首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Reverse genetics, an approach to rescue infectious virus entirely from a cloned cDNA, has revolutionized the field of positive-strand RNA viruses, whose genomes have the same polarity as cellular mRNA. The cDNA-based reverse genetics system is a seminal method that enables direct manipulation of the viral genomic RNA, thereby generating recombinant viruses for molecular and genetic studies of both viral RNA elements and gene products in viral replication and pathogenesis. It also provides a valuable platform that allows the development of genetically defined vaccines and viral vectors for the delivery of foreign genes. For many positive-strand RNA viruses such as Japanese encephalitis virus (JEV), however, the cloned cDNAs are unstable, posing a major obstacle to the construction and propagation of the functional cDNA. Here, the present report describes the strategic considerations in creating and amplifying a genetically stable full-length infectious JEV cDNA as a bacterial artificial chromosome (BAC) using the following general experimental procedures: viral RNA isolation, cDNA synthesis, cDNA subcloning and modification, assembly of a full-length cDNA, cDNA linearization, in vitro RNA synthesis, and virus recovery. This protocol provides a general methodology applicable to cloning full-length cDNA for a range of positive-strand RNA viruses, particularly those with a genome of >10 kb in length, into a BAC vector, from which infectious RNAs can be transcribed in vitro with a bacteriophage RNA polymerase.  相似文献   

2.
Dengue is one of the most important emerging vector-borne viral diseases. There are four serotypes of dengue viruses (DENV), each of which is capable of causing self-limited dengue fever (DF) or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The major clinical manifestations of severe DENV disease are vascular leakage, thrombocytopenia, and hemorrhage, yet the detailed mechanisms are not fully resolved. Besides the direct effects of the virus, immunopathological aspects are also involved in the development of dengue symptoms. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, and live recombinant, DNA and subunit vaccines. The live attenuated virus vaccines and live chimeric virus vaccines are undergoing clinical evaluation. The other vaccine candidates have been evaluated in preclinical animal models or are being prepared for clinical trials. For the safety and efficacy of dengue vaccines, the immunopathogenic complications such as antibody-mediated enhancement and autoimmunity of dengue disease need to be considered.  相似文献   

3.
Major advances in the study of the molecular biology of RNA viruses have resulted from the ability to generate and manipulate full-length genomic cDNAs of the viral genomes with the subsequent synthesis of infectious RNA for the generation of recombinant viruses. Coronaviruses have the largest RNA virus genomes and, together with genetic instability of some cDNA sequences in Escherichia coli, this has hampered the generation of a reverse-genetics system for this group of viruses. In this report, we describe the assembly of a full-length cDNA from the positive-sense genomic RNA of the avian coronavirus, infectious bronchitis virus (IBV), an important poultry pathogen. The IBV genomic cDNA was assembled immediately downstream of a T7 RNA polymerase promoter by in vitro ligation and cloned directly into the vaccinia virus genome. Infectious IBV RNA was generated in situ after the transfection of restricted recombinant vaccinia virus DNA into primary chick kidney cells previously infected with a recombinant fowlpox virus expressing T7 RNA polymerase. Recombinant IBV, containing two marker mutations, was recovered from the transfected cells. These results describe a reverse-genetics system for studying the molecular biology of IBV and establish a paradigm for generating genetically defined vaccines for IBV.  相似文献   

4.
5.
Dengue is one of the highest and rapidly spreading vector-borne viral diseases with high mortality rates. The infection causes acute febrile illness, a major public health concern in the tropics and subtropics globally. The disease is caused by an RNA virus that belongs to the Flaviviridae family. The virus is transferred to humans by the mosquito vector called Aedvrves aegypti, which is the cause of new prevalent sicknesses worldwide. These vector-borne viral diseases spread very fast and pose public health and economic challenges that deemed various prevention and control techniques. The Flavivirus genus consists of five different types of viruses starting from DENV-1 to DENV-5. Thus, the present review focuses on the origin of the virus, how the Dengue virus can be detected, infection, the morphology of the virus, its classifications as proposed by ICTV, the replication and genome of the dengue virus, translation, receptor binding, and some vaccine trial volunteers. In addition, it highlights the current challenges and limitations of effective dengue treatment.  相似文献   

6.
The development of a safe and efficient dengue vaccine represents a global challenge in public health. Chimeric dengue viruses (DENV) based on an attenuated flavivirus have been well developed as vaccine candidates by using reverse genetics. In this study, based on the full-length infectious cDNA clone of the well-known Japanese encephalitis virus live vaccine strain SA14-14-2 as a backbone, a novel chimeric dengue virus (named ChinDENV) was rationally designed and constructed by replacement with the premembrane and envelope genes of dengue 2 virus. The recovered chimeric virus showed growth and plaque properties similar to those of the parental DENV in mammalian and mosquito cells. ChinDENV was highly attenuated in mice, and no viremia was induced in rhesus monkeys upon subcutaneous inoculation. ChinDENV retained its genetic stability and attenuation phenotype after serial 15 passages in cultured cells. A single immunization with various doses of ChinDENV elicited strong neutralizing antibodies in a dose-dependent manner. When vaccinated monkeys were challenged with wild-type DENV, all animals except one that received the lower dose were protected against the development of viremia. Furthermore, immunization with ChinDENV conferred efficient cross protection against lethal JEV challenge in mice in association with robust cellular immunity induced by the replicating nonstructural proteins. Taken together, the results of this preclinical study well demonstrate the great potential of ChinDENV for further development as a dengue vaccine candidate, and this kind of chimeric flavivirus based on JE vaccine virus represents a powerful tool to deliver foreign antigens.  相似文献   

7.
Dengue fever, a neglected emerging disease for which no vaccine or antiviral agents exist at present, is caused by dengue virus, a member of the Flavivirus genus, which includes several important human pathogens, such as yellow fever and West Nile viruses. The NS5 protein from dengue virus is bifunctional and contains 900 amino acids. The S-adenosyl methionine transferase activity resides within its N-terminal domain, and residues 270 to 900 form the RNA-dependent RNA polymerase (RdRp) catalytic domain. Viral replication begins with the synthesis of minus-strand RNA from the dengue virus positive-strand RNA genome, which is subsequently used as a template for synthesizing additional plus-strand RNA genomes. This essential function for the production of new viral particles is catalyzed by the NS5 RdRp. Here we present a high-throughput in vitro assay partly recapitulating this activity and the crystallographic structure of an enzymatically active fragment of the dengue virus RdRp refined at 1.85-A resolution. The NS5 nuclear localization sequences, previously thought to fold into a separate domain, form an integral part of the polymerase subdomains. The structure also reveals the presence of two zinc ion binding motifs. In the absence of a template strand, a chain-terminating nucleoside analogue binds to the priming loop site. These results should inform and accelerate the structure-based design of antiviral compounds against dengue virus.  相似文献   

8.
Virulent strains of Newcastle disease virus (NDV) can cause devastating disease in chickens worldwide. Although the current vaccines are substantially effective, they do not completely prevent infection, virus shedding and disease. To produce genotype-matched vaccines, a full-genome reverse genetics system has been used to generate a recombinant virus in which the F protein cleavage site has been changed to that of avirulent vaccine virus. In the other strategy, the vaccines have been generated by replacing the F and HN genes of a commercial vaccine strain with those from a genotype-matched virus. However, the protective efficacy of a chimeric virus vaccine has not been directly compared with that of a full-genome virus vaccine developed by reverse genetics. Therefore, in this study, we evaluated the protective efficacy of genotype VII matched chimeric vaccines by generating three recombinant viruses based on avirulent LaSota (genotype II) strain in which the open reading frames (ORFs) encoding the F and HN proteins were replaced, individually or together, with those of the circulating and highly virulent Indonesian NDV strain Ban/010. The cleavage site of the Ban/010 F protein was mutated to the avirulent motif found in strain LaSota. In vitro growth characteristics and a pathogenicity test indicated that all three chimeric viruses retained the highly attenuated phenotype of the parental viruses. Immunization of chickens with chimeric and full-length genome VII vaccines followed by challenge with virulent Ban/010 or Texas GB (genotype II) virus demonstrated protection against clinical disease and death. However, only those chickens immunized with chimeric rLaSota expressing the F or F plus HN proteins of the Indonesian strain were efficiently protected against shedding of Ban/010 virus. Our findings showed that genotype-matched vaccines can provide protection to chickens by efficiently preventing spread of virus, primarily due to the F protein.  相似文献   

9.
10.
Dengue viral infection has become an increasing global health concern with over two-fifths of the world's population at risk of infection. It is the most rapidly spreading vector borne disease, attributed to changing demographics, urbanization, environment, and global travel. It continues to be a threat in over 100 tropical and sub-tropical countries, affecting predominantly children. Dengue also carries a hefty financial burden on the health care systems in affected areas, as those infected seek care for their symptoms. The search for a suitable vaccine for dengue has been ongoing for the last sixty years, yet any effective treatment or vaccine remains elusive. A vaccine must be protective for all four serotypes of dengue and be cost-effective. Many approaches to developing candidate vaccines have been employed. The candidates include live attenuated tetravalent vaccines, chimeric tetravalent vaccines based on attenuated dengue virus or Yellow Fever 17D, and recombinant DNA vaccines based on flavivirus and non-flavivirus vectors. This review outlines the challenges involved in dengue vaccine development and presents the current stages of proposed vaccine candidate development.  相似文献   

11.
ABSTRACT: Dengue virus infection is a serious health problem infecting 2.5 billion people worldwide. Dengue is now endemic in more than 100 countries, including Pakistan. Each year hundreds of people get infected with dengue in Pakistan. Currently, there is no vaccine available for the prevention of Dengue virus infection due to four viral serotypes. Dengue infection can cause death of patients in its most severity, meanwhile many antiviral compounds are being tested against dengue virus infection to eradicate this disease but still there is a need to develop an efficient, low-cost and safe vaccine that can target all the four serotypes of dengue virus. This review summarizes dengue molecular virology, important drug targets, prevalence in Pakistan, diagnosis, treatment and medicinal plant inhibitors against dengue.  相似文献   

12.
13.
Dengue virus cycles between mosquitoes and humans. Each host provides a different environment for viral replication, imposing different selective pressures. We identified a sequence in the dengue virus genome that is essential for viral replication in mosquito cells but not in mammalian cells. This sequence is located at the viral 3′ untranslated region and folds into a small hairpin structure. A systematic mutational analysis using dengue virus infectious clones and reporter viruses allowed the determination of two putative functions in this cis-acting RNA motif, one linked to the structure and the other linked to the nucleotide sequence. We found that single substitutions that did not alter the hairpin structure did not affect dengue virus replication in mammalian cells but abolished replication in mosquito cells. This is the first sequence identified in a flavivirus genome that is exclusively required for viral replication in insect cells.  相似文献   

14.
More than one third of the world’s population living in tropical and subtropical areas of the world is at risk of dengue infections and as many as 100 million people are yearly infected. This disease has reemerged during the past 20 years in the form of an epidemic. Dengue is caused by one of four related serotypes of dengue virus and often leads to severe forms of the disease, resulting commonly from secondary infections. Dengue virus is a mosquito borne virus, belongs to the family Flaviviridae and consists of a single stranded positive sense RNA genome. Like other RNA viruses it escapes defense mechanisms and neutralization attempts by mutations, which make it more resistant and adaptable to its environment. Antiviral strategies and vaccine development is thus impaired and hence to date there is no licensed vaccine available for dengue virus. Here we discuss various efforts made towards the identification of potential vaccine targets for dengue as well as various strategies employed by research groups/pharmaceutical companies towards the development of a successful dengue vaccine.  相似文献   

15.
Dengue virus infection is a serious public health problem in endemic areas of the world where 2.5 billion people live. Clinical manifestations of the Dengue infection range from a mild fever to fatal cases of hemorrhagic fever. Although being the most rapidly spreading mosquito-borne viral infection in the world, until now no strategies are available for effective prevention or control of Dengue infection. In this scenario, the development of compounds that specifically inhibit viral replication with minimal effects to the human hosts will have a substantial effect in minimizing the symptoms of the disease and help to prevent viral transmission in the affected population. The aim of this study was to screen compounds with potential activity against dengue virus from a library of synthetic naphthoquinones. Several 1,2- and 1,4-pyran naphthoquinones were synthesized by a three-component reaction of lawsone, aldehyde (formaldehyde or arylaldehydes) and different dienophiles adequately substituted. These compounds were tested for the ability to inhibit the ATPase activity of the viral NS3 enzyme in in vitro assays and the replication of dengue virus in cultured cells. We have identified two 1,4-pyran naphthoquinones, which inhibited dengue virus replication in mammal cells by 99.0% and three others that reduced the dengue virus ATPase activity of NS3 by two-fold in in vitro assays.  相似文献   

16.

Background

Flavivirus infected cells produce infectious virions and subviral particles, both of which are formed by the assembly of prM and E envelope proteins and are believed to undergo the same maturation process. Dengue recombinant subviral particles have been produced in cell cultures with either modified or chimeric proteins but not using the native forms of prM and E.

Methodology/Principal Findings

We have used a codon optimization strategy to obtain an efficient expression of native viral proteins and production of recombinant subviral particles (RSPs) for all four dengue virus (DV) serotypes. A stable HeLa cell line expressing DV1 prME was established (HeLa-prME) and RSPs were analyzed by immunofluorescence and transmission electron microscopy. We found that E protein is mainly present in the endoplasmic reticulum (ER) where assembly of RSPs could be observed. Biochemical characterization of DV1 RSPs secretion revealed both prM protein cleavage and homodimerization of E proteins before their release into the supernatant, indicating that RSPs undergo a similar maturation process as dengue virus. Pulse chase experiment showed that 8 hours are required for the secretion of DV1 RSPs. We have used HeLa-prME to develop a semi-quantitative assay and screened a human siRNA library targeting genes involved in membrane trafficking. Knockdown of 23 genes resulted in a significant reduction in DV RSP secretion, whereas for 22 others we observed an increase of RSP levels in cell supernatant.

Conclusions/Significance

Our data describe the efficient production of RSPs containing native prM and E envelope proteins for all dengue serotypes. Dengue RSPs and corresponding producing cell lines are safe and novel tools that can be used in the study of viral egress as well as in the development of vaccine and drugs against dengue virus.  相似文献   

17.
Cytopathogenicity of Bovine viral diarrhea virus (BVDV) is correlated with expression of the nonstructural protein NS3, which can be generated by processing of a fusion protein termed NS2-3. For the cytopathogenic (cp) BVDV strain Oregon, NS2-3 processing is based on a set of point mutations within NS2. To analyze the correlation between NS2-3 cleavage and cytopathogenicity, a full-length cDNA clone composed of cDNA from BVDV Oregon and the utmost 5'- and 3'-terminal sequences of a published infectious BVDV clone was established. After transfection of RNA transcribed from this cDNA clone, infectious virus with similar growth characteristics to wild-type BVDV Oregon could be recovered that also exhibited a cytopathic effect. Based on this cDNA construct and published cp and noncp infectious clones, chimeric full-length cDNA clones were constructed. Analysis of the recovered viruses demonstrated that the presence of the NS2 gene of BVDV Oregon in a chimeric construct is sufficient for NS2-3 processing and a cp phenotype. Since previous studies had revealed that the amino acid serine at position 1555 of BVDV Oregon plays an important role in efficient NS2-3 cleavage, mutants of BVDV Oregon with different amino acids at this position were constructed. Some of these mutants showed NS2-3 cleavage efficiencies in the range of the wild-type sequence and allowed the recovery of viruses that behaved similarly to wild-type virus with regard to growth characteristics and cytopathogenicity. In contrast, other mutants with considerably reduced NS2-3 cleavage efficiencies propagated much more slowly and reverted to viruses expressing polyproteins with sequences allowing efficient NS2-3 cleavage. These viruses apparently induced cytopathic effects only after reversion.  相似文献   

18.
19.
With 2.5 billion people at risk, dengue is a major emerging disease threat and an escalating public health problem worldwide. Dengue virus causes disease ranging from a self-limiting febrile illness (dengue fever) to the potentially fatal dengue hemorrhagic fever/dengue shock syndrome. Severe dengue disease is associated with sub-protective levels of antibody, which exacerbate disease upon re-infection. A dengue vaccine should generate protective immunity without increasing severity of disease. To date, the determinants of vaccine-mediated protection against dengue remain unclear, and additional correlates of protection are urgently needed. Here, mice were immunized with viral replicon particles expressing the dengue envelope protein ectodomain to assess the relative contribution of humoral versus cellular immunity to protection. Vaccination with viral replicon particles provided robust protection against dengue challenge. Vaccine-induced humoral responses had the potential to either protect from or exacerbate dengue disease upon challenge, whereas cellular immune responses were beneficial. This study explores the immunological basis of protection induced by a dengue vaccine and suggests that a safe and efficient vaccine against dengue should trigger both arms of the immune system.  相似文献   

20.
Successful recovery of RNA viruses and functional RNA replicons from cDNA has greatly facilitated molecular genetic analyses of viral proteins and cis-regulatory elements. This technology allows the use of RNA virus replication machinery to express heterologous sequences. Both positive-strand and negative-strand animal RNA viruses have been engineered to produce chimeric viruses expressing protective epitopes from other pathogens and for transient expression of heterologous sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号