首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of cold storage temperatures and storage duration were evaluated for Psyttalia humilis (Silvestri) from Namibia and Psyttalia ponerophaga (Silvestri) from Pakistan, braconid parasitoids of Bactrocera oleae (Rossi) imported to California, USA. Immature stages of P. humilis were exposed to 4, 6, 8, 10, or 12 °C for 1, 2 or 4 months (pupa only at 4 and 12 °C) and then held at 24 °C for adult emergence. Less than 5 % of parasitoids in the 4–8 °C treatments survived, regardless of storage duration. At the 10 °C treatment, adult survival decreased with increased storage duration, but increased with advancing developmental stages. Survival was not affected at the 12 °C treatment. Adult P. humilis were exposed to 6, 8, 10 °C for short periods (1, 2, 4, or 6 weeks) or ambient winter conditions in Parlier, California, USA (about 9 °C). Regardless of storage temperature, P. humilis reproduction was reduced after storage of four and six weeks. Similarly, after 4 months at ambient winter temperatures, P. humilis reproduction was reduced. Psyttalia ponerophaga pupae stored at 6 °C for 41–97 days had decreased survival and increased developmental time. Survival of P. ponerophaga pupae ranged from 13.9–52.1 %, whereas under similar storage conditions survival of P. humilis was <0.7 %, suggesting P. ponerophaga is more cold tolerant than P. humilis.  相似文献   

2.
短时高温对烟蚜生长发育、繁殖和取食行为的影响   总被引:1,自引:0,他引:1  
【目的】烟蚜Myzus persicae是一种世界性的重要农业害虫,本研究测定了短时高温对烟蚜生长发育、繁殖和取食行为的影响。【方法】测定初产若蚜每天在30, 35和40℃下处理1, 2和4 h的发育历期及成蚜在相同处理下的繁殖力,应用刺吸电位技术(electronic penetration graph, EPG)测定成蚜在30和35℃下处理1和2 h后以及在25, 28, 30和35℃恒温下的取食行为。【结果】短时高温(30~35℃)对各龄若蚜发育历期影响较小,但40℃下处理2 h后其发育历期显著增加(P<0.05);若蚜存活率、成蚜寿命及其繁殖历期随温度和处理时间的增加而降低;在25~35℃下,随温度和处理时间的增加,成蚜繁殖率变化较小,但40℃下处理2和4 h后,其繁殖率显著降低(P< 0.01);短时高温对烟蚜的取食行为影响显著,随温度和处理时间的增加,非刺探波np数量(P<0.05)及其持续时间(P<0.01)显著减少,而韧皮部刺吸波E持续时间显著增加(P<0.05);但持续高温下,随温度升高,np波数量及其持续时间先减少后增加,而E波则相反。【结论】短时高温对烟蚜若蚜发育速率影响较小,但使若蚜存活率、成蚜寿命及其繁殖历期显著降低,且对成蚜繁殖有一定的抑制作用,而对成蚜的取食有一定的促进作用。研究结果有助于了解烟蚜不同年份间夏季种群数量的变化机制。  相似文献   

3.
In temperate regions low temperatures seem to be the most restrictive factor for survival of Drosophila natural populations, which depends on the capacity of one or more developmental stages to resist unfavourable winter conditions. In this study we have attempted to answer the question of how D. melanogaster overwinters under natural temperature conditions. Only adults overwintered and no diapause was observed in any developmental stage. Thus, developmental duration becomes a decisive component with respect to overwintering potential and, therefore, the preadult stages are unlikely to overwinter. Possible evolutionary steps in adaptation to cold regions are discussed.  相似文献   

4.
Present research work investigated the impact of hexane extract of Lantana camara leaves on the survival, survival duration, growth and development of the Dysdercus koenigii. Newly emerged fifth instar nymphs were exposed to nine concentrations viz. 10%, 5%, 2.5%, 1.25% 0.1%, 0.05%, 0.025%, 0.0125% and 0.00625% of the extract by ‘dry film residual method’ for 24 h. The results indicated that the survival and the growth of the nymphs decreased with increasing concentrations of the L. camara extract. The nymphs presented developmental malformation including incomplete moulting followed by death of the moulting nymphs, supernumerary nymphal instars, adults with wing deformities, and adults with exuviae attached to the body. The GC–MS analysis of the extract indicated presence of phytoconstituents with insecticidal activities, and intermediates of the juvenile hormone biosynthetic pathway. It was surmised that these intermediates individually or synergistically influence JH biosynthesis. L. camara extract causes mortality, inhibits growth and development and results in developmental anomalies in the D. koenigii thus indicated its potentials in the ‘integrated pest management’.  相似文献   

5.
《Journal of Asia》2021,24(3):814-818
To determine the effects of temperature on the development and reproduction of top borer Scirpophaga excerptalis Walker (Lepidoptera: Pyralidae), the durations of different developmental stages and reproductive capacity of S. excerptalis were measured at 20, 23, 26, 29 and 32℃. The results showed that the average durations of various developmental stages of S. excerptalis shortened with increasing temperatures from 20 to 32℃. The durations to complete one life cycle were 113.17 days at 20℃, and 39.50 days at 32℃. The developmental rate of each stage and generation was positively correlated with the temperature, which was consistent with the Logistic regression model. The temperature thresholds for egg, larval, pupal and preoviposition stages and the total cycle were 13.73, 14.73, 13.91, 13.66 and 14.10℃, respectively. The effective accumulative temperature was 112.62, 370.01, 188.17, 23.82 and 718.07 degree-days (DD), respectively. The adult longevity shortened with increasing temperatures, and the highest number of eggs laid per female was 204.74 eggs at 29℃. The survival rates of eggs, larvae and the whole generation were the highest at 26℃, which were 87.25%, 56.67% and 37.21%, respectively while the highest survival rate of the pupa was 76.69% at 29℃. There was no significant difference for the total cycle at 23-29℃. The results indicated that temperature was the key factor affecting the development and reproduction of S. excerptalis, and the optimum temperature for development and reproduction ranged from 23 to 29℃.  相似文献   

6.
Environmental stress generally disturbs cellular homeostasis. Researchers have hypothesized that chilling injury is linked to a shortage of ATP. However, previous studies conducted on insects exposed to nonfreezing low temperatures presented conflicting results. In this study, we investigated the mitochondrial bioenergetics of Drosophila melanogaster flies exposed to chronic cold stress (4 °C). We assessed mitochondrial oxygen consumption while monitoring the rate of ATP synthesis at various times (0, 1, 2, and 3 days) during prolonged cold stress and at two assay temperatures (25 and 4 °C). We compared organelle responses between cold-susceptible and cold-acclimated phenotypes. Continuous exposure to low temperature provoked temporal declines in the rates of mitochondrial respiration and ATP synthesis. Respiratory control ratios (RCRs) suggested that mitochondria were not critically uncoupled. Nevertheless, after 3 days of continuous cold stress, a sharp decline in the mitochondrial ATP synthesis rate was observed in control flies when they were assayed at low temperature. This change was associated with reduced survival capacity in control flies. In contrast, cold-acclimated flies exhibited high survival and maintained higher rates of mitochondrial ATP synthesis and coupling (i.e., higher RCRs). Adaptive changes due to cold acclimation observed in the whole organism were thus manifested in isolated mitochondria. Our observations suggest that cold tolerance is linked to the ability to maintain bioenergetics capacity under cold stress.  相似文献   

7.
魏淑花  朱猛蒙  张蓉  黄文广  于钊 《昆虫学报》2013,56(9):1004-1009
为了明确温度对沙蒿金叶甲Chrysolina aeruginosa Faldermann生长发育和繁殖的影响, 本实验在恒温条件(13, 18, 23, 28和33℃)下, 以白沙蒿Artemisia sphaerocephala Krasch为寄主植物, 研究了温度对沙蒿金叶甲实验种群生长发育和繁殖的影响。结果表明: 温度对沙蒿金叶甲各虫态的发育历期、 存活率以及种群繁殖力有显著影响。在13~28℃范围内, 各虫态的发育历期均随温度的升高而缩短, 发育速率与温度呈显著正相关。但是, 当温度上升至33℃时, 幼虫和蛹生长发育受到抑制, 其幼虫发育历期与18℃, 23℃和28℃下相比延长并达到了显著差异水平(P<0.05), 成虫不能羽化出土; 低温影响沙蒿金叶甲卵的存活率, 高温影响其蛹的存活率, 说明温度过高或过低均不利于沙蒿金叶甲的生长发育。成虫产卵量随环境温度变化的大小顺序为28℃>23℃>18℃>13℃, 并存在极显著差异(P<0.01)。由直接最优法计算得到沙蒿金叶甲卵期、 1-3龄幼虫期、 4龄幼虫+蛹期的发育起点温度分别为9.72℃, 7.11℃和8.77℃, 有效积温依次为115.36, 441.91和448.40日·度。研究结果为沙蒿金叶甲发生期的预测预报提供了基础参考数据, 对指导生产实践有实际的应用意义。  相似文献   

8.
研究了低温(<8℃)对小菜蛾的发育、存活和繁殖的影响.结果表明,卵和蛹在4℃和6℃下死亡率随处理时间的延长而增加,在分别处理55d和70d后,卵和蛹全部死亡;经4℃和6℃处理的蛹,在16℃下羽化成虫的平均产卵量随处理时间的延长而减少,处理45d时,产卵量均为0.小菜蛾幼期各虫态在0℃以下,死亡率随低温强度加大和处理时间的延长而增高.就耐寒力而言,3龄幼虫和蛹最强,其次是2龄和4龄幼虫,卵和1龄幼虫的耐寒力最弱.不同低温和时间处理小菜蛾幼期虫态对其后继虫态的发育历期有较大影响,总体说来,经过处理的小菜蛾幼期虫态,其后继虫态的发育历期普遍延长,一般处理某一虫态对其相邻虫态发育历期的影响最大.小菜蛾蛹经低温处理后其羽化成虫的产卵量随着蛹期所经历低温强度的增强和时间延长而减少.  相似文献   

9.
【目的】扶桑绵粉蚧Phenacoccus solenopsis Tinsley是近年在我国新发现的一种重要外来入侵害虫,对我国棉花生产具有潜在的巨大威胁。本研究以棉花作为寄主,探索恒温及变温条件对扶桑绵粉蚧生长发育的影响。【方法】在光周期为12L∶12D,RH 70%±5%,在系列恒温及变温(温度波动范围为±1℃)条件下,用棉花饲养扶桑绵粉蚧,观察和分析了不同温度下各龄虫态的发育历期、发育速率、存活率和繁殖力及发育起点温度、有效积温、最适发育温度、极限高温等。【结果】在恒温17~32℃范围内,扶桑绵粉蚧各虫态的发育历期随温度升高而逐渐缩短,当温度达到27℃时发育速率值增幅最大,其中在恒温22~32℃范围内,该虫具有较高的生长发育速率和存活率,且繁殖能力较强,而在恒温37℃条件下,该虫不能完成整个生活史而死亡。在循环变温条件(25~40℃)下,该虫表现出更好的适应性:发育历期更短,速率更快,存活率更高,繁殖力也达到了恒温条件下的平均水平。雌雄虫的发育起点温度分别为9.0℃和8.1℃,而达到成虫时所需有效积温分别为322.6日度和344.8日度。通过拟合发育速率与温度之间的非线性回归关系求出雌雄虫最适发育温度分别为30.5℃和29.9℃,而极限高温分别为36.6℃和35.8℃。【结论】扶桑绵粉蚧适温范围广泛,特别是在变温条件下的适应性非常强。这些结果为预测扶桑绵粉蚧在我国主要棉区的分布提供了依据。  相似文献   

10.
低温对小菜蛾实验种群的影响   总被引:1,自引:3,他引:1  
研究了低温(<8℃)对小菜蛾的发育、存活和繁殖的影响结果表明,卵和蛹在4℃和6℃下死亡率随处理时间的延长而增加,在分别处理55d和70d后,卵和蛹全部死亡;经4℃和6℃处理的蛹,在16℃下羽化成虫的平均产卵量随处理时间的延长而减少,处理45d时,产卵量均为0小菜蛾幼期各虫态在0℃以下,死亡率随低温强度加大和处理时问的延长而增高就耐寒力而言,3龄幼虫和蛹最强,其次是2龄和4龄幼虫,卵和1龄幼虫的耐寒力最弱不同低温和时间处理小菜蛾幼期虫态对其后继虫态的发育历期有较大影响,总体说来,经过处理的小菜蛾幼期虫态,其后继虫态的发育历期普遍延长,一般处理某一虫态对其相邻虫态发育历期的影响最大小菜蛾蛹经低温处理后其羽化成虫的产卵量随着蛹期所经历低温强度的增强和时间延长而减少。  相似文献   

11.
The effect of non-lethal thermal conditions on the diapause response to a simulated threat of fish predation was tested in the freshwater planktonic crustacean Daphnia magna.From an early developmental stage, female Daphnia were either exposed or not exposed to fish kairomones that notified of the threat of fish predation at the benign growth temperatures of 18, 22 or 26 °C. The proportion of females switching from the production of subitaneous to diapausing eggs and their rate of reproduction were recorded.Besides the faster development and more intense reproduction observed at higher temperatures, a smaller proportion of the females formed protective, diapausing eggs when exposed to fish kairomones than was the case in colder conditions. The production of diapausing eggs was not observed when the threat of fish predation was absent. These results indicate an interactive effect of fish kairomones and thermal conditions on diapause induction in D. magna.We interpret these findings in the context of strategies for the maximisation of reproductive success. The production of well protected diapausing eggs (which assures low yet stable gains under diverse thermal conditions) may be a more beneficial life history strategy at lower temperatures, where the chances of survival of active individuals until maturation and successful reproduction are low. Higher temperatures permit faster maturation and more intensive reproduction that may surpass numerical losses of active descendants due to predation, making diapause a less rewarding option.  相似文献   

12.
The developmental rate under low temperatures and cold tolerance were investigated in embryos of the blowfly Lucilia sericata. The larvae of this species are now widely used in maggot debridement therapy. Embryonic development was dependent on temperature, with a lower developmental threshold of 9.0 °C. The duration of the egg stage at a rearing temperature of 25 °C was 14 h, and a low temperature of 12.5 °C successfully prolonged this period to 66 h. Embryonic stages differed markedly in their cold tolerance; young embryos were less tolerant to cold than old ones. Late embryonic stages are suitable for cold storage at 5 °C and the storage for 72 h did not decrease the hatching rate by more than 50%. In the mass‐rearing process required for maggot debridement therapy, either of these two simple protocols would be beneficial.  相似文献   

13.
14.
Cold resistance in insects has traditionally been measured in terms of survival following a stress, but alternative methods are increasingly being used because of their relevance to the ecology of organisms and their utility in characterizing variation among species, populations and individuals. One such method capable of discriminating among Drosophila species and conspecific Drosophila populations from different environments is adult chill coma recovery time, the time taken for adults to become active again after being knocked down by a cold stress. Here we characterized the chill coma response of D.melanogaster in detail. Adults were exposed to a range of temperatures and stressful periods prior to measuring recovery. Recovery from chill coma in D.melanogaster was biphasic; as flies were stressed under cooler temperatures, recovery times leveled off and then decreased before sharply increasing again as mortality starts to occur. This biphasic response has previously been observed in D.subobscura where it has a somewhat different shape. A second mechanism therefore acts at relatively lower temperatures to ameliorate the effects of the cold stress. When D.melanogaster were reared at 19 and 25 °C for two generations, the shape of the curve relating temperature to recovery time was similar, but flies from the warmer temperature had longer recovery times and showed responses that leveled off and then decreased at relatively higher temperatures. As exposure time to cold stress was increased, recovery times also increased except at mild stress levels. Chill coma recovery in D.melanogaster is a complex trait and likely to reflect multiple underlying components.  相似文献   

15.
The two sibling species D. /melanogaster and D. simulans adopt different overwintering strategies in northern border areas situated in France. If the winter is mild, both species reappear in early spring to refound the population. If the winter is cold, with several weeks of temperatures below 0 °C, D. melanogaster leave their shelters in April whereas D. simulans, which do not use shelters, reappear in late June, probably after returning from further south. Here, we tried to identify life-history characteristics responsible for this difference. For this, we studied developmental duration, viability, fecundity, fertility and longevity, and compared the abilities of French and African populations to survive when food supplies were inadequate, at different temperatures (14, 11, 7 °C). These temperatures are lower than those commonly used in the laboratory but closer to real conditions encountered in the wild. When the temperature was mild (14 or 11 °C) and the food supply was adequate, D. simulans performed better than D. melanogaster: it had a higher fecundity, a longer life expectancy and the males remained fertile, allowing outdoor reproduction late in winter. However, D. simulans was less resistant in more extreme conditions. At 7 °C D. simulans survived shorter on normal medium and its ability to survive when food supplies were inadequate was insufficient to allow outdoor overwintering. In contrast, D. melanogaster could not reproduce during winter: its fecundity was low and males were sterile at 11 °C. Nevertheless, if only protein-deficient resources were available, temperate D. melanogaster could survive for longer than D. simulans at all the temperatures tested. This greater resistance to underfeeding allows the species to survive until spring, in shelters for several months. A comparison of French and African population performances showed differences in the evolution of the two species during the colonization of more northern areas. African D. simulans, which are efficient at mild temperatures, underwent few modifications. In contrast, the viability of D. melanogaster improved at low developmental temperatures. This species also displayed higher fecundity, longer survival and higher underfeeding resistance at low temperatures. The relationship between the long retention genotype and underfeeding resistance or survival ability observed in French D. melanogaster populations may not exist in African populations.  相似文献   

16.
Variation in cold resistance was examined in cold acclimated and non-acclimated Drosophila melanogaster from three geographical strains representing Morocco, France and Finland. Resistance was estimated as survival of adults at 0°C; the acclimation treatment involved a long-term exposure to 11°C starting from the late pupal stage and continuing with adults. After the cold stress, two fitness traits, percentage of fertile individuals and the number of adult progeny, were scored in both acclimated and non-acclimated flies. Acclimation dramatically increased survival in all strains, but did not affect the pattern of geographic variation in cold resistance. The European flies tended to be more resistant than the African ones and the ranking from most to least resistant strain was France>Finland>Morocco. In the absence of acclimation, females showed a higher survival than males. Percentage of fertile males in all strains and the number of progeny in the Finnish and French strains were decreased after acclimation. Without cold acclimation, the number of progeny was higher in the European flies as compared with the African ones. The results suggest that populations of D. melanogaster from cold climates are better adapted to low stressful temperatures and among-population variation in cold resistance may be due to non-plastic rather than plastic genetic changes. The deleterious effects of cold pretreatment on the life-history parameters indicate a possibility for acclimation costs in reproduction.  相似文献   

17.
短时高温对桃小食心虫生长发育与繁殖的影响   总被引:8,自引:0,他引:8  
【目的】桃小食心虫Carposina sasakii是我国北方落叶果树的重要害虫。本研究旨在探索短时高温对桃小食心虫生长发育和繁殖的影响。【方法】在室内23±1℃、 相对湿度80%±7%和15L∶9D条件下, 测定了桃小食心虫卵、 幼虫、 蛹、 成虫在经历35, 38和41℃高温处理1~4 h后各阶段的发育历期、 存活率和产卵量。【结果】 短时高温对卵的孵化率无明显影响; 经41℃处理后, 初蛀果幼虫(1日龄)的发育历期明显延长, 且存活率显著降低, 3日龄以上的幼虫受到的影响不明显; 11日龄蛹的羽化率在38℃和41℃处理中明显降低, 畸形率也显著升高; 经38℃和41℃处理的成虫存活率降低, 寿命缩短, 产卵量也减少。【结论】短时高温处理对桃小食心虫卵的影响较小, 而对成虫的影响较大。这些结果有助于深入了解该虫在高温季节种群数量变动机制。  相似文献   

18.
温度对胡萝卜微管蚜生长发育繁殖的影响   总被引:3,自引:3,他引:0  
【目标】明确温度对胡萝卜微管蚜Semiaphis heraclei(Takahashi)生长发育和繁殖的影响。【方法】在室内5个温度梯度下(19、22、25、28、31℃)观察并比较胡萝卜微管蚜的发育历期、存活率、存活寿命及产仔量。【结果】在19?31℃范围内,胡萝卜微管蚜各龄期及完整世代的发育历期均随着温度的升高而缩短,完成一个世代分别需要22.17、17.13、12.57、10.03和7.83 d。温度与发育速率呈极显著相关(P<0.01,r>0.8),温度越高发育速率越快。胡萝卜微管蚜4个若蚜期和世代的发育起点分别为14.15、13.87、13.64、15.06、12.92℃,有效积温分别为29.98、29.30、28.54、24.00和144.21日?度。建立了胡萝卜微管蚜各个发育阶段的历期预测式。在5个恒温下胡萝卜微管蚜1?4龄及世代的存活率随温度的变化而小幅波动。在19?31℃范围内,该蚜虫世代的存活率分别为40.0%、52.5%、62.5%、60.0%和47.5%。25℃该蚜虫的存活率相对较高,1?4龄及世代的存活率分别为82.5%、81.8%、92.6%、100%和62.5%。在相同温度条件下该蚜虫不同发育阶段的存活率存在差异。存活寿命随着温度的升高而缩短,19℃时寿命最长,为33.30 d,31℃时寿命最短,为15.40 d。产仔期随着温度的升高而缩短,19℃时产仔期为11.13 d,31℃时为7.57 d。在19?31℃范围内,该蚜虫的单雌产仔总量分别为26.33、27.93、32.53、27.13和17.93头。【结论】温度是影响胡萝卜微管蚜的生长发育、存活和繁殖的重要因素。25℃时胡萝卜微管蚜各龄期及世代的发育历期较短,存活率较高,单雌产仔总量最大。25℃较适合该蚜虫生长发育和繁殖。  相似文献   

19.
温度对桃蛀螟生长发育和繁殖的影响   总被引:7,自引:0,他引:7  
为了明确温度对桃蛀螟Conogethes punctiferalis (Guenée)生长发育和繁殖的影响, 本实验在恒温条件(15, 19, 23, 27和31℃共5个温度梯度)下, 以板栗为寄主食料, 研究了温度对桃蛀螟实验种群生长发育和繁殖的影响。结果表明: 温度对桃蛀螟各虫态的发育历期、 存活率、 蛹重以及种群繁殖力有显著影响。在15~27℃范围内, 各虫态的发育历期均随温度的升高而缩短, 发育速率与温度呈显著正相关。但是, 当温度上升至31℃时, 幼虫生长发育受到抑制, 其发育历期比27℃时延长了1.11 d, 而卵期、 蛹期和产卵前期仍符合随温度升高趋于缩短的趋势。此外, 15℃下桃蛀螟5龄幼虫发育停滞, 表明老熟幼虫的发育起点温度高于其他低龄幼虫。桃蛀螟世代存活率随环境温度变化的大小顺序为23℃>27℃>19℃>31℃, 其中, 23~27℃的存活率较高, 为54.44%~63.56%, 31℃时为4.30%, 说明温度过高或过低均不利于其生长发育。成虫产卵量在23℃时最高, 单雌平均产卵量达55.00粒, 其次为19℃和27℃, 单雌平均产卵量分别为43.30和39.70粒; 31℃下产卵量最少, 仅为20.90粒。由直接最优法计算得到桃蛀螟卵期、 幼虫期、 蛹期、 产卵前期及全世代的发育起点温度分别为10.37, 10.06, 14.27, 7.47和11.85℃, 有效积温依次为70.84, 287.71, 118.42, 58.33和509.06日度。研究结果为桃蛀螟发生期的预测预报提供了基础参考数据, 对指导生产实践有实际的应用意义。  相似文献   

20.
The developmental time, survival and reproduction of the cotton aphid, Aphis gossypii Glover (Hom., Aphididae), were evaluated on detached cotton leaves at five constant and two alternating temperatures (15, 20, 25, 30, 35, 25/30, and 30/35°C). The developmental periods of the immature stages ranged from 12.0 days at 15°C to 4.5 days at 30°C. A constant temperature of 35°C was lethal to the immature stages of A. gossypii. The lower developmental threshold for the cotton aphid was estimated at 6.2°C and it required 108.9 degree-days for a first instar to become adult. The average longevity of adult females was reduced from 39.7 days at 15°C to 12.6 days at 30/35°C. The average reproduction rate per female was 51.5 at 25/30°C and 20.9 at 30/35°C. Mean generation time of the population ranged from 10.4 days at 30°C to 24.5 days at 15°C. The largest per capita growth rate ( r m = 0.413) occurred at 30°C, the smallest at 15°C ( r m = 0.177). It was evident that temperatures over 30°C prolonged development, increased the mortality of the immature stages, shortened adult longevity, and reduced fecundity. The optimal range of temperature for population growth of A. gossypii on cotton was 25/30–30°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号