首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are using polymer templates to grow artificial artery grafts in vivo for the replacement of diseased blood vessels. We have previously shown that adhesion of macrophages to the template starts the graft formation. We present a study of the mechanics of macrophage adhesion to these templates on a single cell and single bond level with optical tweezers. For whole cells, in vitro cell adhesion densities decreased significantly from polymer templates polyethylene to silicone to Tygon (167, 135, and 65 cells/mm(2)). These cell densities were correlated with the graft formation success rate (50%, 25%, and 0%). Single-bond rupture forces at a loading rate of 450 pN/s were quantified by adhesion of trapped 2-microm spheres to macrophages. Rupture force distributions were dominated by nonspecific adhesion (forces <40 pN). On polystyrene, preadsorption of fibronectin or presence of serum proteins in the cell medium significantly enhanced adhesion strength from a mean rupture force of 20 pN to 28 pN or 33 pN, respectively. The enhancement of adhesion by fibronectin and serum is additive (mean rupture force of 43 pN). The fraction of specific binding forces in the presence of serum was similar for polystyrene and polymethyl-methacrylate, but specific binding forces were not observed for silica. Again, we found correlation to in vivo experiments, where the density of adherent cells is higher on polystyrene than on silica templates, and can be further enhanced by fibronectin adsorption. These findings show that in vitro adhesion testing can be used for template optimization and to substitute for in-vivo experiments.  相似文献   

2.
Autocrine-regulated, matrix-induced, and tumor cell-stimulated endothelial cell migration was quantitatively analyzed using a two-dimensional, two-compartment coculture system. Silicon templates were used to subdivide 35-mm tissue culture dishes into two separate compartments. Endothelial cells were grown to confluence in the inner compartment and released from growth arrest by removal of the silicon template. The distance of endothelial cell outgrowth from the monolayer was measured in 24-h intervals. Endothelial cells from different vascular beds migrated with different migration rates (large vessel endothelial cells greater than hemangioendothelioma cells greater than microvessel endothelial cells). Prior coating of tissue culture wells with fibronectin, type I collagen, or type IV collagen and increasing serum concentrations strongly enhanced endothelial cell migration. Seeding tumor cells into the outer compartment prior to removal of the silicon template permitted the direct coculture analysis of tumor cell-induced endothelial cell migration. Microvascular endothelial cell migration was stimulated in a tumor cell number-dependent fashion, whereas large vessel endothelial cells could not consistently be stimulated by coculture with tumor cells. It is concluded that silicon templates offer a useful approach for the quantitative study of migration of anchorage-dependent cells, permitting follow-up measurements over several days, the study of matrix effects, and the direct coculture analysis of cell migration.  相似文献   

3.
A phenylalanine (Phe) imprinted polymer was prepared by the wet-phase inversion and sol–gel transition method to endow a copolymer matrix with a large uptake capacity of template molecules and prominent adsorption selectivity at the high concentration of the racemate solution. A copolymer bead prepared by wet-phase inversion was shrunken in a hydrochloric acid solution containing a large amount of template molecules after swelling in a sodium hydroxide solution. Template molecules were effectively implanted in the polymer matrix during shrinking after swelling. The adsorption selectivities of Phe-imprinted copolymer bead were 2.1 and 1.33 at 1 g and 10 g Phe/l racemate solution, respectively, and the Phe uptake capacity reached about 1 g Phe/g dry weight of the copolymer. The adsorption selectivity of the copolymer was retained after five batches of adsorption/desorption in 1 g Phe/l solution composed of 5% D-Phe and 95% L-Phe.  相似文献   

4.
Freshly isolated or overnight cultured peripheral blood mononuclear cells from immune or nonimmune animals had natural cytolytic activity against bovine herpesvirus 1 (BHV-1)-infected tumor target cells. No lysis was demonstrated against tumor target cells alone. This natural cytolytic activity was present in mononuclear cells from the spleen, lymph node, and peripheral blood but little or no cytolytic activity was detected in bone marrow or thymus cells. When monoclonal antibodies and complement to deplete bovine mononuclear cell subpopulations from the nonadherent cells were used, results indicated the effector cell was not a T cell, B cell, or activated monocyte. From nonadherent populations separated on density gradients, it was determined that the effector cells were large, low density mononuclear cells. These results indicate the nonadherent effector cells mediating lysis of BHV-1-infected xenogeneic adherent target cells were large null lymphocytes and/or immature monocytes.  相似文献   

5.
Without an active, thriving cell population that is well-distributed and stably anchored to the inserted template, exceptional bone regeneration does not occur. With conventional templates, the absence of internal micro-channels results in the lack of cell infiltration, distribution, and inhabitance deep inside the templates. Hence, a highly porous and uniformly interconnected trabecular-bone-like template with micro-channels (biogenic microenvironment template; BMT) has been developed to address these obstacles. The novel BMT was created by innovative concepts (capillary action) and fabricated with a sponge-template coating technique. The BMT consists of several structural components: inter-connected primary-pores (300-400 µm) that mimic pores in trabecular bone, micro-channels (25-70 µm) within each trabecula, and nanopores (100-400 nm) on the surface to allow cells to anchor. Moreover, the BMT has been documented by mechanical test study to have similar mechanical strength properties to those of human trabecular bone (~3.8 MPa)12.The BMT exhibited high absorption, retention, and habitation of cells throughout the bridge-shaped (Π) templates (3 cm height and 4 cm length). The cells that were initially seeded into one end of the templates immediately mobilized to the other end (10 cm distance) by capillary action of the BMT on the cell media. After 4 hr, the cells homogenously occupied the entire BMT and exhibited normal cellular behavior. The capillary action accounted for the infiltration of the cells suspended in the media and the distribution (active migration) throughout the BMT. Having observed these capabilities of the BMT, we project that BMTs will absorb bone marrow cells, growth factors, and nutrients from the periphery under physiological conditions.The BMT may resolve current limitations via rapid infiltration, homogenous distribution and inhabitance of cells in large, volumetric templates to repair massive skeletal defects.  相似文献   

6.
Rat nylon wool nonadherent bone marrow cells were propagated for up to 75 days in co-culture with stromal cells derived from either spleen or bone marrow. Interleukin (IL) 1 enhanced the ability of spleen stroma to support the long-term culture of natural killer (NK) cells, ostensibly by inducing these support cells to synthesize other cytokines. Flow cytometry studies indicated that the nylon wool separation procedure enriched the concentrations of mature NK cells from 7.9% to 38.1% for splenocytes and from 3.8% to 19.5% for bone marrow cells. Analyses of the adherent zones of suspended nylon screen NK cell cultures revealed substantial numbers of large granular lymphocytes that expressed NK 323+/MOM/3F12/F2- phenotypes. The presence of both mature and immature cells of the NK lineage in this matrix was inferred by the presence of both IL-2 receptor (IL-2R) positive and IL-2R negative, and OX-8+ and OX-8- NK 323+ cells over the greater than 4-month experimental period. Suspended nylon screen cultures displayed a greater potential for producing cytolytic cells than either co-cultures of bone marrow nonadherent cells on stroma monolayers or suspension cultures. The large granular lymphocytes produced in suspended nylon screen cultures could be transformed into active killers of YAC-1 targets by IL-2. In contrast to bone marrow nonadherent cells, more splenic nylon-wool-passed cells displayed a mature NK phenotype, but their proliferative potential and ability to be transformed into cytolytic cells by IL-2 decreased rapidly in culture. In the suspended nylon screen culture system, NK cells migrate from the underlying stroma in stages as they mature, retain their cytolytic potential, and manifest a capacity for self-renewal. Cultured cells were routinely dissociated into single cell suspensions via enzyme treatment and were reinoculated onto "fresh" nylon screen/stromal cell templates after passage through nylon wool columns. These co-cultures continued to generate cytolytic cells in numbers greater than those of the initial inoculum.  相似文献   

7.

Gold nanoring array surfaces that exhibit strong localized surface plasmon resonances (LSPR) at near infrared (NIR) wavelengths from 1.1 to 1.6 μm were used as highly sensitive real-time refractive index biosensors. Arrays of gold nanorings with tunable diameter, width, and spacing were created by the nanoscale electrodeposition of gold nanorings onto lithographically patterned nanohole array conductive surfaces over large areas (square centimeters). The bulk refractive index sensitivity of the gold nanoring arrays was determined to be up to 3,780 cm−1/refractive index unit by monitoring shifts in the LSPR peak by FT-NIR transmittance spectroscopy measurements. As a first application, the surface polymerization reaction of dopamine to form polydopamine thin films on the nanoring sensor surface from aqueous solution was monitored with the real-time LSPR peak shift measurements. To demonstrate the utility of the gold nanoring arrays for LSPR biosensing, the hybridization adsorption of DNA-functionalized gold nanoparticles onto complementary DNA-functionalized gold nanoring arrays was monitored. The adsorption of DNA-modified gold nanoparticles onto nanoring arrays modified with mixed DNA monolayers that contained only 0.5 % complementary DNA was also detected; this relative surface coverage corresponds to the detection of DNA by hybridization adsorption from a 50 pM solution.

  相似文献   

8.
Summary A long-term stroma-dependent culture system (LTC) has been developed which continuously produces hemopoietic cells providing an in vitro system for the study of cell differentiation. These nonadherent cell populations contain a large subpopulation of dendritic cells (DC). LTC producing DC were easily generated from spleen, but could also be established from bone marrow (BM) and lymph node with less success. It was difficult to establish DC-producing LTC from thymus. The properties of splenic and thymic stroma have been compared. Spleen stroma developed more complicated networks of fibroblasts, endothelial cells, macrophages, and DC. Thymic stromal monolayers were dominated by epithelial cells and fibroblasts, with a lower proportion of macrophages and endothelial cells. They had a relatively sparse structure of cell networks compared with spleen stroma. Cells with dendritiform morphology first appeared in cultures by 2–3 wk. The majority of cells produced were large cells which expressed DC-specific cell surface markers, major histocompatibility complex (MHC) Class II molecules, and the CD80/CD86(B7) costimulator. A high proportion of cells also expressed myeloid cell markers. No T or B lymphoid cells or granulocytes were present in the cultures. LTC continued to produce nonadherent cells resembling myeloid/DC for long periods, even after passage of stromal cells and stem cells at about 3–4 mo. after culture establishment. The LTC system offers potential to study the in vitro differentiation of myeloid/DC.  相似文献   

9.
A novel class of surface-active copolymers is described, designed to protect surfaces from nonspecific protein adsorption while still inducing specific cell attachment and spreading. A graft copolymer was synthesized, containing poly-(L-lysine) (PLL) as the backbone and substrate binding and poly(ethylene glycol) (PEG) as protein adsorption-resistant pendant side chains. A fraction of the grafted PEG was pendantly functionalized by covalent conjugation to the peptide motif RGD to induce cell binding. The graft copolymer spontaneously adsorbs from dilute aqueous solution onto negatively charged surfaces. The performance of RGD-modified PLL-g-PEG copolymers was analyzed in protein adsorption and cell culture assays. These coatings efficiently blocked the adsorption of serum proteins to Nb(2)O(5) and tissue culture polystyrene while specifically supporting attachment and spreading of human dermal fibroblasts. This surface functionalization technology is expected to be valuable in both the biomaterial and biosensor fields, because different signals can easily be combined, and sterilization and application are straightforward and cost-effective.  相似文献   

10.
Responsiveness of rabbit spleen cells to anti-allotype antibody was measured in terms of increased thymidine incorporation. Incorporation was enhanced after removal of cells which had ingested or had adhered to magnetic particles. B lymphocytes, prepared from spleen cells by the removal of adherent cells and of RTLA bearing T cells, were more responsive to anti-allotype antibody than were the original spleen suspensions. This increase could not be explained by enrichment in B cells. It was concluded that an adherent cell suppressed B cell transformation. The addition of 2-mercaptoethanol to the cell cultures stimulated with mitogen augmented the incorporation of thymidine. Adherent cells interfered with 2-mercaptoethanol potentiation in the response to anti-allotype antibody but not in the response to Con A. Fractionation of spleen cells, over glass bead columns, yielded nonadherent and adherent cell populations. The responsiveness of nonadherent cells to anti-allotype induced thymidine incorporation was two to six times that of unfractionated cells. The responsiveness of nonadherent cells to stimulation by anti-allotype antibody was reduced after addition of adherent cells. Findings were discussed in terms of the inhibitory role played by adherent cells on anti-allotype antibody induced responsiveness of rabbit B cells and of the possible participation of a third cell type which functions as a promotor of mitogenic T cell stimulation.  相似文献   

11.
The treatment of large segmental bone defects remains a challenge as infection, delayed union, and nonunion are common postoperative complications. A three‐dimensional printed bioresorbable and physiologically load‐sustaining graft substitute was developed to mimic native bone tissue for segmental bone repair. Fabricated from polylactic acid, this graft substitute is novel as it is readily customizable to accommodate the particular size and location of the segmental bone of the patient to be replaced. Inspired by the structure of the native bone tissue, the graft substitute exhibits a gradient in porosity and pore size in the radial direction and exhibit mechanical properties similar to those of the native bone tissue. The graft substitute can serve as a template for tissue constructs via seeding with stem cells. The biocompatibility of such templates was tested under in vitro conditions using a dynamic culture of human mesenchymal stem cells. The effects of the mechanical loading of cell‐seeded templates under in vitro conditions were assessed via subjecting the tissue constructs to 28 days of daily mechanical stimulation. The frequency of loading was found to have a significant effect on the rate of mineralization, as the alkaline phosphatase activity and calcium deposition were determined to be particularly high at the typical walking frequency of 2 Hz, suggesting that mechanical stimulation plays a significant role in facilitating the healing process of bone defects. Utilization of such patient‐specific and biocompatible graft substitutes, coupled with patient’s bone marrow cells seeded and exposed to mechanical stimulation of 2 Hz have the potential of reducing significant volumes of cadaveric tissue required, improving long‐term graft stability and incorporation, and alleviating financial burdens associated with delayed or failed fusions of long bone defects.  相似文献   

12.
The graft copolymer, poly(maleic anhydride/styrene)-co-polyethylene was prepared. The copolymer immobilized bovine serum albumin (BSA), but the amount coupled appeared to be effected by the amount of styrene in the graft copolymer, temperature, and pH of the coupling medium. Competition existed between hydrolysis of the grafted anhydride groups and the protein. A graft copolymer with 66% add-on immobilized 4.5 mg/glucose oxidase/g copolymer, 4.6 mg alkaline phosphates/g copolymer and 0.2 mg cell of Bacillus stearothermophilus/g copolymer. A number of copolymers containing poly(maleic anhydride/vinyl acetate)-co-polyethylene were prepared to cover a range of grafting levels. These immobilized larger quantities of BSA, alkaline phosphatase, and cells of B. stearothermophilus than did the styrene graft copolymer. The copolymer was also hydrolyzed to release the hydroxyl group from the poly(vinyl acetate) component of the grafted chains. Using p-benzoquinone as the "activating agent," the copolymer coupled to BSA and to acid phosphatase. Using p-toluene-sulfonyl chloride, the copolymer was very effective in immobilizing trypsin.  相似文献   

13.
We developed a surface micropatterning technique to control the cell adhesion and protein adsorption. This micropatterned array system was fabricated by a photolithography technique and self-assembled monolayer (SAM) deposition. It was hypothesized that the wettability and functional terminal group would regulate cell adhesion and protein adsorption. To demonstrate this hypothesis, glass-based micropatterned arrays with various functional terminal groups, such as amine (NH(2)) group (3-aminopropyl-triethoxysilane, APT), methyl (CH(3)) group (trichlorovinylsilane, TVS), and fluorocarbon (CF(3)) group (trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane, FOTS), were used. The contact angle was measured to determine the hydrophilic and hydrophobic properties of materials, demonstrating that TVS and FOTS were hydrophobic, whereas APTs were relatively hydrophilic. The cell adhesion was significantly affected by the wettability, showing that the cells were not adhered to hydrophobic surfaces, such as TVS and FOTS. Thus, the cells were selectively adhered to glass substrates within TVS- and FOTS-based micropatterned arrays. However, the cells were randomly adhered to APTs-based micropatterned arrays due to hydrophilic property of APTs. Furthermore, the protein adsorption of the SAM-based micropatterned array was analyzed, showing that the protein was more absorbed to the TVS surface. The surface functional terminal group enabled the control of protein adsorption. Therefore, this SAM-based micropatterned array system enabled the control of cell adhesion and protein adsorption and could be a potentially powerful tool for regulating the cell-cell interactions in a well-defined microenvironment.  相似文献   

14.
Haemopoietic stem cells present in the spleen of adult mice were analysed by grafting X-irradiated animals with polystyrene-nonadherent (NABS) and polystyrene-adherent (ABS) B-enriched splenocytes from syngeneic donors. The progeny of the haemopoietic stem cells present in NABS and ABS subsets were studied with respect to size, surface markers, and response to mitogens and antigens. Ninety-six per cent of the precursors of the myeloid cell lineage (CFU-S) were present in the NABS fraction (50-fold enrichment). The presence in NABS of progenitors of functional T and B lymphocytes was also demonstrated. Twelve days after grafting with NABS, more than 80% of the recipient splenocytes were large and nonadherent granulocyte-like cells. These cells had surface similarities with NABS from normal mice, since both populations reacted with peanut agglutinin and with a rabbit anti-NABS (RAN) serum.  相似文献   

15.
Abstract. Haemopoietic stem cells present in the spleen of adult mice were analysed by grafting X-irradiated animals with polystyrene-nonadherent (NABS) and polystyrene-adherent (ABS) B-enriched splenocytes from syngeneic donors. The progeny of the haemopoietic stem cells present in NABS and ABS subsets were studied with respect to size, surface markers, and response to mitogens and antigens. Ninety-six per cent of the precursors of the myeloid cell lineage (CFU-S) were present in the NABS fraction (50-fold enrichment). The presence in NABS of progenitors of functional T and B lymphocytes was also demonstrated. Twelve days after grafting with NABS, more than 80% of the recipient splenocytes were large and nonadherent granulocyte-like cells. These cells had surface similarities with NABS from normal mice, since both populations reacted with peanut agglutinin and with a rabbit anti-NABS (RAN) serum.  相似文献   

16.
The survival of C3H/HeJ skin grafts on B6AF1 mice treated with anti-lymphocyte serum (ALS) can be significantly prolonged by the injection of the host with C3H/HeJ bone marrow. Although the prolongation is apparently due at least in part to the ultimate presence in the host of specific suppressor cells of donor origin, little is known about the nature of the cells in the marrow inoculum that are responsible for this effect. The present investigation was undertaken to characterize surface markers of the active bone marrow cells. Marker-positive populations were either depleted and enriched by panning techniques or depleted by killing with specific antibody and complement, and then were assayed for their ability to prolong graft survival. Cells that were adherent to anti-Ia-coated plates extended graft survival only slightly better than did treatment with ALS alone, whereas nonadherent (Ia-depleted) cells, as well as cells treated with anti Ia and complement, retained good prolonging activity. Similarly, panning on anti-immunoglobulin (Ig)-coated plates produced an active, Ig+-depleted population and an inactive adherent population, and killing of Thy-1+ cells with antibody and complement did not compromise the ability of the bone marrow inoculum to prolong graft survival. Complement receptor-positive (EAC+) and Fc gamma receptor-positive cells (EA+) were separated by panning on plates coated with sheep erythrocytes/antibody/complement and erythrocytes/7S antibody respectively. Adherent, EAC+-enriched cells were only slightly active, whereas the nonadherent, EAC-depleted population was fully active in graft prolongation. However, both Fc gamma R+ (EA+)-enriched and depleted populations were active, with the enriched fraction producing significantly better prolongation than the depleted population. Thus, the bone marrow cells that can prolong skin graft survival in ALS-treated mice appear to be Ia-, Thy-1+, largely complement receptor negative, and Ig-, but are largely positive for Fc gamma receptors.  相似文献   

17.
Peroxidation, epoxidation, and/or perepoxidation reactions of soybean oil under air at room temperature resulted in cross-linked polymeric soybean oil peroxides on the surface along with the waxy soluble part, sPSB, with a molecular weight of 4690, containing up to 2.3 wt % peroxide. This soluble polymeric oil peroxide, sPSB, initiated the free radical polymerization of either methyl methacrylate (MMA) or n-butyl methacrylate (nBMA) to give PSB-g-PMMA and PSB-g-PnBMA graft copolymers. The polymers obtained were characterized by (1)H NMR, thermogravimetric analysis, differential scanning calorimetry, and gel permeation chromatography techniques. Polymeric oil as a plasticizer lowered the glass transition of the PSB-g-PMMA graft copolymers. PSB-g-PMMA and PSB-g-PnBMA graft copolymer film samples were also used in cell culture studies. Fibroblast and macrophage cells were strongly adhered and spread on the copolymer film surfaces, which is important in tissue engineering. Bacterial adhesion on PSB-g-PMMA graft copolymer was also studied. Both Staphylococcus epidermidis and Escherichia coli adhered on the graft copolymer better than on homo-PMMA. Furthermore, the latter adhered much better than the former.  相似文献   

18.
Bash R  Wang H  Yodh J  Hager G  Lindsay SM  Lohr D 《Biochemistry》2003,42(16):4681-4690
Subsaturated nucleosomal arrays were reconstituted on a single-copy MMTV promoter DNA fragment by salt dialysis procedures and studied by atomic force microscopy. Up to an occupation level of approximately eight nucleosomes on this 1900 bp template, salt reconstitution produces nucleosomal arrays which look very similar to comparably loaded 5S rDNA nucleosomal arrays; i.e., nucleosomes are dispersed on the DNA template. Thus, at these occupation levels, the single-copy MMTV template forms arrays suitable for biophysical analyses. A quantitative comparison of the population features of subsaturated MMTV and 5S arrays detects differences between the two: a requirement for higher histone levels to achieve a given level of nucleosome occupation on MMTV templates, indicating that nucleosome loading is thermodynamically less favorable on this template; a preference for pairwise nucleosome occupation of the MMTV (but not the 5S) template at midrange occupation levels; and an enhanced salt stability for nucleosomes on MMTV versus 5S arrays, particularly in the midrange of array occupation. When average occupation levels exceed approximately eight nucleosomes per template, MMTV arrays show a significant level of mainly intramolecular compaction; 5S arrays do not. Taken together, these results show clearly that the nature of the underlying DNA template can affect the physical properties of nucleosomal arrays. DNA sequence-directed differences in the physical properties of chromatin may have important consequences for functional processes such as gene regulation.  相似文献   

19.
Human T lymphocyte adhesion to human endothelial cells is the initial event in T cell migration to areas of extravascular inflammation. The molecular basis for T cell-endothelial cell adhesion was investigated using two different cell-cell adhesion assays: a) a fluorescein cell-cell adhesion assay using nonadherent endothelial cells and fluorescein-labeled T lymphocytes, and b) a radionuclide cell-cell adhesion assay using adherent endothelial cells and 51Cr-labelled T cells. Both assay systems demonstrated comparable quantitative assessment of cell-cell adhesions. The assays were performed at 22 degrees C and adhesions were maximal at 30 min. The results of these adhesion assays confirmed previous reports that T cells adhere to endothelial cells. In addition, we have shown that T cells adhere only marginally to foreskin fibroblasts or bone marrow derived fibroblasts. T cell-endothelial cell adhesions were significantly stronger than either monocytes or B lymphoblastoid cells adhesion to endothelial cells. To demonstrate the molecular mechanisms involved in regulating T cell-endothelial cell adhesions, a panel of function-associated monoclonal antibodies (MAb) were tested for their ability to inhibit T cell adhesion. MAb reactive with the leukocyte surface glycoprotein LFA-1 significantly inhibited T cell-endothelial cell adhesions in both assay systems. In contrast, MAb directed at other surface antigens did not inhibit T cell adhesion. The involvement of the LFA-1 glycoprotein in T lymphocyte adhesion to endothelial cells suggest that the LFA-1 molecule may be important in the regulation of leukocyte interactions.  相似文献   

20.
Sindbis virus was adsorbed to chicken cells or to BHK cells, and the distribution of virus over the surface of the cell was examined by electron microscopy of surface replicas. The distribution of virus particles on the cell was used to indicate the position of virus receptors at the cell surface. When purified Sindbis virus was adsorbed at 37 C to cells prefixed with glutaraldehyde, the virus particles were evenly distributed over the surface of most cells. There was a large variability from cell to cell, however, in the number of virus particles adsorbed, and regions with different concentrations of virus particles were sometimes observed on the same cell. The concentration of virus receptors observed varied from 20 to 160/mum(2) of cell surface, and, thus, the total number of virus receptors per chicken cell is on the order of 10(5). When virus was adsorbed to unfixed cells at 4 C, the virus particles were clustered into aggregates varying from a few particles to large crystalline arrays (the latter seen only in chicken cells). These conditions are apparently conducive to virus aggregation, and this, coupled with free lateral diffusion of the virus-receptor complex in the cell membrane at 4 C, leads to the observed clustering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号