首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Clustering techniques have been widely used in the analysis of microarray data to group genes with similar expression profiles. The similarity of expression profiles and hence the results of clustering greatly depend on how the data has been transformed. We present a method that uses the relative expression changes between pairs of conditions and an angular transformation to define the similarity of gene expression patterns. The pairwise comparisons of experimental conditions can be chosen to reflect the purpose of clustering allowing control the definition of similarity between genes. A variational Bayes mixture modeling approach is then used to find clusters within the transformed data. The purpose of microarray data analysis is often to locate groups genes showing particular patterns of expression change and within these groups to locate specific target genes that may warrant further experimental investigation. We show that the angular transformation maps data to a representation from which information, in terms of relative regulation changes, can be automatically mined. This information can be then be used to understand the "features" of expression change important to different clusters allowing potentially interesting clusters to be easily located. Finally, we show how the genes within a cluster can be visualized in terms of their expression pattern and intensity change, allowing potential target genes to be highlighted within the clusters of interest.  相似文献   

2.
This research provides a new way to measure error in microarray data in order to improve gene expression analysis.Microarray data contains many sources of error.In order to glean information about mRNA expression levels,the true signal must first be segregated from noise.This research focuses on the variation that can be captured at the spot level in cDNA microarray images.Variation at other levels,due to differences at the array,dye,and block levels,can be corrected for by a variety of existing normalization procedures.Two signal quality estimates that capture the reliability of each spot printed on a microarray are described.A parametric estimate of within-spot vari ance,referred to here as σ s2pot,assumes that pixels follow a normal distribution and are spatially correlated.A non-parametric estimate of error,called the mean square prediction error(MSPE),assumes that spots of high quality possess pixels that are similar to their neighbors.This paper will provide a framework to use either spot quality measure in downstream analysis,specifically as weights in regression models.Using these spot quality estimates as weights can result in greater efficiency,in a statistical sense,when modeling microarray data.  相似文献   

3.
Statistical inference for microarray experiments usually involves the estimation of error variance for each gene. Because the sample size available for each gene is often low, the usual unbiased estimator of the error variance can be unreliable. Shrinkage methods, including empirical Bayes approaches that borrow information across genes to produce more stable estimates, have been developed in recent years. Because the same microarray platform is often used for at least several experiments to study similar biological systems, there is an opportunity to improve variance estimation further by borrowing information not only across genes but also across experiments. We propose a lognormal model for error variances that involves random gene effects and random experiment effects. Based on the model, we develop an empirical Bayes estimator of the error variance for each combination of gene and experiment and call this estimator BAGE because information is Borrowed Across Genes and Experiments. A permutation strategy is used to make inference about the differential expression status of each gene. Simulation studies with data generated from different probability models and real microarray data show that our method outperforms existing approaches.  相似文献   

4.
5.
Tracy  L  Bergemann 《遗传学报》2010,37(4):265-279
This research provides a new way to measure error in microarray data in order to improve gene expression analysis. Microarray data contains many sources of error. In order to glean information about mRNA expression levels, the true signal must first be segregated from noise. This research focuses on the variation that can be captured at the spot level in cDNA microarray images. Variation at other levels, due to differences at the array, dye, and block levels, can be corrected for by a variety of existing normalization procedures. Two signal quality estimates that capture the reliability of each spot printed on a microarray are described. A parametric estimate of within-spot variance, referred to here as σ2spot, assumes that pixels follow a normal distribution and are spatially correlated. A non-parametric estimate of error, called the mean square prediction error (MSPE), assumes that spots of high quality possess pixels that are similar to their neighbors. This paper will provide a framework to use either spot quality measure in downstream analysis, specifically as weights in regression models. Using these spot quality estimates as weights can result in greater efficiency, in a statistical sense, when modeling microarray data.  相似文献   

6.
Microarrays have been useful in understanding various biological processes by allowing the simultaneous study of the expression of thousands of genes. However, the analysis of microarray data is a challenging task. One of the key problems in microarray analysis is the classification of unknown expression profiles. Specifically, the often large number of non-informative genes on the microarray adversely affects the performance and efficiency of classification algorithms. Furthermore, the skewed ratio of sample to variable poses a risk of overfitting. Thus, in this context, feature selection methods become crucial to select relevant genes and, hence, improve classification accuracy. In this study, we investigated feature selection methods based on gene expression profiles and protein interactions. We found that in our setup, the addition of protein interaction information did not contribute to any significant improvement of the classification results. Furthermore, we developed a novel feature selection method that relies exclusively on observed gene expression changes in microarray experiments, which we call “relative Signal-to-Noise ratio” (rSNR). More precisely, the rSNR ranks genes based on their specificity to an experimental condition, by comparing intrinsic variation, i.e. variation in gene expression within an experimental condition, with extrinsic variation, i.e. variation in gene expression across experimental conditions. Genes with low variation within an experimental condition of interest and high variation across experimental conditions are ranked higher, and help in improving classification accuracy. We compared different feature selection methods on two time-series microarray datasets and one static microarray dataset. We found that the rSNR performed generally better than the other methods.  相似文献   

7.
DNA microarray gene expression and microarray-based comparative genomic hybridization (aCGH) have been widely used for biomedical discovery. Because of the large number of genes and the complex nature of biological networks, various analysis methods have been proposed. One such method is "gene shaving," a procedure which identifies subsets of the genes with coherent expression patterns and large variation across samples. Since combining genomic information from multiple sources can improve classification and prediction of diseases, in this paper we proposed a new method, "ICA gene shaving" (ICA, independent component analysis), for jointly analyzing gene expression and copy number data. First we used ICA to analyze joint measurements, gene expression and copy number, of a biological system and project the data onto statistically independent biological processes. Next, we used these results to identify patterns of variation in the data and then applied an iterative shaving method. We investigated the properties of our proposed method by analyzing both simulated and real data. We demonstrated that the robustness of our method to noise using simulated data. Using breast cancer data, we showed that our method is superior to the Generalized Singular Value Decomposition (GSVD) gene shaving method for identifying genes associated with breast cancer.  相似文献   

8.
Normalization is critical for removing systematic variation from microarray data. For two-color microarray platforms, intensity-dependent lowess normalization is commonly used to correct relative gene expression values for biases. Here we outline a normalization method for use when the assumptions of lowess normalization fail. Specifically, this can occur when specialized boutique arrays are constructed that contain a subset of genes selected to test particular biological functions.  相似文献   

9.
MOTIVATION: Principal Component Analysis (PCA) is one of the most popular dimensionality reduction techniques for the analysis of high-dimensional datasets. However, in its standard form, it does not take into account any error measures associated with the data points beyond a standard spherical noise. This indiscriminate nature provides one of its main weaknesses when applied to biological data with inherently large variability, such as expression levels measured with microarrays. Methods now exist for extracting credibility intervals from the probe-level analysis of cDNA and oligonucleotide microarray experiments. These credibility intervals are gene and experiment specific, and can be propagated through an appropriate probabilistic downstream analysis. RESULTS: We propose a new model-based approach to PCA that takes into account the variances associated with each gene in each experiment. We develop an efficient EM-algorithm to estimate the parameters of our new model. The model provides significantly better results than standard PCA, while remaining computationally reasonable. We show how the model can be used to 'denoise' a microarray dataset leading to improved expression profiles and tighter clustering across profiles. The probabilistic nature of the model means that the correct number of principal components is automatically obtained.  相似文献   

10.
11.
Analysing microarray data using modular regulation analysis   总被引:3,自引:0,他引:3  
MOTIVATION: Microarray experiments measure complex changes in the abundance of many mRNAs under different conditions. Current analysis methods cannot distinguish between direct and indirect effects on expression, or calculate the relative importance of mRNAs in effecting responses. RESULTS: Application of modular regulation analysis to microarray data reveals and quantifies which mRNA changes are important for cellular responses. The mRNAs are clustered, and then we calculate how perturbations alter each cluster and how strongly those clusters affect an output response. The product of these values quantifies how an input changes a response through each cluster. Two published datasets are analysed. Two mRNA clusters transmit most of the response of yeast doubling time to galactose; one contains mainly galactose metabolic genes, and the other a regulatory gene. Analysis of the response of yeast relative fitness to 2-deoxy-D-glucose reveals that control is distributed between several mRNA clusters, but experimental error limits statistical significance.  相似文献   

12.
13.
MOTIVATION: Finding differentially expressed genes is a fundamental objective of a microarray experiment. Numerous methods have been proposed to perform this task. Existing methods are based on point estimates of gene expression level obtained from each microarray experiment. This approach discards potentially useful information about measurement error that can be obtained from an appropriate probe-level analysis. Probabilistic probe-level models can be used to measure gene expression and also provide a level of uncertainty in this measurement. This probe-level measurement error provides useful information which can help in the identification of differentially expressed genes. RESULTS: We propose a Bayesian method to include probe-level measurement error into the detection of differentially expressed genes from replicated experiments. A variational approximation is used for efficient parameter estimation. We compare this approximation with MAP and MCMC parameter estimation in terms of computational efficiency and accuracy. The method is used to calculate the probability of positive log-ratio (PPLR) of expression levels between conditions. Using the measurements from a recently developed Affymetrix probe-level model, multi-mgMOS, we test PPLR on a spike-in dataset and a mouse time-course dataset. Results show that the inclusion of probe-level measurement error improves accuracy in detecting differential gene expression. AVAILABILITY: The MAP approximation and variational inference described in this paper have been implemented in an R package pplr. The MCMC method is implemented in Matlab. Both software are available from http://umber.sbs.man.ac.uk/resources/puma.  相似文献   

14.
MOTIVATION: The numerical values of gene expression measured using microarrays are usually presented to the biological end-user as summary statistics of spot pixel data, such as the spot mean, median and mode. Much of the subsequent data analysis reported in the literature, however, uses only one of these spot statistics. This results in sub-optimal estimates of gene expression levels and a need for improvement in quantitative spot variation surveillance. RESULTS: This paper develops a maximum-likelihood method for estimating gene expression using spot mean, variance and pixel number values available from typical microarray scanners. It employs a hierarchical model of variation between and within microarray spots. The hierarchical maximum-likelihood estimate (MLE) is shown to be a more efficient estimator of the mean than the 'conventional' estimate using solely the spot mean values (i.e. without spot variance data). Furthermore, under the assumptions of our model, the spot mean and spot variance are shown to be sufficient statistics that do not require the use of all pixel data.The hierarchical MLE method is applied to data from both Monte Carlo (MC) simulations and a two-channel dye-swapped spotted microarray experiment. The MC simulations show that the hierarchical MLE method leads to improved detection of differential gene expression particularly when 'outlier' spots are present on the arrays. Compared with the conventional method, the MLE method applied to data from the microarray experiment leads to an increase in the number of differentially expressed genes detected for low cut-off P-values of interest.  相似文献   

15.

Background

Difficulties associated with implementing gene therapy are caused by the complexity of the underlying regulatory networks. The forms of interactions between the hundreds of genes, proteins, and metabolites in these networks are not known very accurately. An alternative approach is to limit consideration to genes on the network. Steady state measurements of these influence networks can be obtained from DNA microarray experiments. However, since they contain a large number of nodes, the computation of influence networks requires a prohibitively large set of microarray experiments. Furthermore, error estimates of the network make verifiable predictions impossible.

Methodology/Principal Findings

Here, we propose an alternative approach. Rather than attempting to derive an accurate model of the network, we ask what questions can be addressed using lower dimensional, highly simplified models. More importantly, is it possible to use such robust features in applications? We first identify a small group of genes that can be used to affect changes in other nodes of the network. The reduced effective empirical subnetwork (EES) can be computed using steady state measurements on a small number of genetically perturbed systems. We show that the EES can be used to make predictions on expression profiles of other mutants, and to compute how to implement pre-specified changes in the steady state of the underlying biological process. These assertions are verified in a synthetic influence network. We also use previously published experimental data to compute the EES associated with an oxygen deprivation network of E.coli, and use it to predict gene expression levels on a double mutant. The predictions are significantly different from the experimental results for less than of genes.

Conclusions/Significance

The constraints imposed by gene expression levels of mutants can be used to address a selected set of questions about a gene network.  相似文献   

16.

Background

Genomic studies of complex tissues pose unique analytical challenges for assessment of data quality, performance of statistical methods used for data extraction, and detection of differentially expressed genes. Ideally, to assess the accuracy of gene expression analysis methods, one needs a set of genes which are known to be differentially expressed in the samples and which can be used as a "gold standard". We introduce the idea of using sex-chromosome genes as an alternative to spiked-in control genes or simulations for assessment of microarray data and analysis methods.

Results

Expression of sex-chromosome genes were used as true internal biological controls to compare alternate probe-level data extraction algorithms (Microarray Suite 5.0 [MAS5.0], Model Based Expression Index [MBEI] and Robust Multi-array Average [RMA]), to assess microarray data quality and to establish some statistical guidelines for analyzing large-scale gene expression. These approaches were implemented on a large new dataset of human brain samples. RMA-generated gene expression values were markedly less variable and more reliable than MAS5.0 and MBEI-derived values. A statistical technique controlling the false discovery rate was applied to adjust for multiple testing, as an alternative to the Bonferroni method, and showed no evidence of false negative results. Fourteen probesets, representing nine Y- and two X-chromosome linked genes, displayed significant sex differences in brain prefrontal cortex gene expression.

Conclusion

In this study, we have demonstrated the use of sex genes as true biological internal controls for genomic analysis of complex tissues, and suggested analytical guidelines for testing alternate oligonucleotide microarray data extraction protocols and for adjusting multiple statistical analysis of differentially expressed genes. Our results also provided evidence for sex differences in gene expression in the brain prefrontal cortex, supporting the notion of a putative direct role of sex-chromosome genes in differentiation and maintenance of sexual dimorphism of the central nervous system. Importantly, these analytical approaches are applicable to all microarray studies that include male and female human or animal subjects.
  相似文献   

17.
Modern microarray technology is capable of providing data about the expression of thousands of genes, and even of whole genomes. An important question is how this technology can be used most effectively to unravel the workings of cellular machinery. Here, we propose a method to infer genetic networks on the basis of data from appropriately designed microarray experiments. In addition to identifying the genes that affect a specific other gene directly, this method also estimates the strength of such effects. We will discuss both the experimental setup and the theoretical background.  相似文献   

18.
19.
20.
Qin LX  Self SG 《Biometrics》2006,62(2):526-533
Identification of differentially expressed genes and clustering of genes are two important and complementary objectives addressed with gene expression data. For the differential expression question, many "per-gene" analytic methods have been proposed. These methods can generally be characterized as using a regression function to independently model the observations for each gene; various adjustments for multiplicity are then used to interpret the statistical significance of these per-gene regression models over the collection of genes analyzed. Motivated by this common structure of per-gene models, we proposed a new model-based clustering method--the clustering of regression models method, which groups genes that share a similar relationship to the covariate(s). This method provides a unified approach for a family of clustering procedures and can be applied for data collected with various experimental designs. In addition, when combined with per-gene methods for assessing differential expression that employ the same regression modeling structure, an integrated framework for the analysis of microarray data is obtained. The proposed methodology was applied to two microarray data sets, one from a breast cancer study and the other from a yeast cell cycle study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号