首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previouslyreported that low doses of melatonin inhibit apoptosis in both dexamethasone-treated cultured thymocytes (standard model for the study of apoptosis) and the intact thymus. Here we elucidate the mechanism by which this agent protects thymocytes from cell death induced by glucocorticoids. Our results demonstrate an effect of melatonin on the mRNA for antioxidant enzymes in thymocytes, also showing an unexpected regulation by dexamethasone of these mRNA. Both an effect of melatonin on the general machinery of apoptosis and a possible regulation of the expression of the cell death related genes bcl-2 and p53 are shown not to be involved. We found melatonin to down-regulate the mRNA for the glucocorticoid receptor in thymocytes (glucocorticoids up-regulate their own receptor). The decrease by melatonin of mRNA levels for this receptor in IM-9 cells (where glucocorticoids down-regulate it) demonstrates that melatonin actually down-regulates glucocorticoid receptor. These findings allow us to propose the effects of melatonin on this receptor as the likely mediator of its thymocyte protection against dexamethasone-induced cell death. This effect of melatonin, given the oxidant properties of glucocorticoids, adds another mechanism to explain its antioxidant effects.  相似文献   

2.
Cellular receptors to glucocorticoids and the effect of dexamethasone and corticosterone on 3H-uridine incorporation into the acid-insoluble fraction were studied in thymocytes from adrenalectomized-diabetic rats and adrenalectomized ones. An increase in the dissociation constant of the hormone-receptor plot was observed when adrenalectomized-diabetic animals were compared to adrenalectomized controls. Meanwhile decreasing concentrations of dexamethasone and corticosterone below receptors saturation, were less active as inhibitor of 3H-uridine incorporation into RNA by thymocytes from adrenalectomized-diabetic than from adrenalectomized ones.  相似文献   

3.
Heat shock has a profound influence on the metabolism and behavior of eukaryotic cells. We have examined the effects of heat shock on the release from cells of arachidonic acid and its bioactive eicosanoid metabolites, the prostaglandins and leukotrienes. Heat shock (42-45 degrees) increased the rate of arachidonic acid release from human, rat, murine, and hamster cells. Arachidonate accumulation appeared to be due, at least partially, to stimulation of a phospholipase A2 activity by heat shock and was accompanied by the accumulation of lysophosphatidyl-inositol and lysophosphatidylcholine in membranes. Induction of arachidonate release by heat did not appear to be mediated by an increase in cell Ca++. Stimulation of arachidonate release by heat shock in hamster fibroblasts was quantitatively similar to the receptor-mediated effects of alpha thrombin and bradykinin. The effects of heat shock and alpha thrombin on arachidonate release were inhibited by glucocorticoids. Increased arachidonate release in heat-shocked cells was accompanied by the accelerated accumulation of cyclooxygenase products prostaglandin E2 and prostaglandin F2 alpha and by 5-lipoxygenase metabolite leukotriene B4. Elevated concentrations of arachidonic acid and metabolites may be involved in the cytotoxic effects of hyperthermia, in homeostatic responses to heat shock, and in vascular and inflammatory reactions to stress.  相似文献   

4.
Rat thymic lymphocytes have saturable, specific receptors for glucocorticoids, which are localized predominantly in the nucleus following exposure of thymocytes to dexamethasone at 37°C. The present results demonstrate the dose-dependent extraction by pyridoxal phosphate of dexamethasone-receptor complexes from isolated thymocyte nuclei. On an equal molar basis, pyridoxal phosphate is considerably more effective than pyridoxal; pyridoxine, pyridoxamine phosphate and 5-deoxypyridoxal are ineffective. The release of the nuclear dexamethasone receptor complex is dependent on the integrity of the C4′ carboxaldehyde group of pyridoxal phosphate as evidenced by the inhibition of extraction of dexamethasone-receptor complexes by either hydroxylamine or semicarbazide. The dexamethasone which pyridoxal phosphate liberates from thymus nuclei is bound to a macromolecule which is of smaller size than unactivated cytoplasmic dexamethasone receptor.  相似文献   

5.
Apoptosis can be induced in primary cultures of mouse thymocytes using the glucocorticoid dexamethasone. Addition of the polyamine spermine simultaneously with dexamethasone reduces the induction of apoptosis compared to treatment with dexamethasone alone. We investigated the signal transduction pathway at the mitochondrial level in order to elucidate spermine's protective effect. Mitochondrial involvement is evident due to the loss of mitochondrial transmembrane potential, release of cytochrome c into the cytosol and activation of caspase-9 in dexamethasone-treated thymocytes. The addition of spermine inhibited the release of cytochrome c from the mitochondria into the cytosol, and also the activation of caspase-9. When the mitogen concanavalin A (Con A) was added to dexamethasone- plus spermine-treated thymocytes, the number of apoptotic cells in the pre-G(1)peak was reduced compared to thymocytes treated with only dexamethasone plus spermine. Comparing concanavalin A added to dexamethasone-treated or to dexamethasone plus spermine-treated thymocytes, showed a markedly reduced pre-G(1)peak in the latter. Thus, the spermine-induced inhibition of cytochrome c release confers a survival advantage on thymocytes.  相似文献   

6.
Investigations were carried out to define the mechanisms of steroid-induced inhibition of prostaglandin secretion by rat renomedullary cells in tissue culture. Although it was strongly proposed that glucocorticoids may inhibit phospholipase A2 activity, we present several pieces of evidence against a direct action of dexamethasone on phospholipase activities. First, dexamethasone, which significantly decreases the release of labeled material from cells prelabeled with [3H]arachidonate, does not significantly alter the pattern of distribution of the radioactivity among the various classes of cell lipids. In addition, direct measurement of phospholipase A3 activity in dexamethasone-treated cells failed to show any significant decrease in the deacylation capacity. On the other hand, several indications suggest that dexamethasone may induce the secretion of a non-dialysable, transferable factor able to inhibit prostaglandin production, the mechanism of which remains to be investigated.  相似文献   

7.
The hypothesis that prostaglandins, and especially PGE2, are the second messengers of erythropoietin (Ep) and that glucocorticoids inhibit Ep action by inhibiting PG synthesis was tested on the erythroid cell line from fetal rat liver. The optimal (10(-9) M) stimulatory concentration of PGE2 did not reproduce, by far, the maximal effect of Ep on the growth of CFUE erythroid colonies. Ep did not increase PGE2 release in liquid culture media of cell suspensions made of the whole erythroid line or enriched (over 85%) in precursor cells. Ep did not modify the turnover rate of arachidonate. Nevertheless, indomethacin partially inhibited Ep effect on CFUE development, and this inhibition was abolished by PGE2. These results suggest that PGE2 potentiates Ep action but is not its second messenger. Spontaneous PGE2 release in liquid culture media brought about concentrations of the order of 10(-9) M, and 10(-7) M dexamethasone completely inhibited this release. Part of (but not all) the anti-Ep effects of glucocorticoids might thus be mediated this way. Dexamethasone effects required previous protein synthesis.  相似文献   

8.
Summary Plasminogen Activator (PA) and its response to glucocorticoids and androgens was studied in viable rat thymocytes in suspension. PA was measured by its ability to convert plasminogen to plasmin, and the formed plasmin determined by cleavage of 14C-labeled globin. Using this functional assay, PA was found to be associated with the outer surface of thymic cells, and only negligible activity recovered from the incubation medium. Rat thymocytes also contain cytoplasmic and nuclear inhibitor(s) of the serine proteases plasmin, trypsin, chymotrypsin and thymic PA. Release of these inhibitors prevented determination of thymic PA activity in presence of lysed cells.The specific activity of PA in thymocytes isolated from adrenalectomized-castrated rats did not differ significantly from the specific activity associated with cells from intact animals. Furthermore, treatment of adrenalectomized-castrated rats with 0.1 mg of dexamethasone/ kg for 2 days induced thymic involution without affecting thymic PA activity. These observations suggest that PA activity of thymocytes is not involved in glucocorticoid-mediated thymic involution.  相似文献   

9.
Leukotriene B4 (LTB4) is a potent lipid mediator of inflammation and is involved in the receptor-mediated activation of a number of leukocyte responses including degranulation, superoxide formation, and chemotaxis. In the present research, stimulation of unprimed polymorphonuclear leukocytes (neutrophils) with LTB4 results in the transient release of arachidonate as measured by mass. This release of arachidonate was maximal at an LTB4 concentration of 50–75 nM and peaked at 45 s after stimulation with LTB4. The transient nature of this release can be attributed, in part, to a fast (<60 s) metabolism of the added LTB4. Moreover, the inhibition of the reacylation of the released arachidonate with thimerosal results in greater than 4-times as much arachidonate released. Thus, a rapid reacylation of the released arachidonate also contributes to the transient nature of its measured release. Multiple additions of LTB4, which would be expected to more closely resemble the situation in vivo where the cell may come into contact with an environment where LTB4 is in near constant supply, yielded a more sustained release of arachidonate. No release of [3H]arachidonate was observed when using [3H]arachidonate-labeled cells. This indicates that the release of arachidonate as measured by mass is most probably the result of hydrolysis of arachidonate-containing phosphatidylethanolamine within the cell since the radiolabeled arachidonate is almost exclusively incorporated into phosphatidylcholine and phosphatidylinositol pools under the non-equilibrium radiolabeling conditions used. Consistent with the role of cytosolic phospholipase A2 (cPLA2) in the release of arachidonate, potent inhibition of the LTB4-stimulated release was observed with methylarachidonylfluorophosphonate, an inhibitor of cPLA2 (IC50 of 1 μM). The bromoenol lactone of the calcium-independent phosphospholipase A2. failed to affect LTB4-stimulated release of arachidonate in these cells.  相似文献   

10.
There is an increasing amount of evidence suggesting that glucocorticoids may modulate the responsiveness of various cell types to β-adrenergic agents. In some systems, it has been shown, in addition, that steroids potentiate the elevation of cAMP induced by catecholamines. Little is known however of the mechanism underlying steroid action. We have studied this ‘permissive action’ in isolated thymocytes which have specific receptor sites for both glucocorticoids and β-adrenergic agents. The glucocorticoid compound dexamethasone did not alter intracellular cAMP level but markedly enhanced the stimulation produced by isoproterenol. This effect was instantaneous and was still measurable at 10?7 M dexamethasone. A similar potentiating action was observed in the presence of corticosterone but also in the presence of sex steroids. Determination of β-receptors after cell preincubation in the presence of dexamethasone showed that rapid alterations in β-receptors are not involved in this permissive action. Experiments done in the presence of the calcium chelator, ethyleneglycol bis(β-aminoethyl ether)-N,N′-tetraacetic acid, suggest that dexamethasone action could be related to a modification of calcium mobilization.  相似文献   

11.
When icosanoid-producing cells are stimulated by an agonist, 2-10% of total cellular arachidonate is released from phospholipids, and a variable percentage of the released arachidonate is subsequently converted into icosanoids. We used a mouse fibrosarcoma cell line (HSDM1C1) which synthesizes prostaglandin E2 in response to bradykinin stimulation to address the following questions: 1) upon cell stimulation is newly incorporated arachidonate preferentially released from phospholipids over previously incorporated arachidonate and 2) is there a corresponding change in phospholipid or membrane compartmentation of arachidonate to explain preferential release of newly incorporated arachidonate? To study changes in the availability of arachidonate for release from phospholipids, we incubated HSDM1C1 cells with 0.67 microM [14C]arachidonate for 15 min and chased the pulse of radiolabeled arachidonate with normal serum fatty acids. We found that of the [14C]arachidonate incorporated into phospholipids during the 15-min pulse, the percent released upon stimulation decreased nearly 3-fold from 8.9 +/- 0.5% at 5 min of chase to 3.6 +/- 0.2% (mean +/- S.E., n = 6, P less than 0.001) after only 60 min of chase. Percent release of arachidonate from nonpulsed controls was 3-4%. Although arachidonate release from phospholipids decreased significantly after 60 min of chase, the arachidonate which was released always originated predominantly from phosphatidylinositol. There was no decrease in the activities of enzymes required for arachidonate release during this time period. We also observed that throughout the period of the chase, the radiolabeled arachidonate remained esterified to the same phospholipid class into which it was initially incorporated (approximately 40% of [14C]arachidonate in diacyl phosphatidylcholine, 40% in phosphatidylinositol, and 15% in diacyl phosphatidylethanolamine. In cell fractionation experiments, we found that after 1-3 h of chase, [14C]arachidonate decreased in subcellular fractions containing nuclei, as it became progressively unavailable for release from phospholipids. Thus, our results indicate that 1) upon cell stimulation, the most recently incorporated pool of arachidonate, which is in high concentration in the nuclear membrane, is preferentially released and that 2) arachidonate rapidly moves out of the nuclear membrane into a less releasable pool while remaining esterified to the phospholipid moiety into which it was initially incorporated. This study indicates that the subcellular compartmentation of arachidonate has a marked influence on the cellular metabolism of arachidonate.  相似文献   

12.
There is an increasing amount of evidence suggesting that glucocorticoids may modulate the responsiveness of various cell types to beta-adrenergic agents. In some systems, it has been shown, in addition, that steroids potentiate the elevation of cAMP induced by catecholamines. Little is known however of the mechanism underlying steroid action. We have studied this 'permissive action' in isolated thymocytes which have specific receptor sites for both glucocorticoids and beta-adrenergic agents. The glucocorticoid compound dexamethasone did not alter intracellular cAMP level but markedly enhanced the stimulation produced by isoproterenol. This effect was instantaneous and was still measurable at 10(-7) M dexamethasone. A similar potentiating action was observed in the presence of corticosterone but also in the presence of sex steroids. Determination of beta-receptors after cell preincubation in the presence of dexamethasone showed that rapid alterations in beta-receptors are not involved in this permissive action. Experiments done in the presence of the calcium chelator, ethyleneglycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid, suggest that dexamethasone action could be related to a modification of calcium mobilization.  相似文献   

13.
Mouse myeloid leukemia cells (Ml) were induced to differentiate into mature macrophages and granulocytes by various inducers. The differentiated Ml cells synthesized and released prostaglandins, whereas untreated Ml cells did not. When the cells were prelabelled with [14C]arachidonate, the major prostaglandins released into the culture media were found to be prostaglandin E2, D2, and F in an early stage of differentiation, but the mature cells produced predominantly prostaglandin E2. The synthesis and release of prostaglandins were completely inhibited by indomethacin. Dexamethasone, a potent inducer of differentiation of Ml cells, did not induce production of prostaglandins in resistant Ml cells that could not differentiate even with a high concentration of dexamethasone. These results suggest that production of prostaglandins in Ml cells is closely associated with differentiation of the cells. Homogenates of dexamethasone-treated Ml cells converted arachidonate to prostaglandins, but this conversion was scarcely observed with homogenates of untreated Ml cells. Dexamethasone and the other inducers stimulated the release of arachidonate from phospholipids. Therefore, induction of prostaglandin synthesis during differentiation of Ml cells may result from induction of prostaglandin synthesis activity and stimulation of the release of arachidonate from cellular lipids. Lysozyme activity, which is a typical biochemical marker of macrophages, was induced in Ml cells by prostaglandin E2 or D2 alone, as well as by inducers of differentiation of the cells, but it was not induced by arachidonate or prostaglandin F. These results suggest that prostaglandin synthesis is important in differentiation of myeloid leukemia cells.  相似文献   

14.
A detailed examination of the effects of exogenous arachidonate on cation metabolism in rabbit neutrophils was undertaken. Arachidonic acid stimulates the movement of 45Ca into and out of the neutrophils with a net result, in the presence of extracellular calcium, of increasing the steady-state level of 45Ca. Arachidonate also increases the uptake of 22Na. These effects of arachidonate are specific to these cations, concentration-dependent, and sensitive to lipoxygenase inhibitors. At the concentrations used in this study arachidonate does not influence the permeability of human erythrocytes to 45Ca. Furthermore, both arachidonic acid and F-Met-Leu-Phe release calcium from a previously unexchangeable intracellular pool and the effect of the two stimuli are not additive. Arachidonic acid-dependent, but not F-Met-Leu-Phe-dependent, calcium release is sensitive to lipoxygenase inhibitors. These two stimuli thus appear to release is sensitive to lipoxygenase inhibitors. These two stimuli thus appear to release calcium from the same pool(s) by separate mechanisms. The results summarized above are consistent with the hypothesis that one or more arachidonate metabolites are involved in the mechanism underlying the chemotactic factor induced permeability changes in rabbit neutrophils.  相似文献   

15.
We recently proposed a new pathway by which arachidonate is released from platelet phosphatidyl inositol after stimulation by either thrombin or calcium ionophore A23187. The initial step in arachidonate liberation involves hydrolysis of phosphatidyl inositol to form 1,2-diacylglycerol which is subsequently hydrolyzed by a diacylglycerol lipase to liberate arachidonate for the prostaglandin and lipoxygenase pathways. Whether this pathway is unique to platelets or accounts for arachidonate release from other tissues has not been previously studied. Thus we have now investigated arachidonate metabolism in mouse fibrosarcoma cells (HSDM1C1) grown in culture. These cells contain approximately 7.6% of their total phospholipid as phosphatidyl inositol in the resting state (range 6.5–8.3%). When bradykinin (12 μM) is added to the fibrosarcoma cells, there is a rapid depletion of membrane phosphatidyl inositol reaching 62 ± 8% S.D. of baseline values by 15 seconds, falling to 36 ± 6% by 15 minutes. The drop in membrane phosphatidyl inositol is accompanied by release of arachidonate and PGE2 into the culture medium. The time course of phosphatidyl inositol breakdown and PGE2 formation supports the idea that phosphatidyl inositol breakdown provides the arachidonate for prostaglandin synthesis in mouse fibrosarcoma cells. Crude extracts of HSDM1C1 cells contained sufficient phosphatidyl inositol-specific phospholipase C activity and diacylglycerol lipase activity to account for arachidonate release in these cells.  相似文献   

16.
The direct effects of dexamethasone exposure on insulin secretion from islets of fa/fa rats and their lean littermates (Fa/?) were compared. After 72 h culture in 1 nM dexamethasone, glucose (27.5 mM)-stimulated insulin secretion over 90 min from islets of lean rats was significantly decreased compared with islets cultured without dexamethasone (12.9 +/- 1.4 vs. 5.7 +/- 1.0% of total islet content, p < 0.05). Higher doses of dexamethasone for 24-48 h culture produced similar effects. For islets of fa/fa rats, the minimum inhibitory concentration of dexamethasone was 10-fold higher, and islets required at least 48 h exposure for inhibitory effects to be observed. Dexamethasone also decreased the insulin response by islets to glybenclamide, indicating that dexamethasone effects were not specific to glucose transport or metabolism. The results suggest that islets of fa/fa rats may be less sensitive to direct inhibitory effects of glucocorticoids on glucose-stimulated insulin release than islets of lean animals.  相似文献   

17.
The immunological release of SRS-A was investigated in guinea-pig chopped lung. A number of unsaturated fatty acids, all of which are substrates for arachidonate lipoxygenase were found to potentiate the release of SRS-A. This potentiation was enhanced by indomethacin, a cyclo-oxygenase inhibitor, and completely reversed by nordihydroguaiaretic acid (NDGA) and eicosatetraynoic acid (ETA) which inhibit lipoxygenase. This suggests that some aspect of arachidonate lipoxygenase action stimulates release of SRS-A and that release of SRS-A is increased by redirection of arachidonic acid (AA) metabolism via the lipoxygenase pathway (Hamberg, 1976). However, although exogenous 14C-AA increased SRS-A output it was not incorporated into SRS-A.  相似文献   

18.
The possible mechanisms by which phospholipid metabolism may be involved in the biochemical events underlying pituitary hormone secretion in basal and stimulated conditions were examined. Particular emphasis was given to the role of changes in the turnover of specific membrane phospholipids, the polyphosphoinositides, in the stimulatory effect of TRH and neurotensin on prolactin release in vitro. Finally, some comments on the involvement of arachidonate and/or its metabolites in the mechanisms of release of the hormone have been reported. In this respect, the possibility that a specific diacylglycerol lipase may represent a link between the 'phosphatidylinositol effect' and the production of arachidonate from mammotroph membranal phospholipids was examined using the rather selective inhibitor of diacylglycerol lipase RHC80267.  相似文献   

19.
Intrathymic maturation of thymocytes is essential for the proper formation of T-cell repertoire. This process involves two major biochemical pathways, one initiated by the recognition of MHC/peptide by the T-cell receptor and the other mediated by glucocorticoids. These hormones seem to affect thymocyte maturation by increasing the threshold of TCR-mediated positive and negative selection, and by inducing apoptosis of nonselected thymocytes. We have previously reported that an SV40-immortalized murine thymic epithelial cell line, namely 2BH4, was able to protect thymocytes from dexamethasone-induced apoptosis. Here we show that this protection is independent of cell-to-cell contact and does not seem to involve a Bcl-2-mediated resistance, since incubation of thymocytes with 2BH4 cells or its supernatant does not interfere with the levels of this antiapoptotic molecule. The protection conferred by 2BH4 cells, or by a primary culture of thymic stromal cells, is specific for the CD4(+)CD8(-) and CD4(-)CD8(+) single-positive thymocytes, whereas the broad-spectrum caspase inhibitor z-VAD-fmk blocks apoptosis induced by dexamethasone in all thymocyte subpopulations. Our results suggest that positively selected single-positive thymocytes are still susceptible to glucocorticoid-induced apoptosis but are protected from it through the action of a heat-stable protein(s) released by thymic stromal cells.  相似文献   

20.
The exposure of phosphatidylserine toward the external surface of the membrane is a well-established event of programmed cell death. The possibility that an apoptotic stimulus influences the metabolism of this phospholipid could be relevant not only in relation to the previously mentioned event but also in relation to the capability of membrane phosphatidylserine to influence PKC activity. The present investigation demonstrates that treatment of mouse thymocytes with the apoptotic stimulus dexamethasone, enhances the incorporation of [3H]serine into phosphatidylserine. Cell treatment with dexamethasone also enhanced the activity of serine base exchange enzyme, assayed in thymocyte lysate. Both the effects were observed at periods of treatment preceding DNA fragmentation. The addition of unlabelled ethanolamine, together with [3H]serine to the medium containing dexamethasone-treated thymocytes lowered the radioactivity into phosphatidylserine. Serine base exchange enzyme activity was influenced by the procedure used to prepare thymocyte lysate and was lowered by the addition of fluoroaluminate, that is widely used as a G-protein activator. The increase of serine base exchange enzyme activity induced by dexamethasone treatment was observed independently by the procedure used to prepare cell lysate and by the presence or absence of fluoroaluminate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号