首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
To identify the interaction proteins for the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunit glutamate receptor-interacting protein 1 (GRIP1), GRIP1 interactions with microtubule-associated protein (MAP)-1B light chain (LC) were investigated. GRIP1 interacts with MAP-1A and MAP-1B in the yeast two-hybrid assay, as is indicated also by glutathione S-transferase (GST) pull-down and coimmunoprecipitation with MAP-1B LC antibody in brain fractions. These results suggest a novel mechanism for localizing AMPA receptors to synaptic sites.  相似文献   

3.
Structural maintenance of chromosome protein 1 (SMC1) is well known for its roles in sister chromatid cohesion and DNA repair. In this study, we report a novel centrosomal localization of SMC1 within the cytoplasm in a variety of mammalian cell lines. We showed that SMC1 localized to centrosomes throughout the cell cycle in a microtubule-independent manner. Biochemically, SMC1 was cofractionated with the centrosomal protein γ-tubulin in centrosomal preparation. Immunohistochemistry and immunoelectron microscopy performed on mouse tissue sections revealed that SMC1 antibody strongly labeled the base of cilia in ciliated epithelia, where basal bodies were located. Furthermore, we showed that SMC1 was associated with both centrioles of a centrosome at G0/G1 stage of the cell cycle. These results demonstrate that SMC1 is a centrosomal protein, suggesting possible involvement of SMC1 in centrosome/basal body-related functions, such as organization of dynamic arrays of microtubules and ciliary formation.  相似文献   

4.
Members of the JNK pathway are organized together by virtue of interactions with JNK interacting protein 1 (JIP1), a scaffold protein. Here we have investigated the possibility that JIP1 may also affect the catalytic activity of Akt1, a serine/threonine kinase that has been implicated in multiple cellular processes, including survival and proliferation. JIP1 expression enhanced Akt1 kinase activity in a dose-dependent manner following serum starvation in 293 cells. Cellular activation of Akt1 following stimulation with low concentrations of insulin-like growth factor (IGF-1) was elevated in the presence of JIP1. JIP1 expression also prolonged Akt1 stimulation after a short IGF-1 pulse. The mechanism of JIP1-mediated Akt1 activation involved JIP1 protein binding to the Akt1 pleckstrin homology domain, which in turn promoted the phosphorylation of the activation T-loop of Akt1 by phosphoinositide-dependent kinase-1. These results suggest that, in certain cellular contexts, JIP1 may act as an Akt1 scaffold, which regulates the enzymatic activity of Akt1. This study also indicates that JIP1 expression can exert signaling effects independent of JNK activity.  相似文献   

5.
6.
7.
8.
9.
10.
TAB1 [TAK1 (transforming growth factor-beta-activated kinase 1)-binding protein 1] is one of the regulatory subunits of TAK1, a protein kinase that lies at the head of three pro-inflammatory kinase cascades. In the current study we report the crystal structure of the N-terminal domain of TAB1. Surprisingly, TAB1 possesses a fold closely related to that of the PPM (Mg2+- or Mn2+-dependent protein phosphatase) family as demonstrated by the close structural similarity with protein phosphatase 2C alpha. However, we were unable to detect any phosphatase activity for TAB1 using a phosphopeptide or p-nitrophenyl phosphate as substrate. Although the overall protein phosphatase 2C alpha fold is conserved in TAB1, detailed structural analyses and mutagenesis studies show that several key residues required for dual metal-binding and catalysis are not present in TAB1, although binding of a single metal is supported by soaking experiments with manganese and isothermal titration calorimetry. Thus, it appears that TAB1 is a 'pseudophosphatase', possibly binding to and regulating accessibility of phosphorylated residues on substrates downstream of TAK1 or on the TAK1 complex itself.  相似文献   

11.
12.
Cerebral cavernous malformations (CCMs) affect 0.1–0.5% of the population resulting in leaky vasculature and severe neurological defects. KRIT1 (Krev interaction trapped-1) mutations associate with ∼40% of familial CCMs. KRIT1 is an effector of Ras-related protein 1 (Rap1) GTPase. Rap1 relocalizes KRIT1 from microtubules to cell membranes to impact integrin activation, potentially important for CCM pathology. We report the 1.95 Å co-crystal structure of KRIT1 FERM domain in complex with Rap1. Rap1-KRIT1 interaction encompasses an extended surface, including Rap1 Switch I and II and KRIT1 FERM F1 and F2 lobes. Rap1 binds KRIT1-F1 lobe using a GTPase-ubiquitin-like fold interaction but binds KRIT1-F2 lobe by a novel interaction. Point mutagenesis confirms the interaction. High similarity between KRIT1-F2/F3 and talin is revealed. Additionally, the mechanism for FERM domains acting as GTPase effectors is suggested. Finally, structure-based alignment of each lobe suggests classification of FERM domains as ERM-like and TMFK-like (talin-myosin-FAK-KRIT-like) and that FERM lobes resemble domain “modules.”  相似文献   

13.
Bone morphogenetic protein 1 (BMP1) is the prototype of a subgroup of metalloproteinases with manifold roles in morphogenesis. Four mammalian subgroup members exist, including BMP1 and mammalian Tolloid-like 1 (mTLL1). Subgroup members have a conserved protein domain structure: an NH2-terminal astacin-like protease domain, followed by a fixed order of CUB and epidermal growth factor-like protein-protein interaction motifs. Previous structure/function studies have documented those BMP1 protein domains necessary for secretion, and activity against various substrates. Here we demonstrate that, in contradiction to previous reports, the most NH2-terminal CUB domain (CUB1) is not required for BMP1 secretion nor is the next CUB domain (CUB2) required for enzymatic activity. The same is true for mTLL1. In fact, secreted protease domains of BMP1 and mTLL1, devoid of CUB or epidermal growth factor-like domains, have procollagen C-proteinase (pCP) activity and activity for biosynthetic processing of biglycan, the latter with kinetics superior to those of the full-length proteins. Structure-function analyses herein also suggest differences in the functional roles played by some of the homologous domains in BMP1 and mTLL1. Surprisingly, although BMP1 has long been known to be Ca2+-dependent, a property previously assumed to apply to all members of the subgroup, mTLL1 is demonstrated to be independent of Ca2 levels in its ability to cleave some, but not all, substrates. We also show that pCP activities of only versions of BMP1 and mTLL1 with intact COOH termini are enhanced by the procollagen C-proteinase enhancer 1 (PCOLCE1) and that mTLL1 binds PCOLCE1, thus suggesting reappraisal of the accepted paradigm for how PCOLCE1 enhances pCP activities.  相似文献   

14.
Wu J  Luo S  Jiang H  Li H 《FEBS letters》2005,579(2):421-426
With two tandem repeated cysteine- and histidine-rich domains (designated as CHORD), CHORD-containing proteins (CHPs) are a novel family of highly conserved proteins that play important roles in plant disease resistance and animal development. Through interacting with suppressor of the G2 allele of Skp1 (SGT1) and Hsp90, plant CHORD-containing protein RAR1 (required for Mla resistance 1) plays a critical role in disease resistance mediated by multiple R genes. Yet, the physiological function of vertebrate CHORD-containing protein-1 (Chp-1) has been poorly investigated. In this study, we provide the first biochemical evidence demonstrating that mammalian Chp-1 is a novel Hsp90-interacting protein. Mammalian Chp-1 contains two CHORD domains (I and II) and one CS domain (a domain shared by CHORD-containing proteins and SGT1). With sequence and structural similarity to Hsp90 co-chaperones p23 and SGT1, Chp-1 binds to the ATPase domain of Hsp90, but the biochemical property of the interaction is unique. The Chp-1-Hsp90 interaction is independent of ATP and ATPase-coupled conformational change of Hsp90, a feature that distinguishes Chp-1 from p23. Furthermore, it appears that multiple domains of Chp-1 are required for stable Chp-1-Hsp90 interaction. Unlike SGT1 whose CS domain is sufficient for Hsp90 binding, the CS domain of Chp-1 is essential but not sufficient for Hsp90 binding. While the CHORD-I domain of Chp-1 is dispensable for Hsp90 binding, the CHORD-II domain and the linker region are essential. Interestingly, the CHORD-I domain of plant RAR1 protein is solely responsible for Hsp90 binding. The unique Chp-1-Hsp90 interaction may be indicative of a distinct biological activity of Chp-1 and functional diversification of CHORD-containing proteins during evolution.  相似文献   

15.
【目的】探讨A型流感病毒PB1-F2蛋白和人类凋亡调节因子1(MOAP-1)之间的相互作用。【方法】构建pACT2-MOAP-1重组质粒,与pGBKT7-PB1-F2质粒共转化酵母AH109,检测转化菌在四缺培养基的生长情况及β半乳糖苷酶报告基因的活性;利用GST pull-down和免疫共沉淀(Co-IP)技术进一步验证PB1-F2与宿主细胞蛋白MOAP-1的相互作用;通过过表达PB1-F2和MOAP-1,检测PB1-F2对MOAP-1蛋白表达水平的影响。【结果】酵母双杂交结果表明,PB1-F2和MOAP-1可以在酵母细胞内特异性结合。GST pull-down和Co-IP实验也进一步证实了这两种蛋白的相互作用,而且PB1-F2可上调外源MOAP-1的蛋白水平。【结论】流感病毒PB1-F2与MOAP-1存在相互作用,PB1-F2可能通过与MOAP-1的相互作用参与调控细胞生长及凋亡过程。  相似文献   

16.
The Snf1/AMP-activated protein kinase family has diverse roles in cellular responses to metabolic stress. In Saccharomyces cerevisiae, Snf1 protein kinase has three isoforms of the beta subunit that confer versatility on the kinase and that exhibit distinct patterns of subcellular localization. The Sip1 beta subunit resides in the cytosol in glucose-grown cells and relocalizes to the vacuolar membrane in response to carbon stress. We show that translation of Sip1 initiates at the second ATG of the open reading frame, yielding a potential site for N myristoylation, and that mutation of the critical glycine abolishes relocalization. We further show that the cyclic AMP-dependent protein kinase (protein kinase A [PKA]) pathway maintains the cytoplasmic localization of Sip1 in glucose-grown cells. The Snf1 catalytic subunit also exhibits aberrant localization to the vacuolar membrane in PKA-deficient cells, indicating that PKA regulates the localization of Snf1-Sip1 protein kinase. These findings establish a novel mechanism of regulation of Snf1 protein kinase by the PKA pathway.  相似文献   

17.
The increased tolerance to NaCl 1 (ITN1) protein is a plasma membrane (PM)-localized protein involved in responses to NaCl stress in Arabidopsis. The predicted structure of ITN1 is composed of multiple transmembrane regions and an ankyrin-repeat domain that is known to mediate protein-protein interactions. To elucidate the molecular functions of ITN1, we searched for interacting partners using a yeast two-hybrid assay, and a nuclear-localized DNA-binding protein, RTV1, was identified as a candidate. Bimolecular fluorescence complementation analysis revealed that RTV1 interacted with ITN1 at the PM and nuclei in vivo. RTV1 tagged with red fluorescent protein localized to nuclei and ITN1 tagged with green fluorescent protein localized to PM; however, both proteins localized to both nuclei and the PM when co-expressed. These findings suggest that RTV1 and ITN1 regulate the subcellular localization of each other.  相似文献   

18.
Ribosomal protein S6 (rpS6) is a critical component of the 40 S ribosomal subunit that mediates translation initiation at the 5'-m(7)GpppG cap of mRNA. In response to mitogenic stimuli, rpS6 undergoes ordered C-terminal phosphorylation by p70 S6 kinases and p90 ribosomal S6 kinases on four conserved Ser residues (Ser-235, Ser-236, Ser-240, and Ser-244) whose modification potentiates rpS6 cap binding activity. A fifth site, Ser-247, is also known to be phosphorylated, but its function and regulation are not well characterized. In this study, we employed phospho-specific antibodies to show that Ser-247 is a target of the casein kinase 1 (CK1) family of protein kinases. CK1-dependent phosphorylation of Ser-247 was induced by mitogenic stimuli and required prior phosphorylation of upstream S6 kinase/ribosomal S6 kinase residues. CK1-mediated phosphorylation of Ser-247 also enhanced the phosphorylation of upstream sites, which implies that bidirectional synergy between C-terminal phospho-residues is required to sustain rpS6 phosphorylation. Consistent with this idea, CK1-dependent phosphorylation of rpS6 promotes its association with the mRNA cap-binding complex in vitro. Additionally, we show that protein phosphatase 1 (PP1) antagonizes rpS6 C terminus phosphorylation and cap binding in intact cells. These findings further our understanding of rpS6 phospho-regulation and define a direct link between CK1 and translation initiation.  相似文献   

19.
Disease resistance (R) proteins, as central regulators of plant immunity, are tightly regulated for effective defense responses and to prevent constitutive defense activation under non-pathogenic conditions. Here we report the identification of an F-box protein CPR1/CPR30 as a negative regulator of an R protein SNC1 likely through SCF (Skp1-cullin-F-box) mediated protein degradation. The cpr1-2 (cpr30-1) loss-of-function mutant has constitutive defense responses, and it interacts synergistically with a gain-of function mutant snc1-1 and a bon1-1 mutant where SNC1 is upregulated. The loss of SNC1 function suppresses the mutant phenotypes of cpr1-2 and cpr1-2 bon1-1, while overexpression of CPR1 rescues mutant phenotypes of both bon1-1 and snc1-1. Furthermore, the amount of SNC1 protein is upregulated in the cpr1-2 mutant and down-regulated when CPR1 is overexpressed. The regulation of SNC1 by CPR1 is dependent on the 26S proteosome as a protease inhibitor MG132 stabilizes SNC1 and reverses the effect of CPR1 on SNC1. Interestingly, CPR1 is induced after infection of both virulent and avirulent pathogens similarly to the other negative defense regulator BON1. Thus, this study reveals a new mechanism in R protein regulation likely through protein degradation and suggests negative regulation as a critical component in fine control of plant immunity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号