs. GA sensitivity is also directly controlled by temperature. It is concluded that both GA biosynthesis and sensitivity to GAs are not the primary controlling factors in dormancy, but are essential for germination.  相似文献   

5.
6.
研究低温层积对肉苁蓉种子胚率、内源赤霉素(GA)和脱落酸(ABA)含量以及外源赤霉素(GA3)对低温层积不同时间种子萌发率影响的结果表明:低温层积可以提高种子的胚率及其GA的含量,降低其ABA含量;层积120~150d的肉苁蓉种子经外源GA3处理后,其萌发率可以达到70%以上;层积120d是外源GA3促进种子萌发的临界点。  相似文献   

7.
Adenosine 3′,5′-cyclic monophosphate (cAMP) is known as a key second messenger in many living organisms, regulating a wide range of cellular responses. In higher plants the function of cAMP is poorly understood. In this study, we examined the role of cAMP in seed germination of the root parasitic plant Orobanche minor whose seeds require preincubation in warm moist environments for several days, termed conditioning, prior to exposure to germination stimulants released from roots of host plants. Accumulation of endogenous cAMP was observed in the conditioned O. minor seeds. When the seeds were exposed to light or supraoptimal temperature during the conditioning period, cAMP did not accumulate and the seeds showed low germination rates after stimulation with strigol, a germination stimulant. Addition of membrane-permeable cAMP to the medium restored the germination rates of the seeds treated with light or supraoptimal temperature during the conditioning period, suggesting that cAMP functions during the conditioning period. The endogenous cAMP levels of the seeds conditioned in the light or at a supraoptimal temperature were elevated by treatment of the seeds with gibberellin (GA) during the conditioning period. Uniconazole, a potent inhibitor of GA biosynthesis, blocked elevation of the cAMP level. Furthermore, a correlation between the endogenous cAMP level and GA level was observed during the conditioning period. These results suggest that GAs elevate the cAMP level, which is required for the germination of O. minor seeds.  相似文献   

8.
Although unchilled, intact seeds of Betula pubescens and B.verrucosa require light for germination, isolated embryos germinateequally well in both light and darkness. An aqueous extract of these seeds has germination-inhibitoryproperties correlated with the presence of a non-fluorescent,single substance. The light requirement of isolated embryosis restored by the inhibitor. When intact seeds are leachedwith water to remove some inhibitor, it is found that the lightrequirement is reduced, short days and single light periodsthen eliciting greater germination than in unleached seeds. It has been found that scratching, pricking, and cutting theseed coat increases the germination of intact seeds in darkness,and that this is probably due to enhanced oxygen entry. Further,it has been found that germination in short days is increasedin oxygen-enriched atmospheres. It has been found that although the inhibitory effect of theseed coat in intact seeds is partially due to the reductionof the oxygen supply to the embryo, a low oxygen concentrationdoes not prevent germination of isolated embryos. Experimentalresults suggest that the inhibitor in the seed coat increasesthe oxygen requirement of the embryo.  相似文献   

9.
10.
植物内源激素在调节种子休眠和萌发过程中具有极其重要的作用。本研究运用反式高效液相色谱(RP-HPLC)与紫外检测器联用的方法对小花草玉梅干种子、吸胀种子和露白种子中的赤霉素GAs、脱落酸ABA、玉米素ZT和生长素IAA含量进行了检测,旨在研究植物内源激素水平在种子萌发过程中的变化是否直接关系着小花草玉梅种子在光照或黑暗条件下的萌发能力。结果显示,种子吸胀过程中,光照促进了ZT同时抑制了ABA的积累,并且ZT对ABA萌发抑制作用的解除也受光的促进,露白种子中的ABA/ZT,ABA/GAs和(ABA+IAA)/(GAs+ZT)水平在黑暗条件下高于光照条件,上述均是导致光照条件下种子萌发率较高的重要原因;相对于干种子,IAA含量在种子吸胀初期急速下降,(ABA+IAA)/(GAs+ZT)在种子萌发过程中有所降低,而ABA/GAs却表现出明显的上升趋势;各激素水平所受光照的影响均在种子开始露白时显著减弱,另外,吸胀第9天是小花草玉梅种子萌发过程中激素变化的一个关键的时间节点。总之,种子萌发并非直接关系着GA含量的升高和ABA含量的降低。因光照直接促进了小花草玉梅种子的萌发,本研究认为高寒草甸充...  相似文献   

11.
赤霉素与脱落酸对番茄种子萌发中细胞周期的调控   总被引:11,自引:0,他引:11  
利用细胞流检仪检测番茄(Lycopersicon esculentum Mill.) GA-缺陷型、ABA-缺陷型和相应的正常品种(野生型)成熟种子胚根尖细胞倍性水平时发现:GA-缺陷型和野生型种子绝大多数细胞DNA 水平为2C,而ABA-缺陷型种子则含有较多的4C细胞。在标准发芽条件下,ABA-缺陷型和野生型种子浸种1 d 后胚根尖细胞DNA 开始复制,随后胚根突破种皮而发芽。然而GA-缺陷型种子除非加入外源GA,否则既不发生细胞DNA 复制,也不发芽。这说明内源GA 是启动番茄种子胚根尖细胞DNA 复制的关键因素,同时也说明番茄根尖细胞DNA 复制是种子发芽的必要条件。实验证明:ABA 不抑制细胞DNA 合成,但阻止G2 细胞进入到M 期。外源ABA处理野生型种子与渗控处理结果相似,可以大幅度提高胚根尖4C/2C细胞的比例,但抑制种子的最终发芽  相似文献   

12.
Gibberellins (GAs) are biosynthesized through a complex pathway that involves several classes of enzymes. To predict sites of individual GA biosynthetic steps, we studied cell type-specific expression of genes encoding early and late GA biosynthetic enzymes in germinating Arabidopsis seeds. We showed that expression of two genes, AtGA3ox1 and AtGA3ox2, encoding GA 3-oxidase, which catalyzes the terminal biosynthetic step, was mainly localized in the cortex and endodermis of embryo axes in germinating seeds. Because another GA biosynthetic gene, AtKO1, coding for ent-kaurene oxidase, exhibited a similar cell-specific expression pattern, we predicted that the synthesis of bioactive GAs from ent-kaurene oxidation occurs in the same cell types during seed germination. We also showed that the cortical cells expand during germination, suggesting a spatial correlation between GA production and response. However, promoter activity of the AtCPS1 gene, responsible for the first committed step in GA biosynthesis, was detected exclusively in the embryo provasculature in germinating seeds. When the AtCPS1 cDNA was expressed only in the cortex and endodermis of non-germinating ga1-3 seeds (deficient in AtCPS1) using the AtGA3ox2 promoter, germination was not as resistant to a GA biosynthesis inhibitor as expression in the provasculature. These results suggest that the biosynthesis of GAs during seed germination takes place in two separate locations with the early step occurring in the provasculature and the later steps in the cortex and endodermis. This implies that intercellular transport of an intermediate of the GA biosynthetic pathway is required to produce bioactive GAs.  相似文献   

13.
The mechanism of inhibition of coffee (Coffea arabica cv. Rubi) seed germination by exogenous gibberellins (GAs) and the requirement of germination for endogenous GA were studied. Exogenous GA(4+7) inhibited coffee seed germination. The response to GA(4+7) showed two sensitivity thresholds: a lower one between 0 and 1 microM and a higher one between 10 and 100 microM. However, radicle protrusion in coffee seed depended on the de novo synthesis of GAs. Endogenous GAs were required for embryo cell elongation and endosperm cap weakening. Incubation of coffee seed in exogenous GA(4+7) led to loss of embryo viability and dead cells were observed by low temperature scanning microscopy only when the endosperm was surrounding the embryo. The results described here indicate that the inhibition of germination by exogenous GAs is caused by factors that are released from the endosperm during or after its weakening, causing cell death in the embryo and leading to inhibition of radicle protrusion.  相似文献   

14.
Seed germination of Nicotiana tabacum L. cv. Havana 425 is determined by the balance of forces between the growth potential of the embryo and the mechanical restraint of the micropylar endosperm. In contrast to the gibberellin GA4, the brassinosteroid (BR) brassinolide (BL) did not release photodormancy of dark-imbibed photodormant seeds. Brassinolide promoted seedling elongation and germination of non-photodormant seeds, but did not appreciably affect the induction of class I beta-1,3-glucanase (betaGLU I) in the micropylar endosperm. Brassinolide, but not GA4, accelerated endosperm rupture of tobacco seeds imbibed in the light. Brassinolide and GA4 promoted endosperm rupture of dark-imbibed non-photodormant seeds, but only GA4 enhanced betaGLU I induction. Promotion of endosperm rupture by BL was dose-dependent and 0.01 microM BL was most effective. Brassinolide and GA4 promoted abscisic acid (ABA)-inhibited dark-germination of non-photodormant seeds, but only GA4 replaced light in inducing betaGLU I. These results indicate that BRs and GAs promote tobacco seed germination by distinct signal transduction pathways and distinct mechanisms. Gibberellins and light seem to act in a common pathway to release photodormancy, whereas BRs do not release photodormancy. Induction of betaGLU I in the micropylar endosperm and promotion of release of 'coat-enhanced' dormancy seem to be associated with the GA-dependent pathway, but not with BR signalling. It is proposed that BRs promote seed germination by directly enhancing the growth potential of the emerging embryo in a GA- and betaGLU I-independent manner.  相似文献   

15.
16.
17.
It is generally believed that seed dormancy release is terminated by germination and that this process is controlled by phytohormones. Most attention was paid to gibberellins (GAs) because treatment with GAs is most frequently applied for seed dormancy breaking. The review characterizes the hormonal regulation of seed dormancy and its release, as exemplified by arabidopsis seeds possessing non-deep physiological dormancy. Dormancy release occurs under the influence of low temperature and/or illumination with red light. Two main trends are typical of this process: (1) a decrease in ABA content and blocking of signal transduction from ABA, and (2) GA synthesis and activation of GA signaling pathway. Dormancy release ends with the GA-induced syntheses of some proteins, enzymes in particular, required for the start of germination. Quiescent seeds are capable of realizing the germination program without hormonal induction, due to nothing but seed hydration. In imbibing seeds, the triggering role of water lies in the successive activation of basic metabolic systems after attaining the water content thresholds characteristic of these systems and in preparing cells of embryo axial organs for germination. Thus, seed dormancy release is controlled by phytohormones, whereas subsequent germination manifesting itself as the initiation of cell elongation in embryo axes is controlled by water inflow.  相似文献   

18.
The mechanisms imposing a gibberellin (GA) requirement to promote the germination of dormant and non-dormant Arabidopsis seeds were analyzed using the GA-deficient mutant ga1, several seed coat pigmentation and structure mutants, and the abscisic acid (ABA)-deficient mutant aba1. Testa mutants, which exhibit reduced seed dormancy, were not resistant to GA biosynthesis inhibitors such as tetcyclacis and paclobutrazol, contrarily to what was found before for other non-dormant mutants in Arabidopsis. However, testa mutants were more sensitive to exogenous GAs than the wild-types in the presence of the inhibitors or when transferred to a GA-deficient background. The germination capacity of the ga1-1 mutant could be integrally restored, without the help of exogenous GAs, by removing the envelopes or by transferring the mutation to a tt background (tt4 and ttg1). The double mutants still required light and chilling for dormancy breaking, which may indicate that both agents can have an effect independently of GA biosynthesis. The ABA biosynthesis inhibitor norflurazon was partially efficient in releasing the dormancy of wild-type and mutant seeds. These results suggest that GAs are required to overcome the germination constraints imposed both by the seed coat and ABA-related embryo dormancy.  相似文献   

19.
A current hypothesis is that endo--mannanase activity in the endosperm cap of tomato (Lycopersicon esculentum Mill. cv. Moneymaker) seeds is induced by gibberellin (GA) and weakens the endosperm cap thus permitting radicle protrusion. We have tested this hypothesis. In isolated parts, the expression of endo--mannanase in the endosperm after germination is induced by GAs, but the expression of endo--mannanase in the endosperm cap prior to radicle protrusion is not induced by GAs. Also, abscisic acid (ABA) is incapable of inhibiting endo--mannanase activity in the endosperm cap, even though it strongly inhibits germination. However, ABA does inhibit enzyme activity in the endosperm and embryo after germination. There are several isoforms in the endosperm cap and embryo prior to radicle protrusion that are tissue-specific. Tissue prints showed that enzyme activity in the embryo spreads from the radicle tip to the cotyledons with time after the start of imbibition. The isoform and developmental patterns of enzyme activity on tissueprints are unaffected when seeds are incubated in ABA, even though germination is inhibited. We conclude that the presence of endo--mannanase activity in the endosperm cap is not in itself sufficient to permit tomato seeds to complete germination.Abbreviations ABA cis/trans-abscisic acid - GA(s) gibberellin(s) - IEF isoelectric focussing - pI(s) isoelectric point(s) We thank Dr. Bruce Downie for the seemingly endless but inspiring discussions.  相似文献   

20.
Seeds ofTaxus maireiare known for their deep dormancy whichcan only be broken by a procedure involving warm stratificationfollowed by cold stratification. Treatments with alternatingtemperatures of 25/15 or 23/11 °C (12 h light) for 6 monthsfollowed by 5 °C for 3 months were successful in overcomingseed dormancy. After 6 months of warm stratification, cytologicalchanges observed included: enlargement of the embryo; a decreasein the number of lipid bodies; appearance of ER; and increasesin mitochondria, plastids, dictyosomes, vacuoles and microbodiesin the shoot apical meristem. Cold stratification followingthe warm treatment induced cell division, and one or two distinctnucleoli in the shoot apical meristem cells were observed. Bothwarm and cold stratification reduced endogenous ABA concentrationsfrom the original 8888 pg per freshly harvested seed to 392and 536 pg, respectively. Treatment with exogenous gibberellinsafter seeds had been warm-stratified showed that GA4and GA7wereeffective at promoting seed germination, but GA3was not. Theseresults suggest that the strong seed dormancy ofT. maireicouldbe caused by a high ABA content and underdevelopment of theembryos in freshly shed seeds. We conclude that warm stratificationwith alternating temperatures increases the growth of embryosby cell expansion and enlargement and decreases ABA content,but seeds still remain ungerminated. Cold stratification mayinduce the response to GAs and initiate cell division resultingin release from physiological dormancy and subsequent germinationofT. maireiseeds.Copyright 1998 Annals of Botany Company Taxus mairei; ultrastructure; abscisic acid; gibberellin; seed dormancy; stratification; germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号