首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palmitoylation is the post-translational, covalent and reversible conjugation of a 16C saturated fatty acid to cysteine residues of proteins. The sodium calcium exchanger NCX1 is palmitoylated at a single cysteine residue in its large regulatory intracellular loop. Inactivation, mediated by the NCX1 inhibitory region XIP, is drastically impaired in unpalmitoylatable NCX1. The ability of XIP to bind and inactivate NCX1 is largely determined by NCX1 palmitoylation, which induces local conformational changes in the NCX1 intracellular loop to enable XIP to engage its binding site. Consequently, NCX1 palmitoylation regulates intracellular calcium by changing NCX1 sensitivity to inactivation. NCX1 palmitoylation is a dynamic phenomenon which is catalyzed by the palmitoyl acyl transferase zDHHC5 and reversed by the thioesterase APT1, with the switch between palmitoylated and depalmitoylated states, which has profound effects on NCX1 lipid interactions, influenced by NCX1 conformational poise. Herein we review the molecular and cellular consequences of NCX1 palmitoylation and its physiological relevance and highlight the importance of palmitoylation for NCX1 activity. We discuss the cellular control of protein palmitoylation and depalmitoylation, the relationship between lipid microdomains and lipidated and phospholipid binding proteins, and highlight the important unanswered questions in this emerging field.  相似文献   

2.
Palmitoylation (S-acylation) is the reversible conjugation of a fatty acid (usually C16 palmitate) to intracellular cysteine residues of proteins via a thioester linkage. Palmitoylation anchors intracellular regions of proteins to membranes because the palmitoylated cysteine is recruited to the lipid bilayer. NCX1 is palmitoylated at a single cysteine in its large regulatory intracellular loop. The presence of an amphipathic α-helix immediately adjacent to the NCX1 palmitoylation site is required for NCX1 palmitoylation. The NCX1 palmitoylation site is conserved through most metazoan phlya. Although palmitoylation does not regulate the normal forward or reverse ion transport modes of NCX1, NCX1 palmitoylation is required for its inactivation: sodium-dependent inactivation and inactivation by PIP2 depletion are significantly impaired for unpalmitoylatable NCX1. Here we review the role of palmitoylation in regulating NCX1 activity, and highlight future questions that must be addressed to fully understand the importance of this regulatory mechanism for sodium and calcium transport in cardiac muscle.  相似文献   

3.
Structure-dynamic analysis of archaeal NCX (NCX_Mj) provided new insights into the underlying mechanisms of ion selectivity, ion-coupled alternating access, ion occlusion, and transport catalysis. This knowledge is relevant, not only for prokaryotic and eukaryotic NCXs, but also for other families belonging to the superfamily of Ca2+/CA antiporters. In parallel with the ion transport mechanisms, the structure-dynamic determinants of regulatory CBD1 and CBD2 domains have been resolved according to which the Ca2+-induced allosteric signal is decoded at the two-domain interface and "secondarily" modified by a splicing segment at CBD2. The exon-dependent combinations within the splicing segment control the number of Ca2+ binding sites (from zero to three) at CBD2, as well as the Ca2+ binding affinity and Ca2+ off-rates at both CBDs. The exon-dependent combinations specifically rigidify the local segments at CBDs, yielding the Ca2+-dependent activation (through Ca2+ binding to CBD1) and Ca2+-dependent alleviation of Na+-induced inactivation (through Ca2+ binding with CBD2). The exon-dependent synergistic interactions between CBDs characteristically differ in NCX1 and NCX3, thereby underscoring the physiological relevance of structure-controlled shaping of ion-dependent regulation in tissue-specific NCX variants. How the ion-dependent regulatory modules operate in conjunction with other regulators (PIP2, palmitoylation, XIP, among the others) of NCX is an open question that remains to be determined.  相似文献   

4.
The sodium (Na+)‐calcium (Ca2+) exchanger 1 (NCX1) is an antiporter membrane protein encoded by the SLC8A1 gene. In the heart, it maintains cytosolic Ca2+ homeostasis, serving as the primary mechanism for Ca2+ extrusion during relaxation. Dysregulation of NCX1 is observed in end‐stage human heart failure. In this study, we used affinity purification coupled with MS in rat left ventricle lysates to identify novel NCX1 interacting proteins in the heart. Two screens were conducted using: (1) anti‐NCX1 against endogenous NCX1 and (2) anti‐His (where His is histidine) with His‐trigger factor‐NCX1cyt recombinant protein as bait. The respective methods identified 112 and 350 protein partners, of which several were known NCX1 partners from the literature, and 29 occurred in both screens. Ten novel protein partners (DYRK1A, PPP2R2A, SNTB1, DMD, RABGGTA, DNAJB4, BAG3, PDE3A, POPDC2, STK39) were validated for binding to NCX1, and two partners (DYRK1A, SNTB1) increased NCX1 activity when expressed in HEK293 cells. A cardiac NCX1 protein–protein interaction map was constructed. The map was highly connected, containing distinct clusters of proteins with different biological functions, where “cell communication” and “signal transduction” formed the largest clusters. The NCX1 interactome was also significantly enriched with proteins/genes involved in “cardiovascular disease” which can be explored as novel drug targets in future research.  相似文献   

5.
Previous studies have revealed the presence of Na+Ca2+ exchanger (NCX) activity associated with GM1 ganglioside in the nuclear envelope (NE) of neurons and glia as well as various neural cell lines. The nuclear NCX1 exchanger, unlike that in the plasma membrane, was shown to be tightly associated with GM1 and potentiated by the latter. One non-neural cell line, Jurkat, was found to contain no Na+Ca2+ exchanger of the NCX1, NCX2, or NCX3 types in either nuclear or plasma membrane. To determine whether such absence in the NE is generally characteristic of non-neural cells we have examined two more such cell lines in addition to human lymphocytes. RT-PCR showed NCX1 expression in both HeLa and NCTC cell lines and also NCX2 in the latter; NCX3, a subtype previously observed in NG108-15 cells, was not expressed in either. Immunocytochemical and immunoblot studies indicated NCX1 on the cell surface and nuclear envelope of both cell types. Some alternatively spliced isoforms of NCX1 in the nuclear envelope of both cell types were tightly associated with ganglioside GM1. Human lymphocytes, a mixed population of T and B cells, showed similar evidence for plasma membrane and nuclear expression in some but not all cells. The high affinity association between NCX1 and GM1, explored by reaction with base, acid, and proteases, was found to involve charge–charge interaction with a requirement for a positively charged moiety in NCX.Special issue dedicated to Lawrence F. Eng.  相似文献   

6.
Phosphatidylinositol biphosphate (PtdIns-4,5P2) plays a key role in the regulation of the mammalian heart Na+/Ca2+ exchanger (NCX1) by protecting the intracellular Ca2+ regulatory site against H+i and (H+i + Na+i) synergic inhibition. MgATP and MgATP-γ-S up-regulation of NCX1 takes place via the production of this phosphoinositide. In microsomes containing PtdIns-4,5P2 incubated in the absence of MgATP and at normal [Na+]i, alkalinization increases the affinity for Ca2+i to the values seen in the presence of the nucleotide at normal pH; under this condition, addition of MgATP does not increase the affinity for Ca2+i any further. On the other hand, prevention of Na+i inhibition by alkalinization in the absence of MgATP does not take place when the microsomes are depleted of PtdIns-4,5P2. Experiments on NCX1–PtdIns-4,5P2 cross-coimmunoprecipitation show that the relevant PtdIns-4,5P2 is not the overall membrane component but specifically that tightly attached to NCX1. Consequently, the highest affinity of the Ca2+i regulatory site is seen in the deprotonated and PtdIns-4,5P2-bound NCX1. Confirming these results, a PtdIns-5-kinase also cross-coimmunoprecipitates with NCX1 without losing its functional competence. These observations indicate, for the first time, the existence of a PtdIns-5-kinase in the NCX1 microdomain.  相似文献   

7.
Using bovine heart sarcolemma vesicles we studied the effects of protons and phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) on the affinity of the mammalian Na(+)/Ca(2+) exchanger (NCX1) for intracellular Ca(2+). By following the effects of extravesicular ligands in inside-out vesicles, their interactions with sites of NCX1 facing the intracellular medium were investigated. Two Na(+)-gradient-dependent fluxes were studied: Ca(2+) uptake and Ca(2+) release. PtdIns-4,5-P2 binding to NCX1 was investigated in parallel. Without MgATP (no 'de novo' synthesis of PtdIns-4,5-P2), alkalinization increased the affinity for Ca(2+) and the PtdIns-4,5-P2 bound to NCX1. Vesicles depleted of phosphoinositides were insensitive to alkalinization, but became responsive following addition of exogenous PtdIns-4,5-P2 or PtdIns plus MgATP. Acidification reduced the affinity for Ca(2+)(ev); this was only partially reversed by MgATP, despite the increase in bound PtdIns-4,5-P2 to levels observed with alkalinization. Inhibition of Ca(2+) uptake by increasing extravesicular [Na(+)] indicates that it is related to H(+)(i) and Na(+)(i) synergistic inhibition of the Ca(2+)(i) regulatory site. Therefore, the affinity of the NCX1 Ca(2+)(i) regulatory site for Ca(2+) was maximal when both intracellular alkalinization and an increase in PtdIns-4,5-P2 bound to NCX1 (not just of the total membrane PtdIns-4,5-P2) occurred simultaneously. In addition, protons influenced the distribution, or the exposure, of PtdIns-4,5-P2 molecules in the surroundings and/or on the exchanger protein.  相似文献   

8.
A low molecular weight inhibitor (NCX(IF)) of the cardiac Na/Ca exchanger, isolated from the calf ventricle tissue, is capable of regulating the muscle strip's contractility and relaxation without involving the beta-activation pathway. The structural analysis of NCX(IF) requires highly purified preparations that fulfill the demanding requirements for mass spectra and NMR analyses. No such preparation is yet available. To this end, new HPLC procedures were developed by a combination of the reverse phase, normal phase, and HILIC (hydrophilic liquid chromatography) techniques. The specific activity of NCX(IF) is 10(5) times higher in the purified preparations (as compared to the crude extract) showing a 2-5% yield of total inhibitory activity and 20-100 microg content of final material. The purification yield reveals that 1 kg ventricle muscle contains 0.1-0.2 mg NCX(IF), meaning that the tissue concentrations of NCX(IF) may reach 10(-7)-10(-6) M. The diode-array scanning of purified preparations of NCX(IF) shows a homogeneous 3D peak with a maximal absorption at 202 nm. These spectral properties may represent a five-membered ring (e.g., proline, histidine) and/or simple chemical groups (like amine, carbonyl, ester, etc.), but not an aromatic ring or complex conjugates (alkyne, alkene, aldehyde, etc.). NCX(IF) does not respond to phenol/sulfur reagent, suggesting that it lacks reducing (aldo) sugar. NCX(IF) shows a faint response to fluorescamine, meaning that it may contain an amino group (or its derivative). It is believed that a combination of presently developed procedures with LC/MS and LC/MS/MS may provide a useful tool for structural analysis of NCX(IF).  相似文献   

9.
10.
In inside-out bovine heart sarcolemmal vesicles, p-chloromercuribenzenesulfonate (PCMBS) and n-ethylmaleimide (NEM) fully inhibited MgATP up-regulation of the Na+/Ca2+ exchanger (NCX1) and abolished the MgATP-dependent PtdIns-4,5P2 increase in the NCX1-PtdIns-4,5P2 complex; in addition, these compounds markedly reduced the activity of the PtdIns(4)-5kinase. After PCMBS or NEM treatment, addition of dithiothreitol (DTT) restored a large fraction of the MgATP stimulation of the exchange fluxes and almost fully restored PtdIns(4)-5kinase activity; however, in contrast to PCMBS, the effects of NEM did not seem related to the alkylation of protein SH groups. By itself DTT had no effect on the synthesis of PtdIns-4,5P2 but affected MgATP stimulation of NCX1: moderate inhibition at 1 mM MgATP and 1 μM Ca2+ and full inhibition at 0.25 mM MgATP and 0.2 μM Ca2+. In addition, DDT prevented coimmunoprecipitation of NCX1 and PtdIns(4)-5kinase. These results indicate that, for a proper MgATP up-regulation of NCX1, the enzyme responsible for PtdIns-4,5P2 synthesis must be (i) functionally competent and (ii) set in the NCX1 microenvironment closely associated to the exchanger. This kind of supramolecular structure is needed to optimize binding of the newly synthesized PtdIns-4,5P2 to its target region in the exchanger protein.  相似文献   

11.
The sodium (Na+)-calcium (Ca2+) exchanger 1 (NCX1) is an important regulator of intracellular Ca2+ homeostasis. Serine 68-phosphorylated phospholemman (pSer-68-PLM) inhibits NCX1 activity. In the context of Na+/K+-ATPase (NKA) regulation, pSer-68-PLM is dephosphorylated by protein phosphatase 1 (PP1). PP1 also associates with NCX1; however, the molecular basis of this association is unknown. In this study, we aimed to analyze the mechanisms of PP1 targeting to the NCX1-pSer-68-PLM complex and hypothesized that a direct and functional NCX1-PP1 interaction is a prerequisite for pSer-68-PLM dephosphorylation. Using a variety of molecular techniques, we show that PP1 catalytic subunit (PP1c) co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes, left ventricle lysates, and HEK293 cells. Bioinformatic analysis, immunoprecipitations, mutagenesis, pulldown experiments, and peptide arrays constrained PP1c anchoring to the K(I/V)FF motif in the first Ca2+ binding domain (CBD) 1 in NCX1. This binding site is also partially in agreement with the extended PP1-binding motif K(V/I)FF-X5–8Φ1Φ2-X8–9-R. The cytosolic loop of NCX1, containing the K(I/V)FF motif, had no effect on PP1 activity in an in vitro assay. Dephosphorylation of pSer-68-PLM in HEK293 cells was not observed when NCX1 was absent, when the K(I/V)FF motif was mutated, or when the PLM- and PP1c-binding sites were separated (mimicking calpain cleavage of NCX1). Co-expression of PLM and NCX1 inhibited NCX1 current (both modes). Moreover, co-expression of PLM with NCX1(F407P) (mutated K(I/V)FF motif) resulted in the current being completely abolished. In conclusion, NCX1 is a substrate-specifying PP1c regulator protein, indirectly regulating NCX1 activity through pSer-68-PLM dephosphorylation.  相似文献   

12.
Structural analysis of native or recombinant membrane transport proteins has been hampered by the lack of effective methodologies to purify sufficient quantities of active protein. We addressed this problem by expressing a polyhistidine tagged construct of the cardiac sodium-calcium exchanger (NCX1) in Trichoplusia ni larvae (caterpillars) from which membrane vesicles were prepared. Larvae vesicles containing recombinant NCX1-his protein supported NCX1 transport activity that was mechanistically not different from activity in native cardiac sarcolemmal vesicles although the specific activity was reduced. SDS-PAGE and Western blot analysis demonstrated the presence of both the 120 and 70 kDa forms of the NCX1 protein. Larvae vesicle proteins were solubilized in sodium cholate detergent and fractionated on a chelated Ni(2+) affinity chromatography column. After extensive washing, eluted fractions were mixed with soybean phospholipids and reconstituted. The resulting proteoliposomes contained NCX1 activity suggesting the protein retained native conformation. SDS-PAGE revealed two major bands at 120 and 70 kDa. Purification of large amounts of active NCX1 via this methodology should facilitate biophysical analysis of the protein. The larva expression system has broad-based application for membrane proteins where expression and purification of quantities required for physical analyses is problematic.  相似文献   

13.
Externally applied Ni(2+), which apparently competes with Ca(2+) in all three isoforms of Na(+)/Ca(2+) exchanger, inhibits exchange activity of NCX1 or NCX2 with a 10-fold higher affinity than that of NCX3, whereas stimulation of exchange by external Li(+) is significantly greater in NCX2 and NCX3 than in NCX1 (Iwamoto, T., and Shigekawa, M. (1998) Am. J. Physiol. 275, C423-C430). Here we identified structural domains in the exchanger that confer differential sensitivity to Ni(2+) or Li(+) by measuring intracellular Na(+)-dependent (45)Ca(2+) uptake in CCL39 cells stably expressing NCX1/NCX3 chimeras or mutants. We found that two segments in the exchanger corresponding mostly to the internal alpha-1 and alpha-2 repeats are individually responsible for the alteration of Ni(2+) sensitivity, both together accounting for approximately 80% of the difference between NCX1 and NCX3. In contrast, the segment corresponding to the alpha-2 repeat fully accounts for the differential Li(+) sensitivity between the isoforms. The Ni(2+) sensitivity was mimicked, respectively, by simultaneous substitution of two amino acids in the alpha-1 repeat (N125G/T127I in NCX1 and G159N/I161T in NCX3) and substitution of one amino acid in the alpha-2 repeat (V820A in NCX1 and A809V in NCX3). On the other hand, the Li(+) sensitivity was mimicked by double substitution mutation in the alpha-2 repeat (V820A/Q826V in NCX1 and A809V/V815Q in NCX3). Single substitution mutations at Asn(125) and Val(820) of NCX1 caused significant alterations in the interactions of the exchanger with Ca(2+) and Ni(2+), and Ni(2+) and Li(+), respectively, although the extent of alteration varied depending on the nature of side chains of substituted residues. Since the above four important residues are mostly in the putative loops of the alpha repeats, these regions might form an ion interaction domain in the exchanger.  相似文献   

14.
The cardiac Na(+)/Ca(2+) exchanger (NCX) regulates cellular [Ca(2+)](i) and plays a central role in health and disease, but its molecular regulation is poorly understood. Here we report on how protons affect this electrogenic transporter by modulating two critically important NCX C(2) regulatory domains, Ca(2+) binding domain-1 (CBD1) and CBD2. The NCX transport rate in intact cardiac ventricular myocytes was measured as a membrane current, I(NCX), whereas [H(+)](i) was varied using an ammonium chloride "rebound" method at constant extracellular pH 7.4. At pH(i) = 7.2 and [Ca(2+)](i) < 120 nM, I(NCX) was less than 4% that of its maximally Ca(2+)-activated value. I(NCX) increases steeply at [Ca(2+)](i) between 130-150 nM with a Hill coefficient (n(H)) of 8.0 ± 0.7 and K(0.5) = 310 ± 5 nM. At pH(i) = 6.87, the threshold of Ca(2+)-dependent activation of I(NCX) was shifted to much higher [Ca(2+)](i) (600-700 nM), and the relationship was similarly steep (n(H) = 8.0±0.8) with K(0.5) = 1042 ± 15 nM. The V(max) of Ca(2+)-dependent activation of I(NCX) was not significantly altered by low pH(i). The Ca(2+) affinities for CBD1 (0.39 ± 0.06 μM) and CBD2 (K(d) = 18.4 ± 6 μM) were exquisitely sensitive to [H(+)], decreasing 1.3-2.3-fold as pH(i) decreased from 7.2 to 6.9. This work reveals for the first time that NCX can be switched off by physiologically relevant intracellular acidification and that this depends on the competitive binding of protons to its C(2) regulatory domains CBD1 and CBD2.  相似文献   

15.
We compared the properties of three mammalianNa+/Ca2+exchanger isoforms, NCX1, NCX2, and NCX3, by analyzing the effects of Ni2+ and other cations as well asthe recently identified inhibitor isothiourea derivatives onintracellular Na+-dependent45Ca2+uptake into CCL-39 (Dede) fibroblasts stably expressingeach isoform. All these NCX isoforms had similar affinities for the extracellular transport substratesCa2+ andNa+.Ni2+ inhibited45Ca2+uptake by competing with Ca2+ forthe external transport site, with 10-fold less affinity in NCX3 than inNCX1 or NCX2. Ni2+ andCo2+ were most efficient in suchdiscrimination of NCX isoforms, although their inhibitory potencieswere less than those of La3+ andCd2+. The monovalent cationLi+ stimulated45Ca2+uptake rate by all NCX isoforms similarly with low affinity, althoughthe extent of stimulation was somewhat smaller in NCX1. On the otherhand, the isothiourea derivative KB-R7943 was threefold more inhibitoryto NCX3 than to NCX1 or NCX2. Thus distinct differences in the kineticand pharmacological properties were detected between NCX3 and the othertwo isoforms.

  相似文献   

16.
The calcium phosphate-based skeleton of vertebrates serves as the major reservoir for metabolically available calcium ions. The skeleton is formed by osteoblasts which first secrete a proteinaceous matrix and then provide Ca++ for the calcification process. The two calcium efflux ports found in most cells are the plasma membrane Ca-ATPase (PMCA) and the sodium-calcium exchanger (NCX). In osteoblasts, PMCA and NCX are located on opposing sides of the cell with NCX facing the mineralizing bone surface. Two isoforms of NCX have been identified in osteoblasts NCX1, and NCX3. The purpose of this study was to determine the extent to which each of the two NCX isoforms support delivery of Ca++ into sites of calcification and to discern if one could compensate for the other. SiRNA technology was used to knockdown each isoform separately in MC3T3-E1 osteoblasts. Osteoblasts in which either NCX1 or NCX3 was impaired were tested for Ca++ efflux using the Ca++ specific fluorophore, fluo-4, in a sodium-dependent calcium uptake assay adapted for image analysis. NCX3 was found to serve as a major contributor of Ca++ translocation out of osteoblasts into calcifying bone matrix. NCX1 had little to no involvement.  相似文献   

17.
The endogenous inhibitory factor (NCX(IF)) of the cardiac Na/Ca exchanger (NCX1) is a low molecular weight substance, which has a strong capacity to modulate the ventricle muscle contractility. Previously, we have shown that NCX(IF) can completely inhibit either the forward (Na(i)-dependent Ca-uptake) or reverse (Na(o)-dependent Ca-release) mode of Na/Ca exchange as well as its partial reaction, the Ca/Ca exchange. Although the preliminary studies have shown that NCX(IF) can rapidly (within few milliseconds) interact with a putative inhibitory site of the Na/Ca exchanger protein (or within its vicinity), it was not clear whether the NCX(IF) can directly interact with the ion transport sites of the exchanger protein or the interaction site of NCX(IF) is distinct from the ion-binding/transport site of NCX1. In order to segregate between these possibilities the NCX(IF) was tested for its capacity to compete with Ca at the cytosolic side by using the preparation of sarcolemma vesicles having predominantly the inside-out orientation. For this goal, the initial rates of Na(i)-dependent (45)Ca-uptake were measured in the presence of extravesicular (cytosolic) NCX(IF) under conditions in which the concentration of extravesicular Ca was varied (2-200 microM) and intravesicular Na was kept fixed at saturating concentration (160 mM). Under these conditions the NCX(IF) results in several fold decrease in V(max) values, while having no significant effect on the K(m). Taking into account the molecular weight of 350-550 Da (derived from the gel-filtration and mass-spectra data), the experimentally measured inhibitory potency of NCX(IF) can be estimated as the IC(50) = 0.3-0.6 microM. Therefore, it is concluded that the NCX(IF) is reasonably potent blocker, which interacts with cytosolic domain thereby preventing the ion-translocation (and not ion-binding) events.  相似文献   

18.
Previous studies in adult myocytes isolated from rat hearts 3-9 wk after myocardial infarction (MI) demonstrated abnormal contractility and decreased Na(+)/Ca(2+) exchanger (NCX1) activity. In addition, a program of high-intensity sprint training (HIST) instituted shortly after MI restored both contractility and NCX1 activity toward normal. The present study examined the hypotheses that reduced NCX1 activity caused abnormal contractility in myocytes isolated from sedentary (Sed) rat hearts 9-11 wk after coronary artery ligation and that HIST ameliorated contractile dysfunction in post-MI myocytes by increasing NCX1 activity. The approach was to upregulate NCX1 in MI-sedentary (MISed) myocytes and downregulate NCX1 in MI-exercised (MIHIST) myocytes by adenovirus-mediated gene transfer. Overexpression of NCX1 in MISed myocytes did not affect sarco(endo)plasmic reticulum Ca(2+)-ATPase and calsequestrin levels but rescued contractile abnormalities observed in MISed myocytes. That is, at 5 mM extracellular Ca(2+) concentration, the subnormal contraction amplitude in MISed myocytes (compared with Sham myocytes) was increased toward normal by NCX1 overexpression, whereas at 0.6 mM extracellular Ca(2+) concentration the supernormal contraction amplitude in MISed myocytes was lowered. Conversely, NCX1 downregulation by antisense in MIHIST myocytes abolished the beneficial effects of HIST on contraction amplitudes in MI myocytes. We suggest that decreased NCX1 activity may play an important role in contractile abnormalities in post-MI myocytes and that HIST ameliorated contractile dysfunction in post-MI myocytes partly by enhancing NCX1 activity.  相似文献   

19.
The different roles of Na+/Ca2+ (NCX) exchangers and Na+/Ca2+/K+ (NCKX) exchangers in regulation of the ionic homeostasis in neurones are poorly understood. We have previously shown that serotonin excites histaminergic tuberomamillary (TM) neurones by activation of 5-HT2C-receptors and Na+/Ca2+ exchange. With the help of single-cell RT-PCR (sc-RT-PCR) we have now determined the coexpression pattern of different subtypes of NCX and NCKX with serotonin receptors. The majority of TM neurones express NCX1, NCX2 and NCKX3. Serotonin 2C receptor-mRNA was detected in 70% while 5-HT2A mRNA was found in only 10% of TM neurones. In all neurones expressing the 5-HT2C receptor NCX1-mRNA was present. Double immunostaining revealed the presence of the NCX1 protein in histidine decarboxylase-positive neurones. In the majority of TM neurones one or two out of five isoforms, NCX1.4, NCX1.5, NCX1.7, NCX1.14, NCX1.15, were detected by cDNA sequencing and/or by restriction analysis. The alternative splicing region is important for the Ca2+ sensitivity and presumably for the modulation of NCX1 function by second messengers. We conclude that several exchanger-subtypes can be coexpressed in single neurones and that TM cells are heterogeneous with respect to their calcium homeostasis regulation.  相似文献   

20.
Increasing evidence suggests that metabolic dysfunctions are at the roots of neurodegenerative disorders such as Alzheimer’s disease (AD). In particular, defects in cerebral glucose metabolism, which have been often noted even before the occurrence of clinical symptoms and histopathological lesions, are now regarded as critical contributors to the pathogenesis of AD. Hence, the stimulation of energy metabolism, by enhancing the availability of specific metabolites, might be an alternative way to improve ATP synthesis and to positively affect AD progression. For instance, glutamate may serve as an intermediary metabolite for ATP synthesis through the tricarboxylic acid (TCA) cycle and the oxidative phosphorylation. We have recently shown that two transporters are critical for the anaplerotic use of glutamate: the Na+-dependent Excitatory Amino Acids Carrier 1 (EAAC1) and the Na+-Ca2+ exchanger 1 (NCX1). Therefore, in the present study, we established an AD-like phenotype by perturbing glucose metabolism in both primary rat cortical neurons and retinoic acid (RA)-differentiated SH-SY5Y cells, and we explored the potential of glutamate to halt cell damage by monitoring neurotoxicity, AD markers, ATP synthesis, cytosolic Ca2+ levels and EAAC1/NCX1 functional activities.We found that glutamate significantly increased ATP production and cell survival, reduced the increase of AD biomarkers (amyloid β protein and the hyperphosphorylated form of tau protein), and recovered the increase of NCX reverse-mode activity. The RNA silencing of either EAAC1 or NCX1 caused the loss of the beneficial effects of glutamate, suggesting the requirement of a functional interplay between these transporters for glutamate-induced protection.Remarkably, our results indicate, as proof‐of‐principle, that facilitating the use of alternative fuels, like glutamate, may be an effective approach to overcome deficits in glucose utilization and significantly slow down neuronal degenerative process in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号