首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Root nodule ontogeny was followed in different parts of the root system of field peas (Pisum sativum L. cv. Century) to investigate the contribution to total nitrogen fixation by different nodule subpopulations. Seed-inoculated plants were grown to maturity in controlled-environment growth chambers. In a flow-through system nitrogenase activity (H2-evolution in air) and nodulated-root respiration (net CO2-evolution) were measured weekly or biweekly in different parts (top and mid) of the root system. Root nodule extracts were assayed for total soluble cytosolic protein, total heme, proteolytic capacity (at pH 7.0), soluble carbohydrates and starch. Total nitrogenase activity and nodule respiration were higher in the top zone, which was explained by differences in root and nodule mass. Nodule specific nitrogenase activity was similar in both zones, and gradually declined throughout the experiment. No differences were found between nodule subpopulations in the dry-matter specific concentrations of glucose, fructose, sucrose or starch. Neither did nodule concentrations of protein or leghemoglobin differ between the zones. Throughout reproductive growth, no decline was found in total or nodule specific nitrogenase activity, in any of the nodule subpopulations. Growth of the root nodules continued throughout the experiment, though growth of shoot and roots had ceased. The data gives no support for carbohydrate limitation in root nodules during pod-filling, since nodule respiration remained high, the concentration of soluble carbohydrates increased significantly, and the amount of starch was not reduced. We conclude that when this symbiosis is grown under controlled conditions, nitrogenase activity in nodules sub-sampled from the crown part of the root system is representative for the whole nodule population.  相似文献   

2.
Nitrogenase activity is commonly measured on a whole plant basis,or only on parts of the root system. In the present paper, activityin different root nodule subpopulations was followed throughoutreproductive growth, in order to characterize the pod-fillingdecline in nitrogenase activity. Inoculated common bean plantswere grown to maturity under controlled environment conditions.Nitrogenase activity (H2 evolution in air) and nodule respiration(CO2 evolution) were measured in three separate zones of theroot system with a non-destructive, open flow, gas-exchangesystem. Nitrogenase activity in the top zone drastically declinedat the initiation of pod-filling, whereas nitrogenase activityin the mid zone was stable during the same period. Hence, thepod-filling decline was limited to a certain nodule subpopulationand not of a systemic type. Nodule respiration showed a similar,but less pronounced pattern. The sharp decline in nitrogenaseactivity was not paralleled in nitrogenase specific activity.Nitrogenase activity is not likely to be limited by the availabilityof oxygen or carbohydrates at the onset of pod-filling becausespecific nodule respiration did not change significantly atthis time. In the top zone, nitrogenase specific activity declinedgradually throughout the measurements, whereas in the mid-partof the root system specific activity peaked and gradually declined2-4 weeks later. The dissimilarities between specific and totalnitrogenase activity were explained by differences in nodulegrowth rates. The data suggest that the oldest nodule populationloses activity at the onset of pod-filling. At the same time,nodules grow and nitrogenase activity increases in younger distalparts of the root system. Estimating total nitrogen fixationin this symbiosis by partial sampling of nodulated root systemsis likely to be very misleading. Key words: Nitrogen fixation, respiration, pod-filling decline, Phaseolus vulgaris, ontogeny  相似文献   

3.
Nitrogenase activity in root nodules of Vigna mungo L. attaineda peak at the flowering stage and declined thereafter. Levelsof soluble proteins, particularly leghaemoglobin, and ratesof protein and RNA synthesis declined with nitrogenase. Activitiesof protease and RNase increased with the ageing or nodules.Carbohydrate utilization, sugar levels and ATP were maximumat the early pod stage and gradually declined with age. Theseinterrelated changes point to a loss of nitrogenase activityas the first indicator of nodule senescence that is linked withflowering. Later, losses of proteins, total sugar and ATP wererelated to increased RNase and protease activity and decreasedhexokinase and to a loss in capacity to incorporate amino acidinto protein.Copyright 1993, 1999 Academic Press Vigna mungo (L.), senescene, nitrogenase, leghaemoglobin, field experiments  相似文献   

4.
Single white clover plants grown in pots of Perlite in a controlledenvironment and completely dependent on N2 fixation were defoliatedto various degrees (46–85 per cent of shoot weight removed).The soluble protein content of nodules declined by about 20per cent and leghaemoglobin content by 50 per cent in the first4–7 d after defoliation but increased again to controllevels as new leaf tissue appeared. In the short term (2–3h) carbohydrate content of nodules declined to different extentsdepending on the severity of defoliation. The initial declinein N2 fixation and the respiration associated with it, appearednot to be related to the instantaneous carbohydrate contentof nodules but rather to the supply of current photosynthatefrom the shoot. After 24–48 h, however, the carbohydratecontent of nodules had declined to low levels, regardless ofthe severity (46 or 71 per cent shoot removed) of defoliation.As new leaf tissue appeared carbohydrate levels in all partsof the plant gradually recovered towards control levels. Microscopic examination of nodule sections indicated that onlyafter very severe defoliation (80–85 per cent shoot removed)was nodule deterioration evident. Even here, as the plant establishednew leaves, the damage to nodules was repaired and no noduleloss was apparent. Trifolium repens, white clover, defoliation, carbohydrate, protein, leghaemoglobin  相似文献   

5.
不同花生品种根瘤固氮特点及其与产量的关系   总被引:1,自引:0,他引:1  
花生根系着生根瘤,能够直接利用大气中的氮气作为氮源,在花生氮素供应中占有举足轻重的地位.而有关根瘤高效固氮的机理研究甚少.本研究在盆栽条件下,利用15N示踪技术,研究了19个花生品种根瘤固氮特点及其与产量的关系.结果表明: 不同品种根瘤数量、鲜质量、内含物质和固氮量等指标品种间存在显著差异.根瘤数量和鲜质量变异幅度分别为每盆170.59~696.15个和0.83~3.74 g,变异系数分别为36.1%和41.1%;豆血红蛋白含量和固氮酶活性变异幅度分别为每盆15.51~23.23 mg和2.75~20.46 μmol C2H4·h-1,变异系数分别为13.1%和57.2%,后者明显高于前者,表明固氮酶活性除受豆血红蛋白含量影响外,同时受到其他因素的影响.根瘤固氮和全氮积累量变异幅度分别为每盆0.71~1.82和2.16~3.72 g,变异系数分别为21.6%和12.9%,前者明显高于后者,表明花生根瘤固氮不足时,其他氮源在一定程度上能自动补偿根瘤留下的匮缺.花生以根瘤固氮为主,供氮比例平均占总氮量的2/5以上,最高可达50%,培育高供氮比例的品种,可作为花生减氮栽培的途径之一.上述指标中,除根瘤数量外,其余指标间以及这些指标与产量均呈极显著正相关,表明根瘤固氮生理指标与根瘤供氮能力及最终产量密切相关,提高这些指标有助于同时实现高产和化肥减施.  相似文献   

6.
Nitrate and water stress were used to induce senescence in rootnodules of alfalfa (Medicago sativa L. cv. Aragon). Nodule senescencewas assessed by determinations of the nitrogenase (C2H2-reducing)activity, and the leghaemoglobin (LHb) and total soluble proteincontents of the nodules. Nodules responded similarly to and water stress in many respects, but there was a significant difference.All parameters of nodule activity, expressed on the basis ofnodule dry weight (DW), consistently decreased following treatmentwith or during drought; there was a significant interaction (synergism) between the inhibitory effects of and water stress on nitrogenase activity, but sucheffects were merely additive in the case of LHb content or LHb/solubleprotein ratio. However, caused the selective decay of LHb with respect to other nodular soluble proteins,whereas the decrease of LHb during water stress was due to ageneral inhibition of protein synthesis and to an increasedproteolytic activity in the nodule cytosol rather than to aspecific proteolysis of LHb. Key words: Leghaemoglobin, Medicago saliva, nitrogen fixation, root nodule senescence, water stress  相似文献   

7.
Plants of EMGOPA-201, a drought tolerant cultivar of commonbean(Phaseolus vulgaris), were maintained either at 90% soilfield capacity (SFC) or stressed by reducing SFC to 70, 50 or30% over a 10 d period. Plant dry weight was not affected byany of these treatments although the number and weight of noduleswas reduced at 50 and 30% SFC. Nitrogenase activity, determinedby the acetylene reduction assay (ARA), was also reduced, ona plant basis, at 50% SFC and was almost stopped at 30% SFC.The latter treatment caused a marked increase in nodule O2diffusionresistance and induced nodule senescence. A time-course analysisof the 10 d 30% SFC treatment showed a decrease in leaf waterpotential from -0.5 to -0.87 MPa by 8 d, with a cessation ofdry weight increase after 3 d, when leaf water potential was-0.65 MPa. Proteins in the host plant fraction of nodules decreasedto 50% of control values by 10 d and leghaemoglobin (Lb) contentwas also lower at this stage. The activity of sucrose synthase(SS) showed a 76% reduction between 3 and 6 d, whilst glutamatesynthase (GOGAT) activity showed a 40% reduction. The activityof other key enzymes of carbon metabolism was also reduced after10 d. Nodule sucrose content increased to double that of controlnodules by 6 d, before declining back to control levels at 10d. Starch content fell by 3 d and continued to fall throughoutthe stress period. The results are discussed in terms of droughttolerance strategies in relation to growth and metabolism inwhole plants and nodules.Copyright 1999 Annals of Botany Company. Phaseolus vulgaris,common bean, water stress, nitrogen fixation, oxygen diffusion, acetylene reduction, enzyme activity, carbon metabolism.  相似文献   

8.
When arrival of shoot supplied carbohydrate to the nodulated root system of soybean was interrupted by stem girdling, stem chilling, or leaf removal, nodule carbohydrate pools were utilized, and a marked decline in the rates of CO2 and H2 evolution was observed within approximately 30 minutes of treatment. Nodule excision studies demonstrated that the decline in nodulated root respiration was associated with nodule rather than root metabolism, since within 3.5 hours of treatment, nodules respired at less than 10% of the initial rates. Apparently, a continuous supply of carbohydrate from the shoot is required to support nodule, but not root, function. Depletion of nodular carbohydrate pools was sufficient to account for the (diminishing) nodule respiration of girdled plants. Of starch and soluble sugar pools within the whole plant, only leaf starch exhibited a diurnal variation which was sufficient to account for the respiratory carbon loss of nodules over an 8 hour night. Under 16 hour nights, or in continuous dark, first the leaf starch pools were depleted, and then nodule starch reserves declined concomitant with a decrease in the rates of CO2 and H2 evolution from the nodules. Nodule soluble sugar levels were maintained in dark treated plants but declined in girdled plants. The depletion of starch in root nodules is an indicator of carbohydrate limitation of nodule function.  相似文献   

9.
This paper has investigated the regulation of the activitiesof glutamine synthetase (GS) and NADH-dependent glutamate synthase(NADH-GOGAT) of Phaseolus vulgaris in relation to the nitrogensupply. The activity of NADH-GOGAT II, which is the most abundantisoenzyme of glutamate synthase in root nodules of P. vulgaris,was either absent or barely detectable in other organs of thisspecies. Moreover, its activity in roots could not be inducedby ammonium. In nodules NADH-GOGAT II activity was detectedin nodules grown under an atmosphere of 80% argon: 20% oxygenand in nodules formed with a Fix- Rhizobium mutant. However,in these non-fixing nodules the activity of this isoenzyme attainedless than 15% of the activity in fixing nodules and switchingargon/oxygen grown nodules to nitrogen/oxygen led to an increasein this isoenzyme within 24 h. This effect could not be mimickedby the addition of exogenous ammonium. Ammonium addition, however,promoted nodule senescence and also led to a decrease in theactivities of nitrogenase and plant GS. In particular, the nodule-enhancedGS isoenzyme but not the GSß isoenzyme was affectedby these changes and in a manner similar to the changes in NADH-GOGATII. The activity of the NADH-GOGAT I isoenzyme was detectablein other organs of P. vulgaris and in nodules its activity alsoshowed some changes in response to the rate of dinitrogen fixation. Key words: Glutamate synthase, glutamine synthetase, nitrogen fixation, nodule metabolism, Phaseolus vulgaris  相似文献   

10.
The dependence of alfalfa (Medicago sativa L.) root and nodule nonphotosynthetic CO2 fixation on the supply of currently produced photosynthate and nodule nitrogenase activity was examined at various times after phloem-girdling and exposure of nodules to Ar:O2. Phloemgirdling was effected 20 hours and exposure to Ar:O2 was effected 2 to 3 hours before initiation of experiments. Nodule and root CO2 fixation rates of phloem-girdled plants were reduced to 38 and 50%, respectively, of those of control plants. Exposure to Ar:O2 decreased nodule CO2 fixation rates to 45%, respiration rates to 55%, and nitrogenase activities to 51% of those of the controls. The products of nodule CO2 fixation were exported through the xylem to the shoot mainly as amino acids within 30 to 60 minutes after exposure to 14CO2. In contrast to nodules, roots exported very little radioactivity, and most of the 14C was exported as organic acids. The nonphotosynthetic CO2 fixation rate of roots and nodules averaged 26% of the gross respiration rate, i.e. the sum of net respiration and nonphotosynthetic CO2 assimilation. Nodules fixed CO2 at a rate 5.6 times that of roots, but since nodules comprised a small portion of root system mass, roots accounted for 76% of the nodulated root system CO2 fixation. The results of this study showed that exposure of nodules to Ar:O2 reduced nodule-specific respiration and nitrogenase activity by similar amounts, and that phloem-girdling significantly reduced nodule CO2 fixation, nitrogenase activity, nodule-specific respiration, and transport of 14C photoassimilate to nodules. These results indicate that nodule CO2 fixation in alfalfa is associated with N assimilation.  相似文献   

11.
The activities of glutamine synthetase (GS), nitrogenase and leghaemoglobin were measured during nodule development in Phaseolus vulgaris infected with wild-type or two non-fixing (Fix-) mutants of Rhizobium phaseoli. The large increase in GS activity which was observed during nodulation with the wild-type rhizobial strain occurred concomitantly with the detection and increase in activity of nitrogenase and the amount of leghaemoglobin. Moreover, this increase in GS was found to be due entirely to the appearance of a novel form of the enzyme (GSn1) in the nodule. The activity of the form (GSn2) similar to the root enzyme (GSr) remained constant throughout the experiment. In nodules produced by infection with the two mutant strains of Rhizobium phaseoli (JL15 and JL19) only trace amounts of GSn1 and leghaemoglobin were detected.Abbreviations DEAE-Sephacel diethylaminoethyl-Sephacel - GS glutamine synthetase  相似文献   

12.
Root nodules were harvested from chamber-grown soybean (Glycine max L. Merrill cv Woodworth) plants throughout development. Apparent nitrogenase activity (acetylene reduction) peaked before seeds began to develop, but a significant amount of activity remained as the seeds matured. Nodule senescence was defined as the period in which residual nitrogenase activity was lost. During this time, soluble protein and leghemoglobin levels in the host cell cytosol decreased, and proteolytic activity against azocasein increased. Degradative changes were not detected in bacteroids during nodule senescence. Total soluble bacteroid protein per gram of nodule remained constant, and an increase in proteolytic activity in bacteroid extracts was not observed. These results are consistent with the view that soybean nodule bacteroids are capable of redifferentiation into free-living bacteria upon deterioration of the legume-rhizobia symbiosis.  相似文献   

13.
Lotus japonicus and Medicago truncatula model legumes, which form determined and indeterminate nodules, respectively, provide a convenient system to study plant-Rhizobium interaction and to establish differences between the two types of nodules under salt stress conditions. We examined the effects of 25 and 50mM NaCl doses on growth and nitrogen fixation parameters, as well as carbohydrate content and carbon metabolism of M. truncatula and L. japonicus nodules. The leghemoglobin (Lb) content and nitrogen fixation rate (NFR) were approximately 10.0 and 2.0 times higher, respectively, in nodules of L. japonicus when compared with M. truncatula. Plant growth parameters and nitrogenase activity decreased with NaCl treatments in both legumes. Sucrose was the predominant sugar quantified in nodules of both legumes, showing a decrease in concentration in response to salt stress. The content of trehalose was low (less than 2.5% of total soluble sugars (TSS)) to act as an osmolyte in nodules, despite its concentration being increased under saline conditions. Nodule enzyme activities of trehalose-6-phosphate synthase (TPS) and trehalase (TRE) decreased with salinity. L. japonicus nodule carbon metabolism proved to be less sensitive to salinity than in M. truncatula, as enzymatic activities responsible for the carbon supply to the bacteroids to fuel nitrogen fixation, such as sucrose synthase (SS), alkaline invertase (AI), malate dehydrogenase (MDH) and phosphoenolpyruvate carboxylase (PEPC), were less affected by salt than the corresponding activities in barrel medics. However, nitrogenase activity was only inhibited by salinity in L. japonicus nodules.  相似文献   

14.
Organization and expression of leghaemoglobin genes   总被引:3,自引:0,他引:3  
Leghaemoglobin genes in soybean (Glycine max) are present as a moderately reiterated family of sequences. Since there are identical restriction site patterns of these sequences in DNA isolated from leaf, root, or nodule tissue, the data suggest that no major changes in the organization or methylation of leghaemoglobin genes occur during their induction. Cloned soybean leghaemoglobin-cDNA cross hybridized with RNA from root nodules of kidney bean (Phaseolus vulgaris), and to a lesser extent, of pea (Pisum sativum) indicating sequence homology in the leghaemoglobin genes of these species. Hybridization to the genomic DNA restriction fragments of two other species, Glycine soja and Vicia faba, also indicated interspecies sequence homologies. Several restriction fragments appear to be common to all species examined. The induction of these genes occurs following infection of the plant by Rhizobium and is independent of the appearance of nitrogenase activity in the nodules. The level of expression is, however, influenced by various mutations in Rhizobium that result in the development of ineffective (nonnitrogen fixing) nodules.  相似文献   

15.
Changes in catalase activity during the development of the Rhizobium-legume symbiosis as well as its response in salinized plants of Phaseolus vulgaris and Medicago sativa, was studied. Besides, it was examined the behavior of the enzyme, isolated from leaves and root nodules, during in vitro incubation with NaCl doses. Nodule catalase activities of both legumes were assayed with several enzyme inhibitors and also purified. Leaf catalase activity of Phaseolus vulgaris and Medicago sativa decreased and increased respectively throughout the ontogeny, but root nodule catalase kept a high and stable value. This last result suggests that both legumes require the maintenance of high nodule catalase in nitrogen-fixing nodules. Under salt stress conditions leaf and nodule catalase activity decreased in both, grain and pasture legumes. Because catalase from leaf of Medicago sativa and nodules of Phaseolus vulgaris were relatively sensitive to NaCl during in vitro experiments, the detoxifying role of this enzyme for H(2)O(2) should be limited in such conditions. Both catalases, from determinate and indeterminate nodules, were affected neither by oxygen nor superoxide radicals but showed a strong (Phaseolus vulgaris) or partial (Medicago sativa) inhibition with dithiothreitol, dithionite and beta-mercaptoethanol. Besides, cyanide was the most potent inhibitor of nodule catalases. Finally, catalases partially purified by immobilized metal ion affinity chromatography migrated at 42 (Phaseolus vulgaris) and 46kDa (Medicago sativa) on SDS-PAGE, whereas native forms on sephacryl S-300 columns exhibited a molecular mass of 59 and 48kDa (Phaseolus vulgaris) and 88 and 53kDa (Medicago sativa).  相似文献   

16.
Summary Root nodule homogenates of actinorhizal plants may representFrankia in a symbiotic stage but released from environmental influence of the host plant. Anaerobic homogenization with a blender in buffer supplied with sucrose, polyvinylpyrrolidone and reducing substances gave three times higher yields of nitrogenase activity (C2H2-reduction) than crushing the nodules in liquid nitrogen. The activity in the homogenates was very reproducible and was, on average, nearly twice as high as the activity in excised nodules and c. 10% of the activity in intact plants. The difference in activity between excised nodules and intact plants was, roughly by halves, due to removal of the root system from the pot and to excision of the nodules. The nitrogenase activity in the homogenates was slightly higher when nodule excision was done in Ar or under water as well as after treatment of the homogenate with toluene or Triton X-100 or osmotic shock. These gains in activity were considered too small to outweigh the increased complications of preparing homogenates for routine use. Due to the reproducible recovery of nitrogenase in the homogenates the technique seems useful for physiological studies on nitrogen fixation inAlnus incana.  相似文献   

17.
The aquatic legume Neptunia plena (L.) Benth. was grown in non-aeratedwater culture or vermiculite. Growth, nodulation, nitrogen fixationand nodule physiology were investigated. Over an 80-d period,plants grew and fixed nitrogen and carbon equally well in bothrooting media, although distribution of growth between plantparts varied. Total nodule dry weights and volumes were similarbut vermiculite-grown plants had three times as many (smaller)nodules than those grown in water. Oxygen diffusion resistanceof nodules exposed to 21% oxygen and 10% acetylene did not differsignificantly. Both treatments showed similar declines in rootrespiration and acetylene reduction activity (approx. 10%) whenroot systems were exposed to stepped decreases and increasesin rhizosphere oxygen concentration. However, nitrogenase activityof aquatically grown plants was irreversibly inhibited by rapidexposure of nodules to ambient air, whereas vermiculite-grownplants were unaffected. Aeration of water-cultured N. plenareduced stem length (but not mass) and number of nodules perplant. The concentration of nitrogen fixation by 163%. PossibleO2 transport pathways from the shoot atmosphere to roots andnodules are discussed. Aquatic legume, diffusion resistance, Neptunia plena, nitrogen fixation, oxygen, root nodules  相似文献   

18.
Inhibition by NO3 of acetylene reduction in bean ( Phaseolus vulgaris L. cv. Contender) and soybean ( Glycine max L. cv. Amsoy 71) was measured in parallel with nodule carbohydrate and nitrate metabolism. In bean the onset of inhibition of C2H2 reduction (6 h) coincided with decreased import of assimilates and a lowering of carbohydrate pools (sucrose, glucose and starch). Nitrate reductase (EC 1.6.6.1) activity was induced in all plant organs after 3 h but no nitrite was detected in the nodules. In soybean, nodule carbohydrate concentrations and import of assimilates into the nodules increased markedly between 6 to 24 h after supply of nitrate when the nitrogenase (EC 1.7.99.2) was progressively inhibited. High nitrate reductase activity was observed in the nodules and nitrites accumulated because of insufficient nitrite reductase activity. The nitrate-induced inhibition of nitrogenase was compared with the inhibition observed with low oxygen around the roots (1% O2) or with direct assimilate deprivation (girdling or decapitation). Soybean and bean appeared equally sensitive to these treatments as regards to acetylene reduction. The results are discussed in relation to the current hypotheses explaining nitrate-induced inhibition of dinitrogen fixation: assimilate deprivation or nitrite poisoning. Present data are in favour of the first for bean and of the second for soybean.  相似文献   

19.
Split‐root system (SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic (shoot origin) versus local (root/nodule origin) regulation mechanisms. This type of approach is particularly useful when studying the complex regulatory mechanisms governing the symbiosis established between legumes and Rhizobium bacteria. The current work provides an overview of the main insights gained from the application of SRS approaches to understand how nodule number (nodulation autoregulation) and nitrogen fixation are controlled both under non‐stressful conditions and in response to a variety of stresses. Nodule number appears to be mainly controlled at the systemic level through a signal which is produced by nodule/root tissue, translocated to the shoot, and transmitted back to the root system, involving shoot Leu‐rich repeat receptor‐like kinases. In contrast, both local and systemic mechanisms have been shown to operate for the regulation of nitrogenase activity in nodules. Under drought and heavy metal stress, the regulation is mostly local, whereas the application of exogenous nitrogen seems to exert a regulation of nitrogen fixation both at the local and systemic levels.  相似文献   

20.
Effect of salinity on nodule formation by soybean   总被引:12,自引:0,他引:12       下载免费PDF全文
A split-root growth system was employed to evaluate the effect of NaCl on nodule formation by soybean (Glycine max L. Merr. cv Davis). By applying the salinity stress and rhizobial inoculum to only one-half the root system, the effects of salinity on shoot growth were eliminated in the nodulation process. Rhizobium colonization of inoculated root surfaces was not affected by the salt treatments (0.0, 26.6, 53.2, and 79.9 millimolar NaCl). While shoot dry weight remained unaffected by the treatments, total shoot N declined from 1.26 grams N per pot at 0.0 millimolar NaCl to 0.44 grams N per pot at 79.9 millimolar NaCl. The concentration of N in the shoot decreased from 3.75% N (0.0 millimolar NaCl) to 1.26% N at 79.9 millimolar NaCl. The decrease in shoot N was attributed to a sharp reduction in nodule number and dry weight. Nodule number and weight were reduced by approximately 50% at 26.6 millimolar NaCl, and by more than 90% at 53.2 and 79.9 millimolar NaCl. Nodule development, as evidenced by the average weight of a nodule, was not as greatly affected by salt as was nodule number. Total nitrogenase activity (C2H2 reduction) decreased proportionally in relation to nodule number and dry weight. Specific nitrogenase activity, however, was less affected by salinity and was not depressed significantly until 79.9 millimolar NaCl. In a second experiment, isolates of Rhizobium japonicum from nodules formed at 79.9 millimolar NaCl did not increase nodulation of roots under salt stress compared to nodule isolates from normal media (0.0 millimolar NaCl). Salt was applied (53.2 millimolar NaCl) to half root systems at 0, 4, 12, and 96 hours from inoculation in a third experiment. By delaying the application of salt for 12 hours, an increase in nodule number, nodule weight, and shoot N was observed. Nodule formation in the 12- and 96-hour treatments was, however, lower than the control. The early steps in nodule initiation are, therefore, extremely sensitive to even low concentrations of NaCl. The sensitivity is not related to rhizobial survival and is probably due to the salt sensitivity of root infection sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号