首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduced-minus-oxidized difference spectra were recorded on particle preparations of the cyanobacterium Anacystis nidulans. Physiological oxidation of anaerobic membranes was effected either by O2 or by light. In both cases the spectral changes observed in the 550-570nm region were essentially the same. The results were confirmed by dual-wavelength spectrophotometry. It is concluded that a membrane-bound cytochrome f-b complex participates in both respiratory and photosynthetic elevtron transport.  相似文献   

2.
The heterogeneity of bone shape and size variation is modulated by genetic, mechanical, nutritional, and hormonal patterning throughout its lifetime. Microstructural changes across cross sections are a result of mechanistic optimization that results over the years of evolution while being based on universal, time-invariant ingredients and patterns. Here we report changes across anatomical sections of bone with osteogenesis imperfecta (OI) that undermines the work of evolution through genetic mutation. This work examines the microstructure and molecular composition of different anatomical positions (anterior, medial, posterior, and lateral regions) in the diaphysis of an OI human tibia. The study shows that although there is no significant microstructural difference, molecular changes are observed using FTIR revealing differences in molecular composition of the four anatomical positions. In addition, the nanomechanical properties of anterior section of OI bone seem more heterogeneous. The nanomechanical properties of interstitial lamellae in all these bone samples are consistently greater than those of osteonal lamellae. The nanomechanical properties of bone depend on its anatomical section and on the measurement direction as well. Variations in molecular structure with anatomical positions and also corresponding differences in nanomechanical properties are reported. These are compared to those observed typically in healthy bone illustrating the unique influence of OI on bone multiscale behavior which results from an evolutionary process lasting for many years.  相似文献   

3.
Human bone cells grown in culture, representative of a preosteoblastic stage of maturation, produce an extracellular matrix composed of collagen, several noncollagenous glycoproteins, hyaluronan, and four distinct proteoglycans (PGs). The influence of donor age on the levels of expression of these molecules in vitro has not been well characterized. In this study, human bone cells derived from sources ranging from fetal to 60-year-old donors were grown in culture, radiolabeled for 24 h, and the amount of incorporation of [35S]sulfate into PGs, [3H]glucosamine into hyaluronan, [3H]leucine/proline into osteonectin, and [3H]proline into collagen was determined. Cell proliferation was most rapid in fetal-derived bone cells and decreased with increasing age. Total protein and PG synthesis also decreased with increasing age, falling to 1/3 and 1/4, respectively, of fetal levels after age 30. A large chondroitin sulfate PG (Mr approximately 600,000 Da) was the major fetal PG and its levels were highly correlated with cellular proliferation. [3H]Collagen and [35S]decorin levels increased with the increasing age of the donor, reached a maximum in puberty-derived cells, and decreased to 1/3 maximal levels after age 20. The heparan sulfate PG (Mr approximately 400,000 Da) exhibited steady-state levels regardless of donor age. [3H]Osteonectin and [35S]biglycan levels were high in fetal-derived cells and in cells derived from pubescent donors. The percentage of collagen and four proteoglycans associated with the cell layer pool changed with donor age. All fetal-derived PG core proteins possessed more N- and O-linked oligosaccharides than newborn or adult derived PGs.  相似文献   

4.
5.
We have determined the age-related changes in the growth characteristics and expression of the osteoblast phenotype in human calvaria osteoblastic cells in relation with histologic indices of bone formation during postnatal calvaria osteogenesis. Histomorphometric analysis of normal calvaria samples obtained from 36 children, aged 3 to 18 months, showed an age-related decrease in the extent of bone surface covered with osteoblasts and newly synthesized collagen, demonstrating a progressive decline in bone formation during postnatal calvaria osteogenesis. Immunohistochemical analysis showed expression of type I collagen, bone sialoprotein, and osteonectin in the matrix and osteoblasts, with no apparent age-related change during postnatal calvaria osteogenesis. Cells isolated from human calvaria displayed characteristics of the osteoblast phenotype including alkaline phosphatase (ALP) activity, osteocalcin (OC) production, expression of bone matrix proteins, and responsiveness to calciotropic hormones. The growth of human calvaria osteoblastic cells was high at 3 months of age and decreased with age, as assessed by (3H)-thymidine incorporation into DNA. Thus, the age-related decrease in bone formation is associated with a decline in osteoblastic cell proliferation during human calvaria osteogenesis. In contrast, ALP activity and OC production increased with age in basal conditions and in response to 1,25(OH)2, vitamin D3, suggesting a reciprocal relationship between cell growth and expression of phenotypic markers during human postnatal osteogenesis. Finally, we found that human calvaria osteoblastic cells isolated from young individuals with high bone formation activity in vivo and high growth potential in vitro had the ability to form calcified nodular bone-like structures in vitro in the presence of ascorbic acid and β-glycerophosphate, providing a new model to study human osteogenesis in vitro. J. Cell. Biochem. 64:128–139. © 1997 Wiley-Liss, Inc.  相似文献   

6.
7.
8.
9.
1. Analysis of the purified proteoglycans extracted from normal human articular cartilage with 4M-guanidinium chloride showed that there was an age-related increase in their content of protein and keratan sulphate. 2. The hydrodynamic size of the dissociated proteoglycans also decreased with advancing age, but there was little change in the proportion that could aggregate. 3. Results suggested that some extracts of aged-human cartilage had an increased content of hyaluronic acid compared with specimens from younger patients. 4. Dissociated proteoglycans, from cartilage of all age groups, bind to hyaluronic acid and form aggregates in direct proportion to the hyaluronic acid concentration. 5. Electrophoretic heterogeneity of the dissociated proteoglycans was demonstrated on polyacrylamide/agarose gels. The number of proteoglycan species observed was also dependent on the age of the patient.  相似文献   

10.
G L Shea-Landry  D E Cole 《CMAJ》1986,135(9):977-981
Osteogenesis imperfecta is a heterogeneous group of inherited disorders characterized by bone fragility and recurrent fractures. It is currently classified into four types on clinical grounds and appears to arise from different disorders of bone collagen synthesis. The biochemical identification of disturbances in collagen metabolism and the genetic delineation of new mutations of collagen genes have made prenatal diagnosis by molecular methods feasible in some cases. Most people with osteogenesis imperfecta suffer frequent fractures (and sometimes consequent serious disability), for which there are few effective preventive measures. This disorder may have a profound psychosocial influence on patients and their families. In this report the extent of this influence is reviewed and aspects important to the medical community are highlighted; these include the emotional burdens imposed by unfounded suspicions of child abuse, the social and financial costs of repeated hospitalization and immobility, and the frustrations generated by the lack of helpful, practical information for families and health care workers. An important social outcome has been the rise of self-help organizations, exemplified by the Canadian Osteogenesis Imperfecta Society. For Canadian families the society has been an important vehicle for exchange of information and an active, positive response to a lifelong, often severely disabling disorder.  相似文献   

11.
Proteoglycan subunits of sheep nasal cartilage from animals of five different ages were studied. There is a continuous reduction in the size and chondroitin sulphate content of the aggregable and non-aggregable subunits with ageing. For each age group, the non-aggregable are poorer in protein and keratan sulphate than the corresponding aggregable molecules. Irrespective of age, the amount of proteoglycan protein extracted from each gramme wet cartilage is the same. The amino acid composition and the proportion of the aggregable proteoglycans are also the same.  相似文献   

12.
Children with severe osteogenesis imperfecta (OI) typically experience numerous fractures and progressive skeletal deformities over their lifetime. Recent studies proposed finite element models to assess fracture risk and guide clinicians in determining appropriate intervention in children with OI, but lack of appropriate material property inputs remains a challenge. This study aimed to characterize macroscopic anisotropic cortical bone material properties and investigate relationships with bone density measures in children with severe OI. Specimens were obtained from tibial or femoral shafts of nine children with severe OI and five controls. The specimens were cut into beams, characterized in bending, and imaged by synchrotron radiation X-ray micro-computed tomography. Longitudinal modulus of elasticity, yield strength, and bending strength were 32–65% lower in the OI group (p < 0.001). Yield strain did not differ between groups (p  0.197). In both groups, modulus and strength were lower in the transverse direction (p  0.009), but anisotropy was less pronounced in the OI group. Intracortical vascular porosity was almost six times higher in the OI group (p < 0.001), but no differences were observed in osteocyte lacunar porosity between the groups (p = 0.086). Volumetric bone mineral density was lower in the OI group (p < 0.001), but volumetric tissue mineral density was not (p = 0.770). Longitudinal OI bone modulus and strength were correlated with volumetric bone mineral density (p  0.024) but not volumetric tissue mineral density (p  0.099). Results indicate that cortical bone in children with severe OI yields at the same strain as normal bone, and that their decreased bone material strength is associated with reduced volumetric bone mineral density. These results will enable the advancement of fracture risk assessment capability in children with severe OI.  相似文献   

13.
Bone from a patient with osteogenesis imperfecta contained type III collagen which was absent in control bone. The ratio of alpha 1(I)/alpha 2(I) in type I collagen of patient's bone was increased (2.9 vs. 2.3 +/- 0.2 in controls) and the ratio of dimers beta 11/beta 12/beta 22 was altered due to the increased beta 22 content. No abnormality was observed in collagen from the patient's skin. The altered composition of collagen in bone, but the normal composition in skin suggests that the disease in the patient is due to impaired regulation of the synthesis of collagens in bone, rather than by a mutation in one of the two type I collagen genes. Unlike in skin, all the type III collagen in patient's bone was pepsin-soluble indicating an inability of the bone to incorporate type III collagen into mature highly cross-linked extracellular matrix.  相似文献   

14.
Osteogenesis imperfecta is often regarded as a form of osteoporosis. In many cases, particularly those in whom the first fracture occurs outside the neonatal period, bones that have not been fractured may appear radiologically normal. In a group of 24 adults with osteogenesis imperfecta the thickness of the metacarpal cortex was normal but their bones were often slender. Osteoporosis is probably not an inevitable feature of such cases, and some of the radiological abnormalities reported may be the results of previous fractures and their treatment.  相似文献   

15.
The determination of lacunar-canalicular permeability is essential for understanding local fluid flow in bone, which may indicate how bone senses changes in the mechanical environment to regulate mechano-adaptation. The estimates of lacunar-canalicular permeability found in the literature vary by up to eight orders of magnitude, and age-related permeability changes have not been measured in non-osteonal mouse bone. The objective of this study is to use a poroelastic approach based on nanoindentation data to characterize lacunar-canalicular permeability in murine bone as a function of age. Nine wild type C57BL/6 mice of different ages (2, 7 and 12 months) were used. Three tibiae from each age group were embedded in epoxy resin, cut in half and indented in the longitudinal direction in the mid-cortex using two spherical fluid indenter tips (R=238 μm and 500 μm). Results suggest that the lacunar-canalicular intrinsic permeability of mouse bone decreases from 2 to 7 months, with no significant changes from 7 to 12 months. The large indenter tip imposed larger contact sizes and sampled larger ranges of permeabilities, particularly for the old bone. This age-related difference in the distribution was not seen for indents with the smaller radius tip. We conclude that the small tip effectively measured lacunar-canalicular permeability, while larger tip indents were influenced by vascular permeability. Exploring the age-related changes in permeability of bone measured by nanoindentation will lead to a better understanding of the role of fluid flow in mechano-transduction. This understanding may help indicate alterations in bone adaptation and remodeling.  相似文献   

16.
Collagen defects in lethal perinatal osteogenesis imperfecta.   总被引:12,自引:3,他引:12       下载免费PDF全文
Quantitative and qualitative abnormalities of collagen were observed in tissues and fibroblast cultures from 17 consecutive cases of lethal perinatal osteogenesis imperfecta (OI). The content of type I collagen was reduced in OI dermis and bone and the content of type III collagen was also reduced in the dermis. Normal bone contained 99.3% type I and 0.7% type V collagen whereas OI bone contained a lower proportion of type I, a greater proportion of type V and a significant amount of type III collagen. The type III and V collagens appeared to be structurally normal. In contrast, abnormal type I collagen chains, which migrated slowly on electrophoresis, were observed in all babies with OI. Cultured fibroblasts from five babies produced a mixture of normal and abnormal type I collagens; the abnormal collagen was not secreted in two cases and was slowly secreted in the others. Fibroblasts from 12 babies produced only abnormal type I collagens and they were also secreted slowly. The slower electrophoretic migration of the abnormal chains was due to enzymic overmodification of the lysine residues. The distribution of the cyanogen bromide peptides containing the overmodified residues was used to localize the underlying structural abnormalities to three regions of the type I procollagen chains. These regions included the carboxy-propeptide of the pro alpha 1(I)-chain, the helical alpha 1(I) CB7 peptide and the helical alpha 1(I) CB8 and CB3 peptides. In one baby a basic charge mutation was observed in the alpha 1(I) CB7 peptide and in another baby a basic charge mutation was observed in the alpha 1(I) CB8 peptide. The primary defects in lethal perinatal OI appear to reside in the type I collagen chains. Type III and V collagens did not appear to compensate for the deficiency of type I collagen in the tissues.  相似文献   

17.
18.
The lethal form of osteogenesis imperfecta must be more clearly defined than it is. Early death of the child is not a sufficient criteria since it is observed in other forms compatible with survival. The authors therefore insist on the innumerable fractures of the ribs giving the particular aspect described as "bamboo ribs". These are observed in practically all cases. Heterogeneity however is undoubtful and an X-ray film is reproduced showing thin ribs without fractures in another exceptional lethal form. Genetic and very recent biochemical investigations suggest a new heterogeneity of the lethal form, even well defined clinically and radiologically. Contrary to earlier and frequent statements, it results most often from a dominant mutation, while recessive inheritance is much rarer, therefore the overall risk of recurrence much below 25%.  相似文献   

19.
To examine whether the bone mineral density (BMD) decreases uniformly with aging in any spongy bones, the authors investigated age-related changes of BMD in the calcaneus, talus, and scaphoid bone. After the ordinary dissection by medical students was finished, calcanei, tali, and scaphoid bones were resected from the subjects, and BMDs were measured by dual-energy X-ray absorptiometry. Their BMDs seemed to decrease gradually with aging in the calcanei, tali, and scaphoid bones. It was found that there were statistically significant relationships between age and BMD in the men’s and women’s scaphoid bones, women’s tali, and women’s calcanei, but not in the men’s tali and calcanei. It should be noted that there were significant relationships between age and BMD in both men’s and women’s scaphoid bones. In regard to relationship in BMD between the bones of the upper and lower limbs in individuals, it was found that the relationship between the calcaneus and talus was higher than that between the calcaneus and scaphoid bone. This suggests that there is a higher relationship in BMD between the two tarsal bones compared with that between the tarsal and carpal bones.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号