首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ERK1/2 signaling is frequently dysregulated in tumors through BRAF mutation. Targeting mutant BRAF with vemurafenib frequently elicits therapeutic responses; however, durable effects are often limited by ERK1/2 pathway reactivation via poorly defined mechanisms. We generated mutant BRAFV600E melanoma cells that exhibit resistance to PLX4720, the tool compound for vemurafenib, that co-expressed mutant (Q61K) NRAS. In these BRAFV600E/NRASQ61K co-expressing cells, re-activation of the ERK1/2 pathway during PLX4720 treatment was dependent on NRAS. Expression of mutant NRAS in parental BRAFV600 cells was sufficient to by-pass PLX4720 effects on ERK1/2 signaling, entry into S phase and susceptibility to apoptosis in a manner dependent on the RAF binding site in NRAS. ERK1/2 activation in BRAFV600E/NRASQ61K cells required CRAF only in the presence of PLX4720, indicating a switch in RAF isoform requirement. Both ERK1/2 activation and resistance to apoptosis of BRAFV600E/NRASQ61K cells in the presence of PLX4720 was modulated by SHOC-2/Sur-8 expression, a RAS-RAF scaffold protein. These data show that NRAS mutations confer resistance to RAF inhibitors in mutant BRAF cells and alter RAF isoform and scaffold molecule requirements to re-activate the ERK1/2 pathway.  相似文献   

2.
3.
Phospholamban (PLB) inhibits the activity of SERCA2a, the Ca2+-ATPase in cardiac sarcoplasmic reticulum, by decreasing the apparent affinity of the enzyme for Ca2+. Recent cross-linking studies have suggested that PLB binding and Ca2+ binding to SERCA2a are mutually exclusive. PLB binds to the E2 conformation of the Ca2+-ATPase, preventing formation of E1, the conformation that binds two Ca2+ (at sites I and II) with high affinity and is required for ATP hydrolysis. Here we determined whether Ca2+ binding to site I, site II, or both sites is sufficient to dissociate PLB from the Ca2+ pump. Seven SERCA2a mutants with amino acid substitutions at Ca2+-binding site I (E770Q, T798A, and E907Q), site II (E309Q and N795A), or both sites (D799N and E309Q/E770Q) were made, and the effects of Ca2+ on N30C-PLB cross-linking to Lys328 of SERCA2a were measured. In agreement with earlier reports with the skeletal muscle Ca2+-ATPase, none of the SERCA2a mutants (except E907Q) hydrolyzed ATP in the presence of Ca2+; however, all were phosphorylatable by Pi to form E2P. Ca2+ inhibition of E2P formation was observed only in SERCA2a mutants retaining site I. In cross-linking assays, strong cross-linking between N30C-PLB and each Ca2+-ATPase mutant was observed in the absence of Ca2+. Importantly, however, micromolar Ca2+ inhibited PLB cross-linking only to mutants retaining a functional Ca2+-binding site I. The dynamic equilibrium between Ca2+ pumps and N30C-PLB was retained by all mutants, demonstrating normal regulation of cross-linking by ATP, thapsigargin, and anti-PLB antibody. From these results we conclude that site I is the key Ca2+-binding site regulating the physical association between PLB and SERCA2a.  相似文献   

4.
Mammalian Na+/Ca2+ (NCX) and Na+/Ca2+-K+ exchangers (NCKX) are polytopic membrane proteins that play critical roles in calcium homeostasis in many cells. Although hydropathy plots for NCX and NCKX are very similar, reported topological models for NCX1 and NCKX2 differ in the orientation of the three C-terminal transmembrane segments (TMS). NCX1 is thought to have 9 TMS and a re-entrant loop, whereas NCKX2 is thought to have 10 TMS. The current topological model of NCKX2 is very similar to the 10 membrane spanning helices seen in the recently reported crystal structure of NCX_MJ, a distantly related archaebacterial Na+/Ca2+ exchanger. Here we reinvestigate the orientation of the three C-terminal TMS of NCX1 and NCKX2 using mass-tagging experiments of substituted cysteine residues. Our results suggest that NCX1, NCKX2 and NCX_MJ all share the same 10 TMS topology.  相似文献   

5.
RAS is frequently mutated in various tumors and known to be difficult to target. NRASQ61K/R are the second most frequent mutations found in human skin melanoma after BRAFV600E. Aside from surgery, various approaches, including targeted therapies, immunotherapies, and combination therapies, are used to treat patients carrying NRAS mutations, but they are inefficient. Here, we established mouse NRASQ61K melanoma cell lines and genetically derived isografts (GDIs) from Tyr::NRASQ61K mouse melanoma that can be used in vitro and in vivo in an immune‐competent environment (C57BL/6) to test and discover novel therapies. We characterized these cell lines at the cellular, molecular, and oncogenic levels and show that NRASQ61K melanoma is highly sensitive to the combination of Mek and Akt inhibitors. This preclinical model shows much potential for the screening of novel therapeutic strategies for patients harboring NRAS mutations that have limited therapeutic options and resulted in poor prognoses.  相似文献   

6.
Na+/Ca2+ exchange (NCX) is a major Ca2+ extrusion system in cardiac myocytes, but can also mediate Ca2+ influx and trigger sarcoplasmic reticulum Ca2+ release. Under conditions such as digitalis toxicity or ischemia/reperfusion, increased [Na+]i may lead to a rise in [Ca2+]i through NCX, causing Ca2+ overload and triggered arrhythmias. Here we used an agent which selectively blocks Ca2+ influx by NCX, KB-R7943 (KBR), and assessed twitch contractions and Ca2+ transients in rat and guinea pig ventricular myocytes loaded with indo-1. KBR (5 M) did not alter control steady-state twitch contractions or Ca2+ transients at 0.5 Hz in rat, but significantly decreased them in guinea pig myocytes. When cells were Na+-loaded by perfusion of strophanthidin (50 M), the addition of KBR reduced diastolic [Ca2+]i and abolished spontaneous Ca2+ oscillations. In guinea pig papillary muscles exposed to substrate-free hypoxic medium for 60 min, KBR (10 M applied 10 min before and during reoxygenation) reduced both the incidence and duration of reoxygenation-induced arrhythmias. KBR also enhanced the recovery of developed tension after reoxygenation. It is concluded that (1) the importance of Ca2+ influx via NCX for normal excitation-contraction coupling is species-dependent, and (2) Ca2+ influx via NCX may be critical in causing myocardial Ca2+ overload and triggered activities induced by cardiac glycoside or reoxygenation.  相似文献   

7.
Pig coronary artery smooth muscle expresses the Na+–Ca2+-exchanger NCX1 and the sarco/endoplasmic reticulum (SER) Ca2+ pump SERCA2. NCX has been proposed to play a role in refilling the SER Ca2+ pool. Caveolae may also direct Ca2+ traffic during cell signaling. Here, we use immunofluorescence microscopy to determine if there is proximity between NCX1, SERCA2, and the caveolar protein caveolin-1. Stacks of images of cell surface domains were analyzed. Image stacks for one protein were analyzed for overlap with another protein, with and without randomization or image shifting. Within the resolution of light microscopy, there is significant overlap in the distributions of NCX1, SERCA2, and caveolin-1 but the three proteins are not always co-localized. The proximity between NCX1, SERCA2 is consistent with the assertion that NCX may supply Ca2+ for refilling the SER but this relationship is only partial. Similarly, caveolae may direct traffic in some Ca2+ signaling pathways but not others.  相似文献   

8.
Na+/Ca2+ exchangers (NCX) constitute a major Ca2+ export system that facilitates the re-establishment of cytosolic Ca2+ levels in many tissues. Ca2+ interactions at its Ca2+ binding domains (CBD1 and CBD2) are essential for the allosteric regulation of Na+/Ca2+ exchange activity. The structure of the Ca2+-bound form of CBD1, the primary Ca2+ sensor from canine NCX1, but not the Ca2+-free form, has been reported, although the molecular mechanism of Ca2+ regulation remains unclear. Here, we report crystal structures for three distinct Ca2+ binding states of CBD1 from CALX, a Na+/Ca2+ exchanger found in Drosophila sensory neurons. The fully Ca2+-bound CALX-CBD1 structure shows that four Ca2+ atoms bind at identical Ca2+ binding sites as those found in NCX1 and that the partial Ca2+ occupancy and apoform structures exhibit progressive conformational transitions, indicating incremental regulation of CALX exchange by successive Ca2+ binding at CBD1. The structures also predict that the primary Ca2+ pair plays the main role in triggering functional conformational changes. Confirming this prediction, mutagenesis of Glu455, which coordinates the primary Ca2+ pair, produces dramatic reductions of the regulatory Ca2+ affinity for exchange current, whereas mutagenesis of Glu520, which coordinates the secondary Ca2+ pair, has much smaller effects. Furthermore, our structures indicate that Ca2+ binding only enhances the stability of the Ca2+ binding site of CBD1 near the hinge region while the overall structure of CBD1 remains largely unaffected, implying that the Ca2+ regulatory function of CBD1, and possibly that for the entire NCX family, is mediated through domain interactions between CBD1 and the adjacent CBD2 at this hinge.  相似文献   

9.
Thrombin acts on the endothelium by activating protease-activated receptors (PARs). The endothelial thrombin-PAR system becomes deregulated during pathological conditions resulting in loss of barrier function and a pro-inflammatory and pro-angiogenic endothelial phenotype. We reported recently that the ion transporter Na+/Ca2+ exchanger (NCX) operating in the Ca2+-influx (reverse) mode promoted ERK1/2 activation and angiogenesis in vascular endothelial growth factor-stimulated primary human vascular endothelial cells. Here, we investigated whether Ca2+ influx through NCX was involved in ERK1/2 activation, angiogenesis, and endothelial barrier dysfunction in response to thrombin. Reverse-mode NCX inhibitors and RNAi-mediated NCX1 knockdown attenuated ERK1/2 phosphorylation in response to thrombin or an agonist of PAR-1, the main endothelial thrombin receptor. Conversely, promoting reverse-mode NCX by suppressing Na+-K+-ATPase activity enhanced ERK1/2 activation. Reverse-mode NCX inhibitors and NCX1 siRNA suppressed thrombin-induced primary human vascular endothelial cell angiogenesis, quantified as proliferation and tubular differentiation. Reverse-mode NCX inhibitors or NCX1 knockdown preserved barrier integrity upon thrombin stimulation in vitro. Moreover, the reverse-mode NCX inhibitor SEA0400 suppressed Evans'' blue albumin extravasation to the lung and kidneys and attenuated edema formation and ERK1/2 activation in the lungs of mice challenged with a peptide activator of PAR-1. Mechanistically, thrombin-induced ERK1/2 activation required NADPH oxidase 2-mediated reactive oxygen species (ROS) production, and reverse-mode NCX inhibitors and NCX1 siRNA suppressed thrombin-induced ROS production. We propose that reverse-mode NCX is a novel mechanism contributing to thrombin-induced angiogenesis and hyperpermeability by mediating ERK1/2 activation in a ROS-dependent manner. Targeting reverse-mode NCX could be beneficial in pathological conditions involving unregulated thrombin signaling.  相似文献   

10.
Malignant hyperthermia (MH) is potentially fatal pharmacogenetic disorder of skeletal muscle caused by intracellular Ca2+ dysregulation. NCX is a bidirectional transporter that effluxes (forward mode) or influxes (reverse mode) Ca2+ depending on cellular activity. Resting intracellular calcium ([Ca2+]r) and sodium ([Na+]r) concentrations are elevated in MH susceptible (MHS) swine and murine muscles compared with their normal (MHN) counterparts, although the contribution of NCX is unclear. Lowering [Na+]e elevates [Ca2+]r in both MHN and MHS swine muscle fibers and it is prevented by removal of extracellular Ca2+ or reduced by t-tubule disruption, in both genotypes. KB-R7943, a nonselective NCX3 blocker, reduced [Ca2+]r in both swine and murine MHN and MHS muscle fibers at rest and decreased the magnitude of the elevation of [Ca2+]r observed in MHS fibers after exposure to halothane. YM-244769, a high affinity reverse mode NCX3 blocker, reduces [Ca2+]r in MHS muscle fibers and decreases the amplitude of [Ca2+]r rise triggered by halothane, but had no effect on [Ca2+]r in MHN muscle. In addition, YM-244769 reduced the peak and area under the curve of the Ca2+ transient elicited by high [K+]e and increased its rate of decay in MHS muscle fibers. siRNA knockdown of NCX3 in MHS myotubes reduced [Ca2+]r and the Ca2+ transient area induced by high [K+]e. These results demonstrate a functional NCX3 in skeletal muscle whose activity is enhanced in MHS. Moreover reverse mode NCX3 contributes to the Ca2+ transients associated with K+-induced depolarization and the halothane-triggered MH episode in MHS muscle fibers.  相似文献   

11.
Astroglial excitability operates through increases in Ca2+cyt (cytosolic Ca2+), which can lead to glutamatergic gliotransmission. In parallel fluctuations in astrocytic Na+cyt (cytosolic Na+) control metabolic neuronal-glial signalling, most notably through stimulation of lactate production, which on release from astrocytes can be taken up and utilized by nearby neurons, a process referred to as lactate shuttle. Both gliotransmission and lactate shuttle play a role in modulation of synaptic transmission and plasticity. Consequently, we studied the role of the PMCA (plasma membrane Ca2+-ATPase), NCX (plasma membrane Na+/Ca2+ exchanger) and NKA (Na+/K+-ATPase) in complex and coordinated regulation of Ca2+cyt and Na+cyt in astrocytes at rest and upon mechanical stimulation. Our data support the notion that NKA and PMCA are the major Na+ and Ca2+ extruders in resting astrocytes. Surprisingly, the blockade of NKA or PMCA appeared less important during times of Ca2+ and Na+ cytosolic loads caused by mechanical stimulation. Unexpectedly, NCX in reverse mode appeared as a major contributor to overall Ca2+ and Na+ homoeostasis in astrocytes both at rest and when these glial cells were mechanically stimulated. In addition, NCX facilitated mechanically induced Ca2+-dependent exocytotic release of glutamate from astrocytes. These findings help better understanding of astrocyte-neuron bidirectional signalling at the tripartite synapse and/or microvasculature. We propose that NCX operating in reverse mode could be involved in fast and spatially localized Ca2+-dependent gliotransmission, that would operate in parallel to a slower and more widely distributed gliotransmission pathway that requires metabotropically controlled Ca2+ release from the ER (endoplasmic reticulum).  相似文献   

12.
NGF induces neuronal differentiation by modulating [Ca2+]i. However, the role of the three isoforms of the main Ca2+-extruding system, the Na+/Ca2+ exchanger (NCX), in NGF-induced differentiation remains unexplored. We investigated whether NCX1, NCX2, and NCX3 isoforms could play a relevant role in neuronal differentiation through the modulation of [Ca2+]i and the Akt pathway. NGF caused progressive neurite elongation; a significant increase of the well known marker of growth cones, GAP-43; and an enhancement of endoplasmic reticulum (ER) Ca2+ content and of Akt phosphorylation through an early activation of ERK1/2. Interestingly, during NGF-induced differentiation, the NCX1 protein level increased, NCX3 decreased, and NCX2 remained unaffected. At the same time, NCX total activity increased. Moreover, NCX1 colocalized and coimmunoprecipitated with GAP-43, and NCX1 silencing prevented NGF-induced effects on GAP-43 expression, Akt phosphorylation, and neurite outgrowth. On the other hand, the overexpression of its neuronal splicing isoform, NCX1.4, even in the absence of NGF, induced an increase in Akt phosphorylation and GAP-43 protein expression. Interestingly, tetrodotoxin-sensitive Na+ currents and 1,3-benzenedicarboxylic acid, 4,4′-[1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diylbis(5-methoxy-6,12-benzofurandiyl)]bis-, tetrakis[(acetyloxy)methyl] ester-detected [Na+]i significantly increased in cells overexpressing NCX1.4 as well as ER Ca2+ content. This latter effect was prevented by tetrodotoxin. Furthermore, either the [Ca2+]i chelator(1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid) (BAPTA-AM) or the PI3K inhibitor LY 294002 prevented Akt phosphorylation and GAP-43 protein expression rise in NCX1.4 overexpressing cells. Moreover, in primary cortical neurons, NCX1 silencing prevented Akt phosphorylation, GAP-43 and MAP2 overexpression, and neurite elongation. Collectively, these data show that NCX1 participates in neuronal differentiation through the modulation of ER Ca2+ content and PI3K signaling.  相似文献   

13.
Intracellular [Na+]i and [Ca2+]i imbalance significantly contribute to neuro-axonal dysfunctions and maladaptive myelin repair or remyelination failure in chronic inflammatory demyelinating diseases such as multiple sclerosis. Progress in recent years has led to significant advances in understanding how [Ca2+]i signaling network drive degeneration or remyelination of demyelinated axons.The Na+/Ca2+ exchangers (NCXs), a transmembrane protein family including three members encoded by ncx1, ncx2, and ncx3 genes, are emerging important regulators of [Na+]i and [Ca2+]i both in neurons and glial cells. Here we review recent advance highlighting the role of NCX exchangers in axons and myelin-forming cells, i.e. oligodendrocytes, which represent the major targets of the aberrant inflammatory attack in multiple sclerosis. The contribution of NCX subtypes to axonal pathology and myelin synthesis will be discussed. Although a definitive understanding of mechanisms regulating axonal pathology and remyelination failure in chronic demyelinating diseases is still lacking and requires further investigation, current knowledge suggest that NCX activity plays a crucial role in these processes. Defining the relative contributions of each NCX transporter in axon pathology and myelinating glia will constitute not only a major advance in understanding in detail the intricate mechanism of neurodegeneration and remyelination failure in demyelinating diseases but also will help to identify neuroprotective or remyelinating strategies targeting selective NCX exchangers as a means of treating MS.  相似文献   

14.
Na+- Ca2 + exchanger (NCX) has been proposed to play a role in refilling the sarco/endoplasmic reticulum (SER) Ca2 + pool along with the SER Ca2 + pump (SERCA). Here, SERCA inhibitor thapsigargin was used to determine the effects of SER Ca2 + depletion on NCX–SERCA interactions in smooth muscle cells cultured from pig coronary artery. The cells were Na+-loaded and then placed in either a Na+-containing or in a Na+-substituted solution. Subsequently, the difference in Ca2 + entry between the two groups was examined and defined as the NCX mediated Ca2 + entry. The NCX mediated Ca2 + entry in the smooth muscle cells was monitored using two methods: Ca2 +sensitive fluorescence dye Fluo-4 and radioactive Ca2 +. Ca2 +-entry was greater in the Na+-substituted cells than in the Na+-containing cells when measured by either method. This difference was established to be NCX-mediated as it was sensitive to the NCX inhibitors. Thapsigargin diminished the NCX mediated Ca2 + entry as determined by either method. Immunofluorescence confocal microscopy was used to determine the co-localization of NCX1 and subsarcolemmal SERCA2 in the cells incubated in the Na+-substituted solution with or without thapsigargin. SER Ca2 + depletion with thapsigargin increased the co-localization between NCX1 and the subsarcolemmal SERCA2. Thus, inhibition of SERCA2 leads to blockade of constant Ca2 + entry through NCX1 and also increases proximity between NCX1 and SERCA2. This blockade of Ca2 + entry may protect the cells against Ca2 +-overload during ischemia–reperfusion when SERCA2 is known to be damaged.  相似文献   

15.
We expressed full-length Na+-Ca2+ exchangers (NCXs) with mutations in two Ca2+-binding domains (CBD1 and CBD2) to determine the roles of the CBDs in Ca2+-dependent regulation of NCX. CBD1 has four Ca2+-binding sites, and mutation of residues Asp421 and Glu451, which primarily coordinate Ca2+ at sites 1 and 2, had little effect on regulation of NCX by Ca2+. In contrast, mutations at residues Glu385, Asp446, Asp447, and Asp500, which coordinate Ca2+ at sites 3 and 4 of CBD1, resulted in a drastic decrease in the apparent affinity of peak exchange current for regulatory Ca2+. Another mutant, M7, with 7 key residues of CBD1 replaced, showed a further decrease in apparent Ca2+ affinity but retained regulation, confirming a contribution of CBD2 to Ca2+ regulation. Addition of the mutation K585E (located in CBD2) into the M7 background induced a marked increase in Ca2+ affinity for both steady-state and peak currents. Also, we have shown previously that the CBD2 mutations E516L and E683V have no Ca2+-dependent regulation. We now demonstrate that introduction of a positive charge at these locations rescues Ca2+-dependent regulation. Finally, our data demonstrate that deletion of the unstructured loops between β-strands F and G of both CBDs does not alter the regulation of the exchanger by Ca2+, indicating that these segments are not important in regulation. Thus, CBD1 and CBD2 have distinct roles in Ca2+-dependent regulation of NCX. CBD1 determines the affinity of NCX for regulatory Ca2+, although CBD2 is also necessary for Ca2+-dependent regulation.  相似文献   

16.
Human platelets use a rise in cytosolic Ca2+ concentration to activate all stages of thrombus formation, however, how they are able to decode cytosolic Ca2+ signals to trigger each of these independently is unknown. Other cells create local Ca2+ signals to activate Ca2+-sensitive effectors specifically localised to these subcellular regions. However, no previous study has demonstrated that agonist-stimulated human platelets can generate a local cytosolic Ca2+ signal. Platelets possess a structure called the membrane complex (MC) where the main intracellular calcium store, the dense tubular system (DTS), is coupled tightly to an invaginated portion of the plasma membrane called the open canalicular system (OCS). Here we hypothesised that human platelets use a Ca2+ nanodomain created within the MC to control the earliest phases of platelet activation. Dimethyl-BAPTA-loaded human platelets were stimulated with thrombin in the absence of extracellular Ca2+ to isolate a cytosolic Ca2+ nanodomain created by Ca2+ release from the DTS. In the absence of any detectable rise in global cytosolic Ca2+ concentration, thrombin stimulation triggered Na+/Ca2+ exchanger (NCX)-dependent Ca2+ removal into the extracellular space, as well as Ca2+-dependent shape change in the absence of platelet aggregation. The NCX-mediated Ca2+ removal was dependent on the normal localisation of the DTS, and immunofluorescent staining of NCX3 demonstrated its localisation to the OCS, consistent with this Ca2+ nanodomain being formed within the MC. These results demonstrated that human platelets possess a functional Ca2+ nanodomain contained within the MC that can control shape change independently of platelet aggregation.  相似文献   

17.
As a solute carrier electrogenic transporter, the sodium/calcium exchanger (NCX1-3/SLC8A1-A3) links the trans-plasmalemmal gradients of sodium and calcium ions (Na+, Ca2+) to the membrane potential of astrocytes. Classically, NCX is considered to serve the export of Ca2+ at the expense of the Na+ gradient, defined as a “forward mode” operation. Forward mode NCX activity contributes to Ca2+ extrusion and thus to the recovery from intracellular Ca2+ signals in astrocytes. The reversal potential of the NCX, owing to its transport stoichiometry of 3 Na+ to 1 Ca2+, is, however, close to the astrocytes’ membrane potential and hence even small elevations in the astrocytic Na+ concentration or minor depolarisations switch it into the “reverse mode” (Ca2+ import/Na+ export). Notably, transient Na+ elevations in the millimolar range are induced by uptake of glutamate or GABA into astrocytes and/or by the opening of Na+-permeable ion channels in response to neuronal activity. Activity-related Na+ transients result in NCX reversal, which mediates Ca2+ influx from the extracellular space, thereby generating astrocyte Ca2+ signalling independent from InsP3-mediated release from intracellular stores. Under pathological conditions, reverse NCX promotes cytosolic Ca2+ overload, while dampening Na+ elevations of astrocytes. This review provides an overview on our current knowledge about this fascinating transporter and its special functional role in astrocytes. We shall delineate that Na+-driven, reverse NCX-mediated astrocyte Ca2+ signals are involved neurone-glia interaction. Na+ transients, translated by the NCX into Ca2+ elevations, thereby emerge as a new signalling pathway in astrocytes.  相似文献   

18.
The synergy between synaptic Glu release and astrocytic Glu-Na+ symport is essential to the signalling function of the tripartite synapse. Here we used kinetic data of astrocytic Glu transporters (EAAT) and the Na+/Ca2+ exchanger (NCX) to simulate Glu release, Glu uptake and subsequent Na+ and Ca2+ dynamics in the astrocytic leaflet microdomain following single release event. Model simulations show that Glu-Na+ symport differently affect intracellular [Na+] in synapses with different extent of astrocytic coverage. Surprisingly, NCX activity alone has been shown to generate markedly stable, spontaneous Ca2+ oscillation in the astrocytic leaflet. These on-going oscillations appear when NCX operates either in the forward or reverse direction. We conjecture that intrinsic NCX activity may play a prominent role in the generation of astrocytic Ca2+ oscillations.  相似文献   

19.
The mammalian Na+/Ca2+ exchanger, NCX1.1, serves as the main mechanism for Ca2+ efflux across the sarcolemma following cardiac contraction. In addition to transporting Ca2+, NCX1.1 activity is also strongly regulated by Ca2+ binding to two intracellular regulatory domains, CBD1 and CBD2. The structures of both of these domains have been solved by NMR spectroscopy and x-ray crystallography, greatly enhancing our understanding of Ca2+ regulation. Nevertheless, the mechanisms by which Ca2+ regulates the exchanger remain incompletely understood. The initial NMR study showed that the first regulatory domain, CBD1, unfolds in the absence of regulatory Ca2+. It was further demonstrated that a mutation of an acidic residue involved in Ca2+ binding, E454K, prevents this structural unfolding. A contradictory result was recently obtained in a second NMR study in which Ca2+ removal merely triggered local rearrangements of CBD1. To address this issue, we solved the crystal structure of the E454K-CBD1 mutant and performed electrophysiological analyses of the full-length exchanger with mutations at position 454. We show that the lysine substitution replaces the Ca2+ ion at position 1 of the CBD1 Ca2+ binding site and participates in a charge compensation mechanism. Electrophysiological analyses show that mutations of residue Glu-454 have no impact on Ca2+ regulation of NCX1.1. Together, structural and mutational analyses indicate that only two of the four Ca2+ ions that bind to CBD1 are important for regulating exchanger activity.Cardiac contraction/relaxation relies upon Ca2+ fluxes across the plasma membrane (sarcolemma) of cardiomyocytes. Rapid Ca2+ influx (primarily through L-type Ca2+ channels) triggers the release of additional Ca2+ from the sarcoplasmic reticulum (SR),4 resulting in cardiomyocyte contraction. Removal of cytosolic Ca2+ by reuptake into the SR (through the SR Ca2+-ATPase) and expulsion from the cell (primarily through the Na+/Ca2+ exchanger, NCX1.1) results in relaxation (1). Altered Ca2+ cycling is observed in a number of pathophysiological situations including ischemia, hypertrophy, and heart failure (2). Understanding the function and regulation of NCX1.1 is thus of fundamental importance to understand cardiac physiology.NCX1.1 utilizes the electrochemical potential of the Na+ gradient to extrude Ca2+ in a ratio of three Na+ ions to one Ca2+ ion (3). In addition to transporting both Na+ and Ca2+, NCX1.1 is also strongly regulated by these two ions. Intracellular Na+ can induce NCX1.1 to enter an inactivated state, whereas Ca2+ bound to regulatory sites removes Na+-dependent inactivation and also activates Na+/Ca2+ exchange (3). These regulatory sites are located on a large cytoplasmic loop (∼500 residues located between transmembrane helices V and VI) containing two calcium binding domains (CBD1 and CBD2), which sense cytosolic Ca2+ levels. We have previously shown that Ca2+ binding to the primary site in CBD2 is required for full exchange regulation (4); CBD1, however, is a site of higher affinity and appears to dominate the activation of exchange activity by Ca2+.Both CBDs have an immunoglobulin fold formed from two antiparallel β sheets generating a β sandwich with a differing number of Ca2+ ions coordinated at the tip of the domain (4, 5). CBD1 binds four Ca2+ ions, whereas CBD2 binds only two Ca2+ ions. An initial NMR study revealed a local unfolding of the upper portion of CBD1 upon release of Ca2+ (6). In contrast, CBD2 did not display an unfolding response upon Ca2+ removal. A comparative analysis between CBDs revealed a difference in charge at residues in equivalent positions near the Ca2+ coordination site; Glu-454 in CBD1 is replaced by Lys-585 in CBD2. The unstructuring of CBD1 upon Ca2+ removal was alleviated by reversing the charge of the acidic residue (E454K) involved in Ca2+ coordination (6). Previously, we solved the structures of the Ca2+-bound and -free conformations of CBD2 and revealed a charge compensation mechanism involving Lys-585 (4). The positively charged lysine residue assumes the position of one of the Ca2+ ions upon Ca2+ depletion, permitting CBD2 to retain its overall fold (4). A similar phenomenon is predicted to take place in E454K-CBD1 mutant. In addition, Hilge et al. (6) showed that the E454K mutation of CBD1 decreases Ca2+ affinity to a level similar to that of CBD2 and suggested that the E454K mutation would cause the loss of primary regulation of NCX1.1 by CBD1.The significance of some of these observations is unclear as a recent NMR study (7) of CBD1 under more physiologically relevant conditions revealed no significant alteration in tertiary structure in the absence of Ca2+. It was hypothesized that Ca2+ binding induces localized conformational and dynamic changes involving several of the binding site residues. To clarify this issue, we solved the crystal structure of the E454K-CBD1 mutant and examined the functional effects of different CBD1 mutations in the full-length NCX1.1. The results indicate that charge compensation is indeed provided by the residue Lys-454 to replace one Ca2+, whereas the overall E454K-CBD1 structure is only slightly perturbed. The charge compensation, however, has no impact on Ca2+ regulation of NCX1.1.  相似文献   

20.
The mechanism whereby events in and around the catalytic site/head of Ca2+-ATPase effect Ca2+ release to the lumen from the transmembrane helices remains elusive. We developed a method to determine deoccluded bound Ca2+ by taking advantage of its rapid occlusion upon formation of E1PCa2 and of stabilization afforded by a high concentration of Ca2+. The assay is applicable to minute amounts of Ca2+-ATPase expressed in COS-1 cells. It was validated by measuring the Ca2+ binding properties of unphosphorylated Ca2+-ATPase. The method was then applied to the isomerization of the phosphorylated intermediate associated with the Ca2+ release process E1PCa2E2PCa2E2P + 2Ca2+. In the wild type, Ca2+ release occurs concomitantly with EP isomerization fitting with rate-limiting isomerization (E1PCa2E2PCa2) followed by very rapid Ca2+ release. In contrast, with alanine mutants of Leu119 and Tyr122 on the cytoplasmic part of the second transmembrane helix (M2) and Ile179 on the A domain, Ca2+ release in 10 μm Ca2+ lags EP isomerization, indicating the presence of a transient E2P state with bound Ca2+. The results suggest that these residues function in Ca2+ affinity reduction in E2P, likely via a structural rearrangement at the cytoplasmic part of M2 and a resulting association with the A and P domains, therefore leading to Ca2+ release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号