首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amniotic membrane (AM), the innermost layer of the fetal membranes, has been widely employed in the surgical reconstruction and tissue engineering. Expression of the antimicrobial peptides such as defensins, elafin and SLPI which are essential elements of the innate immune system results in antibacterial properties of the AM. Preservation is necessary to reach a ready-to-use source of the AM. However, these methods might change the properties of the AM. The aim of this study was to evaluate antibacterial properties of the AM after preservation. Antibacterial property of the fresh AM was compared with cryopreserved and freeze-dried AM by modified disk diffusion method. Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and two clinical isolated strains of E. coli were cultured in Mueller Hinton agar and a piece of the AM was placed on agar surface. After 24 h incubation, the inhibition zone was measured. In addition, one of the most important antibacterial peptides, elafin, was measured by ELISA assay before and after preservations procedures. Antibacterial properties of the AM were maintained after cryopreservation and freeze-drying. However, the inhibition zone was depending on the bacterial strains. The cryopreservation and freeze-drying procedures significantly decreased elafin which shows that antibacterial property is not limited to the effects of amniotic cells and the other components such as extracellular matrix may contribute in antibacterial effects. The promising results of this study show that the preserved AM is a proper substitute of the fresh AM to be employed in clinical situations.  相似文献   

2.
Escherichia coli can ferment a broad range of sugars, including pentoses, hexoses, uronic acids, and polyols. These features make E. coli a suitable microorganism for the development of biocatalysts to be used in the production of biocommodities and biofuels by metabolic engineering. E. coli cannot directly ferment polysaccharides because it does not produce and secrete the necessary saccharolytic enzymes; however, there are many genetic tools that can be used to confer this ability on this prokaryote. The construction of saccharolytic E. coli strains will reduce costs and simplify the production process because the saccharification and fermentation can be conducted in a single reactor with a reduced concentration or absence of additional external saccharolytic enzymes. Recent advances in metabolic engineering, surface display, and excretion of hydrolytic enzymes provide a framework for developing E. coli strains for the so-called consolidated bioprocessing. This review presents the different strategies toward the development of E. coli strains that have the ability to display and secrete saccharolytic enzymes to hydrolyze different sugar-polymeric substrates and reduce the loading of saccharolytic enzymes.  相似文献   

3.
Among the most important rhizosphere bacteria are the pseudomonads, which are aggressive colonizers and utilize a wide range of substrates as carbon sources. The objective of this study was to determine if the taxonomic or metabolic diversity of pseudomonads differed among field-grown canola cultivars. Bacteria (n=2257) were isolated from the rhizosphere and root interior of six cultivars of field-grown canola, including three transgenic varieties. The bacteria were identified by fatty acid methyl ester (FAME) analysis, and about 35% were identified as Pseudomonas species. The most abundant species were Pseudomonas putida and Pseudomonas chlororaphis. Dendrograms based on FAME analysis revealed that many pseudomonad strains were found in all of the canola cultivars. Pseudomonads of the same strain were found in both the rhizosphere and the root interior of canola plants, suggesting that endophytic bacteria were a subset of the rhizosphere community. Because metabolic profiling provides more useful information than taxonomy, P. putida and P. chlororaphis isolates were characterized for their ability to utilize carbon substrates and produce several enzymes. Bacteria isolated from different plant cultivars had different carbon utilization profiles, but when only carbon substrates found in root exudates were analyzed, the cultivar effect was less pronounced. These characterizations also demonstrated that bacteria that were determined by FAME to be the same strain were metabolically different, suggesting functional redundancy among Pseudomonas isolates. The results of this study suggest that pseudomonads were functionally diverse. They differed in their metabolic potential among the canola cultivars from which they were isolated. Because bacteria capable of using many substrates can effectively adapt to new environments, these results have implications for the use of pseudomonads as biofertilizers, biological control agents and plant growth-promoting bacteria in canola.  相似文献   

4.
《Cryobiology》2016,72(3):522-528
The aim of this work was to study the protective effect of sucrose, trehalose and glutamate during freezing and freeze-drying of three oenological Lactobacillus plantarum strains previously acclimated in the presence of ethanol. The efficiency of protective agents was assessed by analyses of membrane integrity and bacterial cultivability in a synthetic wine after the preservation processes. No significant differences in the cultivability, with respect to the controls cells, were observed after freezing at −80 °C and −20 °C, and pre-acclimated cells were more resistant to freeze-drying than non-acclimated ones. The results of multiparametric flow cytometry showed a significant level of membrane damage after freeze-drying in two of the three strains. The cultivability was determined after incubation in wine-like medium containing 13 or 14% v/v ethanol at 21 °C for 24 h and the results were interpreted using principal component analysis (PCA). Acclimation was the most important factor for preservation, increasing the bacterial resistance to ethanol after freezing and freeze-drying. Freeze-drying was the most drastic method of preservation, followed by freezing at −20 °C. The increase of ethanol concentration from 6 to 10% v/v in the acclimation medium improved the recovery of two of the three strains. In turn, the increase of ethanol content in the synthetic wine led to a dramatic decrease of viable cells in the three strains investigated. The results of this study indicate that a successful inoculation of dehydrated L. plantarum in wine depends not only on the use of protective agents, but also on the cell acclimation process prior to preservation, and on the ethanol content of wine.  相似文献   

5.
Samples from municipal waste water, the Bonny River estuary and wells in and around Port Harcourt were examined for bacteriological quality over a 9 month period. A total of 157 Pseudomonas spp., 133 Escherichia coli and 282 other coliforms were isolated and tested for the incidence of resistance to 10 antibiotics. All of the Pseudomonas spp. were resistant to at least one of the antibiotics while 96.2% were resistant to two or more. Most (83.5%) of the E. coli and other coliforms (91.8%) were resistant to at least one antibiotic. All strains were susceptible to gentamicin. Minimal inhibitory concentrations of ampicillin and tetracycline for E. coli ranged from 6.25 to 50 and 6.25 to 12.5 μg/ml, respectively. Minimal inhibitory concentrations of ampicillin and tetracycline were 1000 and 25 μg/ml for the Pseudomonas strains. The high incidence of bacterial resistance to antibiotics is discussed in relation to the widespread use of antibiotics, and possible public health implications.  相似文献   

6.
Urinary tract infections (UTIs) are the most common infectious diseases in infants and the elderly; they are also the most common among nosocomial infections. The treatment of UTIs usually involves a short-term course of antibiotics. The purpose of this study was to identify the strains of lactic acid bacteria (LAB) that can inhibit the urinary tract pathogen Staphylococcus saprophyticus, as alternatives to antibiotics. In this study, we collected 370 LAB strains from fermented plant products and reference strains from the Bioresources Collection and Research Center (BCRC). Using spent culture supernatants (SCS), we then screened these LAB strains with for antimicrobial effects on urinary tract pathogens by the well-diffusion assay. Seven LAB strains—PM2, PM68, PM78, PM201, PM206, PM229, and RY2—exhibited inhibitory activity and were evaluated for anti-growth activity against urinary tract pathogens by the co-culture inhibition assay. Anti-adhesion and anti-invasion activities against urinary tract pathogens were evaluated using the SV-HUC-1 urothelial cell cultures. The results revealed that the survival rate of S. saprophyticus ranged from 0.9–2.96%, with the pH continuously decreasing after co-culture with LAB strains for 4 h. In the competitive adhesion assay, the exclusion and competition groups performed better than the displacement group. In the SV-HUC-1 cell invasion assay, PM201, PM206, PM229, and RY2 were found to inhibit the invasion of SV-HUC-1 cells by S. saprophyticus BCRC 10786. To conclude, RY2, PM229, and PM68 strains exhibited inhibitory activity against the urinary tract pathogen S. saprophyticus.  相似文献   

7.
Samples from municipal waste water, the Bonny River estuary and wells in and around Port Harcourt were examined for bacteriological quality over a 9 month period. A total of 157 Pseudomonas spp., 133 Escherichia coli and 282 other coliforms were isolated and tested for the incidence of resistance to 10 antibiotics. All of the Pseudomonas spp. were resistant to at least one of the antibiotics while 96.2% were resistant to two or more. Most (83.5%) of the E. coli and other coliforms (91.8%) were resistant to at least one antibiotic. All strains were susceptible to gentamicin. Minimal inhibitory concentrations of ampicillin and tetracycline for E. coli ranged from 6.25 to 50 and 6.25 to 12.5 micrograms/ml, respectively. Minimal inhibitory concentrations of ampicillin and tetracycline were 1000 and 25 micrograms/ml for the Pseudomonas strains. The high incidence of bacterial resistance to antibiotics is discussed in relation to the widespread use of antibiotics, and possible public health implications.  相似文献   

8.
Genotyping studies of Australian Scedosporium isolates have revealed the strong prevalence of a recently described species: Scedosporium aurantiacum. In addition to occurring in the environment, this fungus is also known to colonise the respiratory tracts of cystic fibrosis (CF) patients. A high throughput Phenotype Microarray (PM) analysis using 94 assorted substrates (sugars, amino acids, hexose-acids and carboxylic acids) was carried out for four isolates exhibiting different levels of virulence, determined using a Galleria mellonella infection model. A significant difference was observed in the substrate utilisation patterns of strains displaying differential virulence. For example, certain sugars such as sucrose (saccharose) were utilised only by low virulence strains whereas some sugar derivatives such as D-turanose promoted respiration only in the more virulent strains. Strains with a higher level of virulence also displayed flexibility and metabolic adaptability at two different temperature conditions tested (28 and 37°C). Phenotype microarray data were integrated with the whole-genome sequence data of S. aurantiacum to reconstruct a pathway map for the metabolism of selected substrates to further elucidate differences between the strains.  相似文献   

9.
10.
Dairy production is threatened by antibiotic resistant pathogens worldwide, and alternative solutions to treat mastitis are not available. The prevalence of antibiotic resistant strains is not well known in less developed countries. The prevalence of pathogenic bacteria and their resistance to 21 commercial antibiotics were studied in milk samples taken from 122 dairy cows suffering from the symptoms of mastitis in Egypt. The bacterial species were identified with molecular methods, and antibiotic resistance was studied with disc diffusion method. The prevalence of Streptococcus aureus, Escherichia coli and Pseudomonas aeruginosa were 30%, 17% and 3.5%, respectively. Most (90%) of the S. aureus strains showed resistance to penicillin whereas only 10% of the strains were resistant to oxacillin. Nearly half (40%) of E. coli strains showed resistance to streptomycin. Six P. aeruginosa strains showed resistance to several antibiotics, including ceftriaxone, enrofloxacin and levofloxacin. This points out that despite P. aeruginosa was not common, it should be followed up carefully. Potential biocontrol agents against antibiotic resistant mastitis bacteria were searched among 30 endophytic actinobacterial strains derived from wild medicinal plants. Three plants, namely Mentha longifolia, Malva parviflora and Pulicaria undulata were chosen for a more detailed study; their endophytic actinobacteria were used to prepare metabolic extracts. The crude metabolites of the actinobacteria were extracted with ethyl acetate. All metabolic extracts inhibited the growth of S. aureus, methicillin-resistant Staphylococcus aureus (MRSA), E. coli and P. aeruginosa in vitro. The 16S rRNA sequence analysis revealed that the most efficient actinobacterial strains were two Micromonospora sp. and one Actinobacteria bacterium. We conclude that the combination of the metabolites of several endophytic actinobacteria derived from several medicinal plants would be the most efficient against pathogens. Different metabolite cocktails should be studied further in order to develop novel biocontrol agents to treat antibiotic resistant mastitis bacteria in dairy cows.  相似文献   

11.
Klebsiella pneumoniae is a Gram-negative bacterium of the family Enterobacteriaceae that possesses diverse metabolic capabilities: many strains are leading causes of hospital-acquired infections that are often refractory to multiple antibiotics, yet other strains are metabolically engineered and used for production of commercially valuable chemicals. To study its metabolism, we constructed a genome-scale metabolic model (iYL1228) for strain MGH 78578, experimentally determined its biomass composition, experimentally determined its ability to grow on a broad range of carbon, nitrogen, phosphorus and sulfur sources, and assessed the ability of the model to accurately simulate growth versus no growth on these substrates. The model contains 1,228 genes encoding 1,188 enzymes that catalyze 1,970 reactions and accurately simulates growth on 84% of the substrates tested. Furthermore, quantitative comparison of growth rates between the model and experimental data for nine of the substrates also showed good agreement. The genome-scale metabolic reconstruction for K. pneumoniae presented here thus provides an experimentally validated in silico platform for further studies of this important industrial and biomedical organism.  相似文献   

12.
Escherichia coli-based whole-cell biocatalysts are widely used for the sustainable production of value-added chemicals. However, weak acids present as substrates and/or products obstruct the growth and fermentation capability of E. coli. Here, we show that a viroporin consisting of the influenza A matrix-2 (M2) protein, is activated by low pH and has proton channel activity in E. coli. The heterologous expression of the M2 protein in E. coli resulted in a significant increase in the intracellular pH and cell viability in the presence of various weak acids with different lengths of carbon chains. In addition, the feasibility of developing a robust and efficient E. coli-based whole-cell biocatalyst via introduction of the proton-selective viroporin was explored by employing (Z)-11-(heptanolyoxy)undec-9-enoic acid (ester) and 2-fucosyllactose (2′-FL) as model products, whose production is hampered by cytosolic acidification. The engineered E. coli strains containing the proton-selective viroporin exhibited approximately 80% and 230% higher concentrations of the ester and 2′-FL, respectively, than the control strains without the M2 protein. The simple and powerful strategy developed in this study can be applied to produce other valuable chemicals whose production involves substrates and/or products that cause cytosolic acidification.  相似文献   

13.
Almost 90% of our energy comes from fossil fuels, which are both limited and polluting, hence the need to find alternative sources. Biofuels can provide a sustainable and renewable source of energy for the future. Recent significant advances in genetic engineering and fermentation technology have made microbial bio-based production of chemicals from renewable resources more viable. Clostridium species are considered as promising micro-organisms for the production of a wide range of chemicals for industrial use. However, a number of scientific challenges still need to be overcome to facilitate an economically viable production system. These include the use of cheap non-food-based substrates, a better understanding of the metabolic processes involved, improvement of strains through genetic engineering and innovation in process technology. This paper reviews recent developments in these areas, advancing the use of Clostridium within an industrial context especially for the production of biofuels.  相似文献   

14.
目的分析本院80~100岁高龄患者血液感染常见革兰阴性杆菌的种类及其耐药状况,为本院合理使用抗生素提供依据。方法采用BacT/Alert 3D血培养仪对血液标本进行阳性鉴定;VITEK-2Compact全自动微生物鉴定仪进行鉴定;K-B纸片扩散法对抗菌药物进行敏感性测定;使用WHONET 5.4分析软件分析数据。结果本院高龄患者血液培养阳性标本中共分离出革兰阴性杆菌108株,以肠杆菌科细菌为主,其次为非发酵菌,前者主要为大肠埃希菌52株(48.15%)和肺炎克雷伯菌37株(34.26%),后者主要包括铜绿假单胞菌10株(9.26%)和鲍曼不动杆菌8株(7.41%)。其中大肠埃希菌和肺炎克雷伯菌对亚胺培南的耐药率分别为1.92%和13.51%,两者对氨苄西林、氨苄西林/舒巴坦、头孢唑林、头孢呋辛的耐药率均高于50.00%;铜绿假单胞菌和鲍曼不动杆菌对亚胺培南的耐药率分别为20.00%和25.00%,后者对其他抗菌药物的耐药率均高于前者。结论碳青酶烯类抗生素可作为本院高龄患者常见革兰阴性杆菌所致血液感染的首选药物;但在治疗中应考虑细菌的耐药特点及患者的代谢特点合理选择抗生素。  相似文献   

15.
Sensitivity of 4 clinical strains of Staph. aureus and E. coli to 13 hydroacridine derivatives and their combinations with antibiotics, such as benzylpenicillin, ampicillin, semi-synthetic penicillins, streptomycin, chloramphenicol, tetracycline, chlortetracycline, monomycin, oleandomycin and erythromycin was studied. The highest bacteriostatic effect was observed on the use of perhydroactidine derivatives with benzylpenicillin or ampicillin with respect to polyresistant penicillinase-producing strains of Staph. aureus, resistance of which to these antibiotics was decreased 250--1000 times. Under the effect of the above compounds the staphylococcal resistance to chloramphenicol, tetracycline, chlortetracycline, oleandomycine and erythromycin decreased 2--66 times. The combinations of hydroacridine with the antibiotics, except 10-amino-trans-syn-trans-perhydroacridine had no effect on the resistance of the E. coli strains. The results of the combined effect of the above substances were associated with their chemical nature, the bacterial type and possibly the character of the strain resistance.  相似文献   

16.
Vanillin is one of the most important flavors in the food industry and there is great interest in its production through biotechnological processes starting from natural substrates such as ferulic acid. Among bacteria, recombinant Escherichia coli strains are the most efficient vanillin producers, whereas Pseudomonas spp. strains, although possessing a broader metabolic versatility, rapidly metabolize various phenolic compounds including vanillin. In order to develop a robust Pseudomonas strain that can produce vanillin in high yields and at high productivity, the vanillin dehydrogenase (vdh)-encoding gene of Pseudomonas fluorescens BF13 strain was inactivated via targeted mutagenesis. The results demonstrated that engineered derivatives of strain BF13 accumulate vanillin if inactivation of vdh is associated with concurrent expression of structural genes for feruloyl-CoA synthetase (fcs) and hydratase/aldolase (ech) from a low-copy plasmid. The conversion of ferulic acid to vanillin was enhanced by optimization of growth conditions, growth phase and parameters of the bioconversion process. The developed strain produced up to 8.41 mM vanillin, which is the highest final titer of vanillin produced by a Pseudomonas strain to date and opens new perspectives in the use of bacterial biocatalysts for biotechnological production of vanillin from agro-industrial wastes which contain ferulic acid.  相似文献   

17.
The bacterial ribosome is an important target for many antimicrobial agents. Aminoglycoside antibiotics bind to both 30S and 50S ribosomal subunits, inhibiting translation and subunit formation. During ribosomal subunit biogenesis, ribonucleases (RNases) play an important role in rRNA processing. E. coli cells deficient for specific processing RNases are predicted to have an increased sensitivity to neomycin and paromomycin. Four RNase mutant strains showed an increased growth sensitivity to both aminoglycoside antibiotics. E. coli strains deficient for the rRNA processing enzymes RNase III, RNase E, RNase G or RNase PH showed significantly reduced subunit amounts after antibiotic treatment. A substantial increase in a 16S RNA precursor molecule was observed as well. Ribosomal RNA turnover was stimulated, and an enhancement of 16S and 23S rRNA fragmentation was detected in E. coli cells deficient for these enzymes. This work indicates that bacterial RNases may be novel antimicrobial targets.  相似文献   

18.
The objective of this study is to improve the viability after freeze-drying and during storage of delicate or recalcitrant strains safeguarded at biological resource centers. To achieve this objective, a joint experimental strategy was established among the different involved partner collections of the EMbaRC project (www.embarc.eu). Five bacterial strains considered as recalcitrant to freeze-drying were subjected to a standardized freeze-drying protocol and to seven agreed protocol variants. Viability of these strains was determined before and after freeze-drying (within 1 week, after 6 and 12 months, and after accelerated storage) for each of the protocols. Furthermore, strains were exchanged between partners to perform experiments with different freeze-dryer-dependent parameters. Of all tested variables, choice of the lyoprotectant had the biggest impact on viability after freeze-drying and during storage. For nearly all tested strains, skim milk as lyoprotectant resulted in lowest viability after freeze-drying and storage. On the other hand, best freeze-drying and storage conditions were strain and device dependent. For Aeromonas salmonicida CECT 894T, best survival was obtained when horse serum supplemented with trehalose was used as lyoprotectant, while Aliivibrio fischeri LMG 4414T should be freeze-dried in skim milk supplemented with marine broth in a 1:1 ratio. Freeze-drying Campylobacter fetus CIP 53.96T using skim milk supplemented with trehalose as lyoprotectant resulted in best recovery. Xanthomonas fragariae DSM 3587T expressed high viability after freeze-drying and storage for all tested lyoprotectants and could not be considered as recalcitrant. In contrary, Flavobacterium columnare LMG 10406T did not survive the freeze-drying process under all tested conditions.  相似文献   

19.
The interaction of pyridoxal (PL) with pyridoxamine (PM) in the presence or absence of CU(II) has been studied in acidic aqueous solutions. We conclude that a ternary complex is formed prior to the interaction of pyridoxal with pyridoxamine in the presence of Cu(II) ions. Although the rate of interaction of excess PL with the Cu(II)-PM system of composition 1:1 followed pseudo-first-order kinetics, this was not so with composition ratios of PM to Cu(II), greater than unity. The observed rate constant (kobs) has the following form for Cu(II):PM:PL in the ratio 1:1:10 (or more):
  相似文献   

20.
A simple effective and compact freeze-drying method involving skim milk 20% (w/v) and glutamate 5% or meso-inositol 5% or honey 10% or raffinose 5% for the long-term preservation of bacteria is described. As a case example more than 160 strains representing 36 species of nitrogen-fixing bacteria, 11 species of chemolithorutotrophic bacteria and five species of Aquaspirillum were successfully preserved. All tested strains proved viable and showed about 10–100% survival after freeze-drying and during 2–3 years of storage at +9°C. In such lyophilized cultures no loss in plasmids or other desirable characters was observed. The method is also suitable for the preservation of other fragile and difficult microorganisms as several other strains including bacteria with introduced plasmids could equally survive well and retained plasmids after lyophilization with this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号