首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tail-anchored membrane protein insertion into the endoplasmic reticulum   总被引:1,自引:0,他引:1  
Membrane proteins are inserted into the endoplasmic reticulum (ER) by two highly conserved parallel pathways. The well-studied co-translational pathway uses signal recognition particle (SRP) and its receptor for targeting and the SEC61 translocon for membrane integration. A recently discovered post-translational pathway uses an entirely different set of factors involving transmembrane domain (TMD)-selective cytosolic chaperones and an accompanying receptor at the ER. Elucidation of the structural and mechanistic basis of this post-translational membrane protein insertion pathway highlights general principles shared between the two pathways and key distinctions unique to each.  相似文献   

2.
Cytosolic components and pathways have been identified that are involved in inserting tail-anchored (TA) membrane proteins into the yeast or mammalian endoplasmic reticulum (ER) membrane. Searching for regulatory mechanisms of TA protein biogenesis, we found that Ca(2+)-calmodulin (CaM) inhibits the insertion of TA proteins into mammalian ER membranes and that this inhibition is prevented by trifluoperazine, a CaM antagonist that interferes with substrate binding of Ca(2+)-CaM. The effects of Ca(2+)-CaM on cytochrome b(5) and Synaptobrevin 2 suggest a direct interaction between Ca(2+)-CaM and TA proteins. Thus, CaM appears to regulate TA insertion into the ER membrane in a Ca(2+) dependent manner.  相似文献   

3.
We have studied the membrane insertion of ProW, an Escherichia coli inner membrane protein with seven transmembrane segments and a large periplasmic N-terminal tail, into endoplasmic reticulum (ER)-derived dog pancreas microsomes. Strikingly, significant levels of N-tail translocation is seen only when a minimum of four of the transmembrane segments are present; for constructs with fewer transmembrane segments, the N-tail remains mostly nontranslocated and the majority of the molecules adopt an "inverted" topology where normally nontranslocated parts are translocated and vice versa. N-tail translocation can also be promoted by shortening of the N-tail and by the addition of positively charged residues immediately downstream of the first trasnmembrane segment. We conclude that as many as four consecutive transmembrane segments may be collectively involved in determining membrane protein topology in the ER and that the effects of downstream sequence determinants may vary depending on the size and charge of the N-tail. We also provide evidence to suggest that the ProW N-tail is translocated across the ER membrane in a C-to-N-terminal direction.  相似文献   

4.
The synthesis of biological membranes requires the insertion of proteins into a lipid bilayer. The rough endoplasmic reticulum of eukaryotic cells is a principal site of membrane biogenesis. The insertion of proteins into the membrane of the endoplasmic reticulum is mediated by a resident proteinaceous machinery. Over the last five years several different experimental approaches have provided information about the components of the machinery and how it may function.  相似文献   

5.
Previous work has shown that the Sindbis structural proteins, core, the internal protein, and PE2 and E1, the integral membrane glycoproteins are synthesized as a polyprotein from a 26S mRNA; core PE2 and E1 are derived by proteolytic cleavage of a nascent chain. Newly synthesized core protein remains on the cytoplasmic side of the endoplasmic reticulum while newly synthesized PE2 and E1 are inserted into the lipid bilayer, presumably via their amino-termini. PE2 and E1 are glycosylated as nascent chains. Here, we examine a temperature-sensitive mutant of Sindbis virus which fails to cleave the structural proteins, resulting in the production of a polyprotein of 130,000 mol wt in which the amino-termini of PE2 and E1 are internal to the protein. Although the envelope sequences are present in this protein, it is not inserted into the endoplasmic reticulum bilayer, but remains on the cytoplasmic side as does the core protein in cells infected with wild-type Sindbis virus. We have also examined the fate of PE2 and E1 in cells treated with tunicamycin, an inhibitor of glycosylation. Unglycosylated PE2 and E1 are inserted normally into the lipid bilayer as are the glycosylated proteins. These results are consistent with the notion that a specific amino-terminal sequence is required for the proper insertion of membrane proteins into the endoplasmic reticulum bilayer, but that glycosylation is not required for this insertion.  相似文献   

6.
We have isolated mutants that inhibit membrane protein insertion into the ER membrane of Saccharomyces cerevisiae. The mutants were contained in three complementation groups, which we have named SEC70, SEC71, and SEC72. The mutants also inhibited the translocation of soluble proteins into the lumen of the ER, indicating that they pleiotropically affect protein transport across and insertion into the ER membrane. Surprisingly, the mutants inhibited the translocation and insertion of different proteins to drastically different degrees. We have also shown that mutations in SEC61 and SEC63, which were previously isolated as mutants inhibiting the translocation of soluble proteins, also affect the insertion of membrane proteins into the ER. Taken together our data indicate that the process of protein translocation across the ER membrane involves a much larger number of gene products than previously appreciated. Moreover, different translocation substrates appear to have different requirements for components of the cellular targeting and translocation apparatus.  相似文献   

7.
We have purified a glycosylated, membrane-spanning protein of relative molecular mass approximately 34,000 (Mr approximately 34 K) from canine microsomes that appears to be essential for protein translocation across the endoplasmic reticulum (ER) as shown by the inhibitory action of antibodies directed against it and of monovalent Fab-fragments produced from them. The ER membrane contains at least as many molecules of the 34 K membrane protein as bound ribosomes. The protein can be detected immunologically in tissues of various organisms, indicating an universal function.  相似文献   

8.
The import of small precursor proteins, derived from the honeybee secretory protein prepromelittin, into dog pancreas microsomes is independent of signal recognition particle (SRP) and docking protein, but requires that charged amino acids at the amino terminus of the mature part are counterbalanced by amino acids with the opposite charge at the carboxy terminus. The import pathway of such precursor proteins was resolved into two sequential steps: (i) binding of precursors to microsomes, and (ii) insertion of precursors into the membrane. Formation of an intramolecular disulfide bridge within the mature part of these precursor proteins allowed association of the oxidized precursors with the microsomal membrane but reversibly inhibited their membrane insertion. Furthermore, membrane insertion was inhibited by ATP depletion. Different prepromelittin derivatives were found to depend on ATP to varying degrees. We conclude that insertion of prepromelittin-derived precursor proteins into microsomal membranes involves a competent conformation of the precursor proteins and that, in general, this is accomplished with the help of both a cytoplasmic component and ATP.  相似文献   

9.
Yeast mutants defective in the translocation of soluble secretory proteins into the lumen of the endoplasmic reticulum (sec61, sec62, sec63) are not impaired in the assembly and glycosylation of the type II membrane protein dipeptidylaminopeptidase B (DPAPB) or of a chimeric membrane protein consisting of the multiple membrane-spanning domain of yeast hydroxymethylglutaryl CoA reductase (HMG1) fused to yeast histidinol dehydrogenase (HIS4C). This chimera is assembled in wild-type or mutant cells such that the His4c protein is oriented to the ER lumen and thus is not available for conversion of cytosolic histidinol to histidine. Cells harboring the chimera have been used to select new translocation defective sec mutants. Temperature-sensitive lethal mutations defining two complementation groups have been isolated: a new allele of sec61 and a single isolate of a new gene sec65. The new isolates are defective in the assembly of DPAPB, as well as the secretory protein alpha-factor precursor. Thus, the chimeric membrane protein allows the selection of more restrictive sec mutations rather than defining genes that are required only for membrane protein assembly. The SEC61 gene was cloned, sequenced, and used to raise polyclonal antiserum that detected the Sec61 protein. The gene encodes a 53-kDa protein with five to eight potential membrane-spanning domains, and Sec61p antiserum detects an integral protein localized to the endoplasmic reticulum membrane. Sec61p appears to play a crucial role in the insertion of secretory and membrane polypeptides into the endoplasmic reticulum.  相似文献   

10.
The endoplasmic reticulum (ER) is a multifunctional organelle responsible for production of both lumenal and membrane components of secretory pathway compartments. Secretory proteins are folded, processed, and sorted in the ER lumen and lipid synthesis occurs on the ER membrane itself. In the yeast Saccharomyces cerevisiae, synthesis of ER components is highly regulated: the ER-resident proteins by the unfolded protein response and membrane lipid synthesis by the inositol response. We demonstrate that these two responses are intimately linked, forming different branches of the same pathway. Furthermore, we present evidence indicating that this coordinate regulation plays a role in ER biogenesis.  相似文献   

11.
Most integral membrane proteins are targeted, inserted and assembled in the endoplasmic reticulum membrane. The sequential and potentially overlapping events necessary for membrane protein integration take place at sites termed translocons, which comprise a specific set of membrane proteins acting in concert with ribosomes and, probably, molecular chaperones to ensure the success of the whole process. In this minireview, we summarize our current understanding of helical membrane protein integration at the endoplasmic reticulum, and highlight specific characteristics that affect the biogenesis of multispanning membrane proteins.  相似文献   

12.
Synaptobrevin/vesicle-associated membrane protein is one of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is proposed to provide specificity for the targeting and fusion of vesicles with the plasma membrane. It belongs to a class of membrane proteins which lack a signal sequence and contain a single hydrophobic segment close to their C-terminus, leaving most of the polypeptide chain in the cytoplasm (tail-anchored). We show that in neuroendocrine PC12 cells, synaptobrevin is not directly incorporated into the target organelle, synaptic-like vesicles. Rather, it is first inserted into the endoplasmic reticulum (ER) membrane and is then transported via the Golgi apparatus. Its insertion into the ER membrane in vitro occurs post-translationally, is dependent on ATP and results in a trans-membrane orientation of the hydrophobic tail. Membrane integration requires ER protein(s) different from the translocation components needed for proteins with signal sequences, thus suggesting a novel mechanism of insertion.  相似文献   

13.
CLN6 is a polytopic membrane protein of unknown function resident in the endoplasmic reticulum (ER). Mutant CLN6 causes the lysosomal storage disorder neuronal ceroid lipofuscinosis. Defining the topology of CLN6, and the structural domains and motifs required for interaction with cytosolic and luminal proteins may allow insights into its function. In this study we analysed the topology, ER retention and oligomerization of CLN6. We demonstrated, by differential membrane permeabilization of transfected BHK cells using specific detergents and two distinct antibodies, that CLN6 contains an N-terminal cytoplasmic domain, seven transmembrane domains, and a luminal C terminus. Mutational analyses and confocal immunofluorescence microscopy showed that changes of potential ER localization signals in the N- or C-terminal domain (a triple arginine cluster, and a dileucine motif) did not alter the subcellular localization of CLN6. The deletion of a dilysine motif impaired partially the ER localization of CLN6. Furthermore, expression analyses of fusion and deletion constructs in non-neuronal and neuronal cells suggested that two portions of CLN6 contributed to its retention within the ER. We showed that the N-terminal domain was necessary but not sufficient for ER retention of CLN6 and that deletion of transmembrane domains 6 and 7 was accompanied with the loss of ER localization and, in some instances, trafficking to the cisGolgi. From these data we concluded that CLN6 maintains its ER localization by expressing retention signals present in both the N-terminal cytosolic domain and in the carboxy-proximal transmembrane domains 6 and 7. Additionally, the ability of CLN6 to homodimerize may also prevent exit from the ER via an interaction with membrane-associated factors.  相似文献   

14.
CLN6 is a polytopic membrane protein of unknown function resident in the endoplasmic reticulum (ER). Mutant CLN6 causes the lysosomal storage disorder neuronal ceroid lipofuscinosis. Defining the topology of CLN6, and the structural domains and motifs required for interaction with cytosolic and luminal proteins may allow insights into its function. In this study we analysed the topology, ER retention and oligomerization of CLN6. We demonstrated, by differential membrane permeabilization of transfected BHK cells using specific detergents and two distinct antibodies, that CLN6 contains an N-terminal cytoplasmic domain, seven transmembrane domains, and a luminal C terminus. Mutational analyses and confocal immunofluorescence microscopy showed that changes of potential ER localization signals in the N- or C-terminal domain (a triple arginine cluster, and a dileucine motif) did not alter the subcellular localization of CLN6. The deletion of a dilysine motif impaired partially the ER localization of CLN6. Furthermore, expression analyses of fusion and deletion constructs in non-neuronal and neuronal cells suggested that two portions of CLN6 contributed to its retention within the ER. We showed that the N-terminal domain was necessary but not sufficient for ER retention of CLN6 and that deletion of transmembrane domains 6 and 7 was accompanied with the loss of ER localization and, in some instances, trafficking to the cisGolgi. From these data we concluded that CLN6 maintains its ER localization by expressing retention signals present in both the N-terminal cytosolic domain and in the carboxy-proximal transmembrane domains 6 and 7. Additionally, the ability of CLN6 to homodimerize may also prevent exit from the ER via an interaction with membrane-associated factors.  相似文献   

15.
We have constructed three gene fusions that encode portions of a membrane protein, arginine permease, fused to a reporter domain, the cytoplasmic enzyme histidinol dehydrogenase (HD), located at the C-terminal end. These fusion proteins contain at least one of the internal signal sequences of arginine permease. When the fusion proteins were expressed in Saccharomyces cerevisiae and inserted into the endoplasmic reticulum (ER), two of the fusion proteins placed HD on the luminal side of the ER membrane, but only when a piece of DNA encoding a spacer protein segment was inserted into the fusion joint. The third fusion protein, with or without the spacer included, placed HD on the cytoplasmic side of the membrane. These results suggest that (i) sequences C-terminal to the internal signal sequence can inhibit membrane insertion and (ii) HD requires a preceding spacer segment to be translocated across the ER membrane.  相似文献   

16.
We describe a procedure for disassembling rat liver rough microsomes, which allows the purification of the rough endoplasmic reticulum (ER) membrane. Membrane-bound ribosomes and adsorbed proteins are first detached by washing rough microsomes with 5 mM Na-pyrophosphate. In a second step, the vesicle membrane is opened by digitonin, with concomitant release of the luminal content. The purification is monitored at each step by electron microscopy, and by assaying chemical constituents (protein, phospholipid, RNA) and marker enzymes for the main subcellular organelles. The final membrane preparation is representative of the ER, since it contains 24.1% of the liver glucose 6-phosphatase with a relative specific activity of 14.2. Contaminants represent less than 5% of its protein content. SDS-polyacrylamide gel electrophoresis, followed by immunoblot analysis, reveals that the ribophorins I and II, two established markers of the rough (d) domain are still present in the final membrane preparation. It also contains the docking protein (or signal recognition particle receptor) and protein disulfide isomerase, and has conserved the functional capacity to remove co- and post-translationally the signal peptide of pre-secretory proteins. The membrane preparation is suitable for studies on the polypeptide composition of the d domain.  相似文献   

17.
18.
To better define the mechanism of membrane protein insertion into the membrane of the endoplasmic reticulum, we measured the kinetics of translocation across microsomal membranes of the N-terminal lumenal tail and the lumenal domain following the second transmembrane segment (TM2) in the multispanning mouse protein Cig30. In the wild-type protein, the N-terminal tail translocates across the membrane before the downstream lumenal domain. Addition of positively charged residues to the N-terminal tail dramatically slows down its translocation and allows the downstream lumenal domain to translocate at the same time as or even before the N-tail. When TM2 is deleted, or when the loop between TM1 and TM2 is lengthened, addition of positively charged residues to the N-terminal tail causes TM1 to adopt an orientation with its N-terminal end in the cytoplasm. We suggest that the topology of the TM1-TM2 region of Cig30 depends on a competition between TM1 and TM2 such that the transmembrane segment that inserts first into the ER membrane determines the final topology.  相似文献   

19.
Eason PD  Imperiali B 《Biochemistry》1999,38(17):5430-5437
Recent work has resulted in the development of potent inhibitors of oligosaccharyl transferase (OT), the enzyme that catalyzes the cotranslational glycosylation of asparagine [Hendrickson, T. L., Spencer, J. R., Kato, M., and Imperiali, B. (1996) J. Am. Chem. Soc. 118, 7636-7637; Kellenberger, C., Hendrickson, T. L., and Imperiali, B. (1997) Biochemistry 36, 12554-12559]. However, no specific OT inhibitors that function in the cellular environment have yet been reported. The peptide cyclo(hex-Amb-Cys)-Thr-Val-Thr-Nph-NH2 was previously shown to exhibit nanomolar inhibition (Ki = 37 nM) through slow tight binding kinetics [Hendrickson, T. L., Spencer, J. R., Kato, M., and Imperiali, B. (1996) J. Am. Chem. Soc. 118, 7636-7637]. Included herein is the redesign of this prototype inhibitor for achieving both passive and active translocation into model membrane systems representing the endoplasmic reticulum (ER). The strategy for passive transport involved the incorporation of a membrane permeable import function previously shown to carry various peptides across the outer as well as the interior cellular membranes [Rojas, M., Donahue, J. P., Tan, Z., and Lin, Y.-Z. (1998) Nat. Biotechnol. 16, 370-375]. Assessment of function in intact ER membranes revealed that the inhibitor targeted toward passive diffusion demonstrated concentration-dependent inhibition of two different glycosylation substrates. Thus, this modified inhibitor achieved potent inhibition of glycosylation after being successfully transported through the ER membrane. In the active translocation approach, the lead OT inhibitor and a corresponding substrate were redesigned to include features recognized by the transporter associated with antigen processing (TAP). This protein translocates peptides into the lumen of the ER [Heemels, M.-T., Schumacher, T. N. M., Wonigeit, K., and Ploegh, H. L. (1993) Science 262, 2059-2063]. However, although acceptance of the cyclized substrate by the TAP receptor was demonstrated via efficient transport and glycosylation, the modified inhibitor was not translocated by TAP machinery, and therefore, active translocation was achieved for the modified substrate only. Both of these ER transport methods afforded redesigned OT inhibitors that retained their inhibitor properties in vitro, regardless of the extensions to the carboxy-terminus of the root inhibitor. The above family of redesigned inhibitors provides a template for generating a transcellular pathway and represents the first step toward OT inhibition in intact cells.  相似文献   

20.
The biogenesis of most secretory and membrane proteins involves targeting the nascent protein to the endoplasmic reticulum (ER), translocation across or integration into the ER membrane and maturation into a functional product. The essential machinery that directs these events for model secretory and membrane proteins has been identified, shifting the focus of studies towards the molecular mechanisms by which these core components function. By contrast, regulatory mechanisms that allow certain proteins to serve multiple functions within a cell remain entirely unexplored. This article examines each stage of protein biogenesis as a potential site of regulation that could be exploited by the cell to effectively increase the diversity of functional gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号