首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
不同DNA疫苗联合接种可有效增强免疫效果   总被引:8,自引:2,他引:8  
孟昕  阮力  魏博  刘文军  朱既明 《病毒学报》2000,16(3):212-218
造反乙型肝炎(乙肝)病毒核心抗原(HBcAgA)、e抗原(HBeAg)及单纯疱疹病毒gD抗原(HSV-1-gD)基因为目的基因,进行DNA疫苗联合免疫的研究。通过对不同基因片段的表达研究,选择了能在哺乳动物细胞中高效表达乙肝病毒核心抗原、e抗原和单纯疱疹病毒gD抗原的质粒DNA免疫Balb/c小鼠。结果显示:表达乙肝病毒核心抗原和单纯疱毒gD抗原的DHA疫苗单独免疫,能有效刺激机体产生体液免疫和细  相似文献   

2.
Seasonal and pandemic influenza A virus (IAV) continues to be a public health threat. However, we lack a detailed and quantitative understanding of the immune response kinetics to IAV infection and which biological parameters most strongly influence infection outcomes. To address these issues, we use modeling approaches combined with experimental data to quantitatively investigate the innate and adaptive immune responses to primary IAV infection. Mathematical models were developed to describe the dynamic interactions between target (epithelial) cells, influenza virus, cytotoxic T lymphocytes (CTLs), and virus-specific IgG and IgM. IAV and immune kinetic parameters were estimated by fitting models to a large data set obtained from primary H3N2 IAV infection of 340 mice. Prior to a detectable virus-specific immune response (before day 5), the estimated half-life of infected epithelial cells is ∼1.2 days, and the half-life of free infectious IAV is ∼4 h. During the adaptive immune response (after day 5), the average half-life of infected epithelial cells is ∼0.5 days, and the average half-life of free infectious virus is ∼1.8 min. During the adaptive phase, model fitting confirms that CD8+ CTLs are crucial for limiting infected cells, while virus-specific IgM regulates free IAV levels. This may imply that CD4 T cells and class-switched IgG antibodies are more relevant for generating IAV-specific memory and preventing future infection via a more rapid secondary immune response. Also, simulation studies were performed to understand the relative contributions of biological parameters to IAV clearance. This study provides a basis to better understand and predict influenza virus immunity.Current strategies for preventing or decreasing the severity of influenza infection focus on increasing virus-neutralizing antibody titers through vaccination, as experience indicates that this is the best way to prevent morbidity and mortality. Influenza A virus (IAV) undergoes mutations of the genes encoding the hemagglutinin (HA) and neuraminidase (NA) proteins that the neutralizing antibodies are directed against. When the variation is low (antigenic drift), prior vaccination often confers substantial heterologous immunity against a new seasonal IAV strain. In contrast, major genetic changes (antigenic shift) can result in pandemic IAV strains, since for novel strains, the humoral immune response is a primary response, and heterologous immunity is lacking. The emergence of such pandemic strains and the fact that young children are more vulnerable to influenza diseases highlight the need to better understand which viral and immune parameters determine the outcome of infection with viruses novel to the individual.Conventional experimental methods to measure influenza virus immunity have been limited to animal models and studies of adult human peripheral blood leukocytes. The advantages of using animal models include the ability to intensively sample multiple tissues and to utilize genetic and other interventions, such as blocking or depleting antibodies, to dissect the contribution of individual arms of the immune system. However, it is easy to question the relevance of these experiments to humans because of the many important biological differences between human and murine immune systems (29). In both the animal and human systems, we are limited to measuring those parameters and variables for which assays are available, most of them being ex vivo. Parameters such as cell-to-cell spread of the virus in vivo, trafficking of immune cells to the lung, and the in vivo interactions in an intact immune system are much more difficult or impossible to measure with contemporary techniques, particularly in humans. Computational approaches have the potential to offset some of these limitations and provide additional insight into the kinetics of the IAV infection and the associated immune response.Animal models of influenza virus infection in which different arms of the immune system have been suppressed suggest that some components of the adaptive immune system are required for complete viral clearance, often termed a sterilizing immune response. For example, abrogation of the CD4 T-cell response by cytotoxic antibody therapy or through knockout of major histocompatibility complex (MHC) class II slightly delays viral clearance but has little overall effect on the ability to control the infection (21, 54, 55). Elimination of the CD8 T-cell response typically results in delayed viral clearance (12, 20, 47), although animals with intact CD4 T-cell and B-cell compartments are able to control the infection in the absence of CD8 T cells. Presumably, this occurs through antibody-mediated mechanisms (54). Most animals depleted of both CD8 T cells and B cells are not able to clear the virus, which results in death (14, 32, 53). CD4+ T cells certainly contribute to the control of IAV infection, although cytotoxic CD4 T cells are not frequently observed unless cultured in vitro (8, 22, 45). Thus, it is generally accepted that CD8 T cells and/or antibodies are sufficient for timely and complete IAV clearance. Studies that strictly separate the relative roles of CD8 T cells and virus-specific antibodies are less satisfying. Animals depleted of both CD4 and CD8 T cells generally do not control the infection, despite substantial production of anti-IAV IgM antibodies (4, 23, 33, 34). However, adoptive transfer of IAV-specific IgM or IgG antibodies is protective (40, 51), suggesting that the timing and magnitude of the antibody response, i.e., the affinity, avidity, and antibody isotype, are important protective factors.While murine gene knockout or lymphocyte depletion studies are highly informative, they also have a number of limitations. Most importantly, the near-complete ablation of one component of the adaptive immune system often causes profound and unpredictable effects on many other immune components. Although the reported experimental measurements are highly quantitative, they often focus only on a limited number of time points or measurements and do not capture the complexity of the altered, or intact, immune response. In contrast, high-frequency experimental sampling, coupled with mathematical modeling techniques and new statistical approaches, can give insights into the complex biology of IAV infection and test the assumptions inherent in the model. We have learned from other systems, particularly HIV (19, 35, 37, 38, 56), that quantitative analysis of the biology can reveal important factors that are not intuitively obvious. For example, our current estimates for the rates of HIV production and the life span of productively infected cells in vivo were obtained via mathematical modeling (35).Mathematical models have long been used to investigate viral dynamics and immune responses to viral infections, including influenza A virus (3, 5, 7, 15, 16, 31, 36, 48). We recently described a complex differential equation model to simulate and predict the adaptive immune response to IAV infection (24). This model involves 15 equations and 48 parameters, and because of its complexity, many of the parameter values that could not be directly measured were unidentifiable. Thus, it is difficult to estimate all model parameters by fitting experimental data directly to this complex model, although the model can be used to perform simulation predictions (25). This issue can, however, be addressed by reducing the model into smaller submodels with smaller but identifiable sets of parameters, which can be estimated from experimental data. In this paper, we describe such an approach which focuses on IAV infection and the immune response solely within the lung.In the present report, we have fitted a model of primary murine influenza virus infection to data. In naïve subjects, our data suggested that there is no adaptive immune response (e.g., IAV-specific CD8+ T cells or antibodies) detectable in the spleen, lymph nodes, or lung until approximately 5 days after infection; therefore, we have divided the analysis into the following two phases: the initial preadaptive (innate) phase and the later adaptive phase. We use direct experimental data from infection of mice with the H3N2 influenza virus A/X31 strain (2, 24) to obtain key kinetic parameters. The model fitting has revealed that the duration of the infection depends on a small set of immune components, and even large fluctuations in other arms of the immune system or IAV behavior have surprisingly little impact on the outcome of the infection.  相似文献   

3.
The cellular immune response to primary influenza virus infection is complex, involving multiple cell types and anatomical compartments, and is difficult to measure directly. Here we develop a two-compartment model that quantifies the interplay between viral replication and adaptive immunity. The fidelity of the model is demonstrated by accurately confirming the role of CD4 help for antibody persistence and the consequences of immune depletion experiments. The model predicts that drugs to limit viral infection and/or production must be administered within 2 days of infection, with a benefit of combination therapy when administered early, and cytotoxic CD8 T cells in the lung are as effective for viral clearance as neutralizing antibodies when present at the time of challenge. The model can be used to investigate explicit biological scenarios and generate experimentally testable hypotheses. For example, when the adaptive response depends on cellular immune cell priming, regulation of antigen presentation has greater influence on the kinetics of viral clearance than the efficiency of virus neutralization or cellular cytotoxicity. These findings suggest that the modulation of antigen presentation or the number of lung resident cytotoxic cells and the combination drug intervention are strategies to combat highly virulent influenza viruses. We further compared alternative model structures, for example, B-cell activation directly by the virus versus that through professional antigen-presenting cells or dendritic cell licensing of CD8 T cells.Understanding how the immune system combats influenza virus infection and how the virus can affect the immune system is crucial to predicting and designing prophylactic and therapeutic strategies against the infection (58). Antigenic shift and antigenic drift alter the degree to which preexisting immunity can control the virus. These factors also influence whether different arms of the adaptive immune system can cross-react against new strains of the virus. For example, shifts of the hemagglutinin (HA) and neuraminidase (NA) protein sequences limit the ability of antibodies to neutralize new variants of the virus and may make cross-reactive T-cell responses to conserved viral proteins more important. Other viral proteins, such as NS1, affect both the induction of type I interferon as well as the susceptibility of infected cells to interferon-mediated inhibition of viral gene expression (43). The efficiencies of viral replication and cell-to-cell viral spread are altered by mutations in the viral matrix and polymerase genes, while the survival of infected cells can be altered by the viral PB1-F2 protein. These attributes are influenced by mutations in the viral matrix (50, 51) and polymerase (30, 69) genes, while the survival of infected cells can be altered by the viral PB1-F2 protein (17). The multigenic aspect of influenza virus pathogenesis makes experimental prediction difficult and time-consuming. Computer simulation tools would be useful to independently dissect the potential contribution and relative importance of each factor or to investigate unexpected scenarios that are difficult to replicate experimentally.Mathematical models and computer simulations have been widely used to study viral dynamics and immune responses to viral infections, such as human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency viruses (SIV), lymphocytic choriomeningitis virus (19, 55, 60, 61), and influenza A virus (3, 7, 8, 13, 34, 35, 52). More complex compartmental models of the immune system (4, 23) and models incorporating differential delay equations (21, 48, 68) have been used to better reflect the time that cells reside in a particular compartment or the duration of transit between compartments. In this study, we sought to develop a two-compartment mathematical model to assess the individual contributions of antigen presentation and activation of naïve T and B cells by antigen-presenting cells (APC), CD4 T-cell help, CD8 T-cell-mediated cytotoxicity, B cells, and antibody to control influenza A virus (IAV) infection and to explore the influence of anatomical location. We developed a model which represented published experimental findings on primary influenza virus infection. More importantly, the model was used to explore alternative structures for interactions between virus and immune cells, for example, comparing virus kinetics when antigen delivery and immune cell priming occurred through direct interaction of virus and immune cells or through a cellular intermediate. The model predicts that, under some circumstances, changes affecting antigen presentation more strongly impacted viral kinetics than other viral or immune factors (28, 73, 75, 78). This model highlights the importance of the assumptions used to synthesize a model and gaps in our understanding of the immune response regulating primary influenza virus infection. We discuss the implications of these findings for future influenza virus research and theories of influenza virus virulence based on influenza virus-immune system interactions.  相似文献   

4.
目的比较两种不同的NIH小鼠种群基因组DNA中H-2q单倍型的百分比,对重组基因乙型肝炎疫苗(酿酒酵母)、重组基因乙型肝炎疫苗(CHO)、重组基因乙型肝炎疫苗(汉逊酵母)和治疗性乙型肝炎疫苗(乙克)免疫应答的影响。方法检测乙肝疫苗免疫效力用酶标法,测定乙肝疫苗的ED50值,再通过微量细胞毒法和PCR方法检测小鼠的H-2单倍型,计算不同品系小鼠H-2q的百分数,得出乙肝疫苗与不同动物种群的相关性。结果经验证,经1号NIH小鼠检测结果证实,重组基因乙型肝炎免疫效力依次为CHO〉汉逊〉酿酒,疗性乙型肝炎疫苗(乙克)效力检测合格,但经2号NIH小鼠检测结果显示除CHO疫苗合格外,其他三种疫苗检测结果均为不合格。基因检测结果为,1号种群NIH鼠含有H-2q型基因的百分比是96%,而2号种群NIH小鼠含有H-2q型基因基因百分比为30%,因此不同的q型基因百分比导致了不同的检测结果。结论根据本研究结果表明虽然NIH鼠的H-2单倍型中有q型基因,但不同来源的小鼠种群之间会存在差异,经不同的环境饲养后,小鼠的基因会发生不同的变化,因此在进行生物制品检定时,要注意不同品系小鼠及同一品系小鼠不同种群之间的差异对试验本身的影响。建立一种"动物免疫"的概念。  相似文献   

5.
目的:研究CD4(Th1)和CD8(Tc1)T细胞对肝癌患者的AFP的应答反应及其与临床特征的相关性,为其早期诊断与预防提供新策略。方法:研究对象为62例HCC患者,30例肝硬化患者及30例健康志愿者;重点分析CD4 T细胞和CD8 T细胞对HCC患者的AFP-衍生肽的反应;用胞内细胞因子检测法对IFN-γ进行检测。结果:抗AFP的Tc1反应检测阳性结果在对照组为28.5%,在OkudaⅠ期的肝癌患者中为25.0%,在Ⅱ或Ⅲ期的HCC患者中为31.6%。抗AFP Th1阳性反应仅在HCC患者中检测到。抗AFP Th1阳性反应在44.4%的Child-Pugh A级的HCC患者中检测到,但是在Child-Pugh B或C级中仅15.4%。Tc1型反应在Child-Pugh A级肝功的患者中为16.7%,在Child-Pugh B或C级患者中为46.2%。结论:抗AFP Th1应答更多出现在早期肝硬化的HCC的患者中,而抗AFP Tc1应答更可能出现在晚期肝硬化患者中,这些结论为抗肝癌疫苗药物设计提供了理论基础。  相似文献   

6.
Different diseases require different immune responses for efficient protection. Thus, prophylactic vaccines should prime the immune system for the particular type of response needed for protection against a given infectious agent. We have here tested fusion DNA vaccines which encode proteins that bivalently target influenza hemagglutinins (HA) to different surface molecules on antigen presenting cells (APC). We demonstrate that targeting to MHC class II molecules predominantly induced an antibody/Th2 response, whereas targeting to CCR1/3/5 predominantly induced a CD8+/Th1 T cell response. With respect to antibodies, the polarizing effect was even more pronounced upon intramuscular (i.m) delivery as compared to intradermal (i.d.) vaccination. Despite these differences in induced immune responses, both vaccines protected against a viral challenge with influenza H1N1. Substitution of HA with ovalbumin (OVA) demonstrated that polarization of immune responses, as a consequence of APC targeting specificity, could be extended to other antigens. Taken together, the results demonstrate that vaccination can be tailor-made to induce a particular phenotype of adaptive immune responses by specifically targeting different surface molecules on APCs.  相似文献   

7.
A variety of vaccine platforms are under study for development of new vaccines for measles. Problems with past measles vaccines are incompletely understood and underscore the need to understand the types of immune responses induced by different types of vaccines. Detailed immune response evaluation is most easily performed in mice. Although mice are not susceptible to infection with wild type or vaccine strains of measles virus, they can be used for comparative evaluation of the immune responses to measles vaccines of other types. In this study we compared the immune responses in mice to a new protective alphavirus replicon particle vaccine expressing the measles virus hemagglutinin (VEE/SIN-H) with a non-protective formalin-inactivated, alum-precipitated measles vaccine (FI-MV). MV-specific IgG levels were similar, but VEE/SIN-H antibody was high avidity IgG2a with neutralizing activity while FI-MV antibody was low-avidity IgG1 without neutralizing activity. FI-MV antibody was primarily against the nucleoprotein with no priming to H. Germinal centers appeared, peaked and resolved later for FI-MV. Lymph node MV antibody-secreting cells were more numerous after FI-MV than VEE/SIN-H, but were similar in the bone marrow. VEE/SIN-H-induced T cells produced IFN-γ and IL-4 both spontaneously ex vivo and after stimulation, while FI-MV-induced T cells produced IL-4 only after stimulation. In summary, VEE/SIN-H induced a balanced T cell response and high avidity neutralizing IgG2a while FI-MV induced a type 2 T cell response, abundant plasmablasts, late germinal centers and low avidity non-neutralizing IgG1 against the nucleoprotein.  相似文献   

8.
Perevaryukha  A. Yu. 《Biophysics》2021,66(2):327-348
Biophysics - The course of an infection was modeled as a controlled nonlinear process. Understanding the substantial differences observed in the trajectory of the disease caused by the new...  相似文献   

9.
目的:用HIV-1复制型DNA疫苗和非复制型重组痘苗病毒疫苗(rNTV-C)进行单独免疫和联合免疫的研究(2种疫苗分别包含HIV-1 B’/C亚型的gp160、gag-pol、rev-tat-nef等6种基因),以了解这2种新型HIV疫苗单独免疫及联合免疫的效果,并为临床免疫方案的制定提供实验依据。方法:将HIV-1 DNA疫苗和rNTV-C疫苗免疫BALB/c小鼠,设计rNTV-C单独免疫组、DNA单独免疫组,以及DNA初免、rNTV-C加强的联合免疫组,并设计不同免疫途径和不同剂量的各种组合。用IFN-γELISPOT检测各组的细胞免疫效果,用统计学方法分析比较各组细胞免疫效果的差异。结果:DNA疫苗和rNTV-C疫苗单独免疫时,二者都能诱发针对各抗原的特异性免疫反应;联合免疫能够诱发比DNA或rNTV-C单独免疫都强的特异性细胞免疫反应。统计分析显示,2种疫苗采用肌肉注射途径的免疫效果显著高于皮内注射,1μg和5μg DNA疫苗的免疫效果差异不显著,而1×108 PFU的rNTV-C比2×107PFU的免疫效果要强。结论:联合免疫策略能够显著增强HIV-1疫苗各抗原的免疫原性,通过对2种HIV-1疫苗单独免疫及二者联合免疫的细胞免疫反应的分析比较,确定了较好的免疫方案,为疫苗临床前免疫效果评价和临床方案的制定提供了实验依据。  相似文献   

10.
Background:Immunological alterations in schizophrenic patients have been considered during last decade. There are no remarkable reports on the changes of IL-17A and IL-21 in schizophrenic patients. Therefore, the purpose of this study was to evaluate changes of serum IL-17A and IL-21 in schizophrenic patients in comparison with healthy controls.Methods:In the present study serum levels of IL-17A and IL-21 in 30 patients with schizophrenia before treatment and three months after treatment were measured by enzyme-linked immunosorbent assay (ELISA) and compare to 30 match healthy control group.Results:Serum levels of IL-21 in schizophrenic patient was significantly higher than control group (P= 0.001). Serum levels of IL-17A in the schizophrenic patients had no significant changes than the control group (P= 0.4). Serum levels of IL-17A in patients with schizophrenia three months after treatment than before treatment had no significant change (P=0.7) and IL-21 serum levels in schizophrenic patient three month after treatment was not significant changed in comparison with this group before treatment (P= 0.06).Conclusion:The serum levels of interlukine-21 is elevated in schizophrenic. Results of this study showed that IL-21 might be involved in the pathologic mechanism of schizophrenia.Key Words: Immunity, Interleukin-17A, Interleukin-21, Schizophrenia  相似文献   

11.
GULLO  M.A.LO. 《Annals of botany》1991,67(5):417-424
Three different methods for measuring xylem embolism due towater cavitation were compared—the acoustic method, thehydraulic method and the anatomical method. Young plants ofCeratonia siliqua L. were water stressed for 9, 16 and 23 d. Xylem cavitation was detected by counting ultrasound (100–300kHz) acoustic emissions (AE) from 1-year-old twigs (acousticmethod). Xylem embolism was detected by measuring the loss ofhydraulic conductivity of twigs of the same age (hydraulic method).The blockage of single xylem conduits was detected by perfusingSafranin into the xylem of 1-year-old twigs of stressed plantsand measuring the number and the diameters of non-conductingxylem conduits, under the microscope (anatomical method). It was noted that: (a) the number of AE and the loss of conductivityincreased with the water stress applied; (b) a linear relationseemed to exist between the number of AE and the loss of conductivity,suggesting that the AE counted could be only (or mainly) producedin the xylem conduits; (c) the vulnerability of the xylem conduitsto embolism was a direct function of their diameter; and (d)the measured loss of conductivity was of the same order of magnitudeas the theoretical one. The three methods gave fairly similar results. Nonetheless,they are not alternative to one another in that: (a) the acousticmethod allows continuous recordings to be made but does notprovide information about the actual damage suffered by plants;(b) the hydraulic method is very informative but destructive;and (c) the anatomical method is very useful both in phytogeographicaland in genetic improvement studies. Ceratonia siliqua L, Carob tree, water stress, xylem embolism, acoustic method, hydraulic method, anatomical method  相似文献   

12.
Three different methods for measuring xylem embolism due towater cavitation were compared—the acoustic method, thehydraulic method and the anatomical method. Young plants ofCeratonia siliqua L. were water stressed for 9, 16 and 23 d. Xylem cavitation was detected by counting ultrasound (100–300kHz) acoustic emissions (AE) from 1-year-old twigs (acousticmethod). Xylem embolism was detected by measuring the loss ofhydraulic conductivity of twigs of the same age (hydraulic method).The blockage of single xylem conduits was detected by perfusingSafranin into the xylem of 1-year-old twigs of stressed plantsand measuring the number and the diameters of non-conductingxylem conduits, under the microscope (anatomical method). It was noted that: (a) the number of AE and the loss of conductivityincreased with the water stress applied; (b) a linear relationseemed to exist between the number of AE and the loss of conductivity,suggesting that the AE counted could be only (or mainly) producedin the xylem conduits; (c) the vulnerability of the xylem conduitsto embolism was a direct function of their diameter; and (d)the measured loss of conductivity was of the same order of magnitudeas the theoretical one. The three methods gave fairly similar results. Nonetheless,they are not alternative to one another in that: (a) the acousticmethod allows continuous recordings to be made but does notprovide information about the actual damage suffered by plants;(b) the hydraulic method is very informative but destructive;and (c) the anatomical method is very useful both in phytogcographicaland in genetic improvement studies. Ceratonia siliqua L., Carob tree, water stress, xylem embolism, acoustic method, hydraulic method, anatomical method  相似文献   

13.
Liu J  Wu D  Ahmed A  Li X  Ma Y  Tang L  Mo D  Ma Y  Xin Y 《Current microbiology》2012,65(1):7-13
Human liver was closely associated with gut through various biological mechanisms, such as bacterium-gut interactions. Alterations of gut microbiota seemed to play an important role in induction and promotion of liver damage progression. The aim of this study was to characterize the gut microbiota in liver cirrhosis patients and assess whether there are alterations in the diversity and similarity of intestinal flora in cirrhotic patients when compared with healthy individuals. PCR-denaturing gradient gel electrophoresis (DGGE) with universal primers targeting V3 region of the 16S rRNA gene was employed to characterize the overall intestinal microbiota composition, and some excised gel bands were cloned for sequencing. Real-time PCR was further utilized to quantitatively analyze the subpopulation of microbiota using group-specific primers targeting the Enterobacteriaceae, Enterococcus and Bifidobacterium genus. The DGGE profiles of two groups demonstrated significant differences between cirrhotic and healthy groups (P?相似文献   

14.
Epigenetic mechanisms of gene regulation in context of cardiovascular diseases are of considerable interest. So far, our current knowledge of the DNA methylation profiles for atherosclerosis affected and healthy human vascular tissues is still limited. Using the Illumina Infinium Human Methylation27 BeadChip, we performed a genome-wide analysis of DNA methylation in right coronary artery in the area of advanced atherosclerotic plaques, atherosclerotic-resistant internal mammary arteries, and great saphenous veins obtained from same patients with coronary heart disease. The resulting DNA methylation patterns were markedly different between all the vascular tissues. The genes hypomethylated in athero-prone arteries to compare with atherosclerotic-resistant arteries were predominately involved in regulation of inflammation and immune processes, as well as development. The great saphenous veins exhibited an increase of the DNA methylation age in comparison to the internal mammary arteries. Gene ontology analysis for genes harboring hypermethylated CpG-sites in veins revealed the enrichment for biological processes associated with the development. Four CpG-sites located within the MIR10B gene sequence and about 1 kb upstream of the HOXD4 gene were also confirmed as hypomethylated in the independent dataset of the right coronary arteries in the area of advanced atherosclerotic plaques in comparison with the other vascular tissues. The DNA methylation differences observed in vascular tissues of patients with coronary heart disease can provide new insights into the mechanisms underlying the development of pathology and explanation for the difference in graft patency after coronary artery bypass grafting surgery.  相似文献   

15.

Background

Both host genetic potentials for growth and disease resistance, as well as nutrition are known to affect responses of individuals challenged with micro-parasites, but their interactive effects are difficult to predict from experimental studies alone.

Methodology/Principal Findings

Here, a mathematical model is proposed to explore the hypothesis that a host''s response to pathogen challenge largely depends on the interaction between a host''s genetic capacities for growth or disease resistance and the nutritional environment. As might be expected, the model predicts that if nutritional availability is high, hosts with higher growth capacities will also grow faster under micro-parasitic challenge, and more resistant animals will exhibit a more effective immune response. Growth capacity has little effect on immune response and resistance capacity has little effect on achieved growth. However, the influence of host genetics on phenotypic performance changes drastically if nutrient availability is scarce. In this case achieved growth and immune response depend simultaneously on both capacities for growth and disease resistance. A higher growth capacity (achieved e.g. through genetic selection) would be detrimental for the animal''s ability to cope with pathogens and greater resistance may reduce growth in the short-term.

Significance

Our model can thus explain contradicting outcomes of genetic selection observed in experimental studies and provides the necessary biological background for understanding the influence of selection and/or changes in the nutritional environment on phenotypic growth and immune response.  相似文献   

16.
The role of hepatitis C virus (HCV) protein non-structural (NS) 5A in HCV-associated pathogenesis is still enigmatic. To investigate the in vivo role of NS5A for viral persistence and virus-associated pathogenesis a transgenic (Tg) mouse model was established. Mice with liver-targeted NS5A transgene expression were generated using the albumin promoter. Alterations in the hepatic immune response were determined by Western blot, infection by lymphocytic choriomeningitis virus (LCMV), and using transient NS3/4A Tg mice generated by hydrodynamic injection. Cytotoxic T lymphocyte (CTL) activity was investigated by the Cr-release assay. The stable NS5A Tg mice did not reveal signs of spontaneous liver disease. The intrahepatic immunity was disrupted in the NS5A Tg mice as determined by clearance of LCMV infection or transiently NS3/4A Tg hepatocytes in vivo. This impaired immunity was explained by a reduced induction of interferon β, 2′,5′-OAS, and PKR after LCMV infection and an impairment of the CTL-mediated elimination of NS3-expressing hepatocytes. In conclusion, these data indicate that in the present transgenic mouse model, NS5A does not cause spontaneous liver disease. However, we discovered that NS5A could impair both the innate and the adaptive immune response to promote chronic HCV infection.Chronic hepatitis C virus (HCV)4 infection is associated with an increased risk of liver cirrhosis and hepatocellular carcinoma (HCC). The HCV genome is a single-stranded positive-sense RNA molecule of ∼9600 bp (1). The viral RNA codes for one large polyprotein of ∼3100 amino acids that is post-translationally processed by cellular and viral proteases, leading to the structural proteins core, E1 and E2, the p7 protein, and the non-structural proteins NS2, NS3, NS4A, NS4B, NS5A, and NS5B (2). The mature NS5A protein is generated by the action of the NS3/NS4A serine protease. NS5A is a phosphoprotein that exists in a basal or in a hyperphosphorylated state (p56 and p58) (3). Through an amphipathic α-helix, NS5A is associated with the cytoplasmic face of the ER (4) and is an integral part of the replication complex (5). Mutations in NS5A affect the rate of HCV replication suggesting a role of NS5A in modulating viral expression and replication (6). Moreover, NS5A is able to interfere with a variety of cellular proteins. Some of these interaction partners, such as Grb2, PI3K, p53, or Raf-1 are important key players in host cell signal transduction, enabling NS5A to deregulate important cellular check points (710). Recent reports even suggest that NS5A may deregulate cell cycle progression by modulating the expression of cell cycle regulatory genes (11). In light of these observations and that it has been suggested to transform murine fibroblasts (12), it is speculated that NS5A could represent an important factor for the development of HCV-associated HCC (13).Infection of transgenic mice expressing the complete HCV polyprotein with lymphocytic choriomeningitis virus (LCMV) showed a reduced IFN response and a delayed viral elimination (14). Cell culture-based experiments have shown that NS5A interacts directly with the interferon-dependent induced protein kinase R (PKR), a key player in the cellular antiviral response and that this interaction results in an inhibition of PKR function (15). Therefore, a role of NS5A for the establishment of a chronic HCV infection by inhibiting the innate immunity is conceivable.To enable in vivo studies of NS5A-specific effects transgenic mice were generated with a liver-specific expression of NS5A. We used these mice to show that NS5A affects both the innate and the adaptive hepatic immunity.  相似文献   

17.
18.
目的:研究比较三种不同手术方案治疗急性闭角型青光眼(AACG)合并白内障患者的疗效。方法:选择2012年10月至2015年10月在我院接受手术治疗的AACG合并白内障患者50例(50只眼)进行研究,按患者前房角的粘连关闭程度将其分成A、B、C三组,A组给予小切口囊外摘除术,B组在A组基础上给予前房角分离术,C组在A组基础上给予小梁切除术,比较各组术后疗效。结果:A、B、C三组患者术后的眼压均显著低于术前,前房中央深度和视力均显著高于术前,差异均有统计学意义(P0.05)。A、B、C三组术后视力的分布中,0.3~0.5的比例均显著高于0.3及0.5的比例,差异有统计学意义(P0.05)。A组术后的并发症总发生率为15.79%,B组为31.25%,C组为40.00%,三组间比较差异无统计学意义(P0.05)。结论:AACG合并白内障患者可通过多种手术方案进行治疗,但应根据房角关闭程度合理地选择最佳术式,从而有效改善患者的症状和视力状况。  相似文献   

19.
The resistance of human cell DNA to damaging doses of CdCl2 or radiation has been investigated after pretreatment with garlic extract (GE) or with adaptive doses of the same mutagens. The adaptive response (AR) and pretreatment with GE stabilize the DNA structure in a similar way. In experiments with 4-nitroquinoline-1-oxide (4-NQO), GE does not stabilize DNA structure but increases the rate and volume of repair of induced breaks. 3-Aminobenzamide (3-AB) increases the number of DNA breaks induced in experiments with CdCl2, radiation, and 4-NQO. This suggests that poly(ADP-ribose)polymerase participates defense of cells from mutagens. Thus, it has been demonstrated that cell defense from CdCl2 or radiation in experiments with GE and AO is mediated by stabilization of DNA structure and in experiments with 4-NQO, by activation of repair of DNA breaks induced.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号