首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypothyroidism (Hypo) is a risk factor for cardiovascular diseases, including heart failure. Hypo rapidly induces Ca2+ mishandling and contractile dysfunction (CD), as well as atrophy and ventricular myocytes (VM) remodeling. Hypo decreases SERCA-to-phospholamban ratio (SERCA/PLB), and thereby contributes to CD. Nevertheless, detailed spatial and temporal Ca2+ cycling characterization in VM is missing, and contribution of other structural and functional changes to the mechanism underlying Ca2+ mishandling and CD, as transverse tubules (T-T) remodeling, mitochondrial density (Dmit) and energy availability, is unclear. Therefore, in a rat model of Hypo, we aimed to characterize systolic and diastolic Ca2+ signaling, T-T remodeling, Dmit, citrate synthase (CS) activity and high-energy phosphate metabolites (ATP and phosphocreatine).We confirmed a decrease in SERCA/PLB (59%), which slowed SERCA activity (48%), reduced SR Ca2+ (19%) and blunted Ca2+ transient amplitude (41%). Moreover, assessing the rate of SR Ca2+ release (dRel/dt), we found that early and maximum dRel/dt decreased, and this correlated with staggered Ca2+ transients. However, dRel/dt persisted during Ca2+ transient relaxation due to abundant late Ca2+ sparks. Isoproterenol significantly up-regulated systolic Ca2+ cycling. T-T were unchanged, hence, cannot explain staggered Ca2+ transients and altered dRel/dt. Therefore, we suggest that these might be caused by RyR2 clusters desynchronization, due to diminished Ca2+-dependent sensitivity of RyR2, which also caused a decrease in diastolic SR Ca2+ leak. Furthermore, Dmit was unchanged and CS activity slightly decreased (14%), however, the ratio phosphocreatine/ATP did not change, therefore, energy deficiency cannot account for Ca2+ and contractility dysregulation. We conclude that decreased SR Ca2+, due to slower SERCA, disrupts systolic RyR2 synchronization, and this underlies CD.  相似文献   

2.
A role for anandamide (N-arachidonoyl ethanolamide; AEA), a major endocannabinoid, in the cardiovascular system in various pathological conditions has been reported in earlier reports. In the present study, the effects of AEA on contractility, Ca2+ signaling, and action potential (AP) characteristics were investigated in rat ventricular myocytes. Video edge detection was used to measure myocyte shortening. Intracellular Ca2+ was measured in cells loaded with the fluorescent indicator fura-2 AM. AEA (1 μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca2+ transients. However, the amplitudes of caffeine-evoked Ca2+ transients and the rate of recovery of electrically evoked Ca2+ transients following caffeine application were not altered. Biochemical studies in sarcoplasmic reticulum (SR) vesicles from rat ventricles indicated that AEA affected Ca2+-uptake and Ca2+-ATPase activity in a biphasic manner. [3H]-ryanodine binding and passive Ca2+ release from SR vesicles were not altered by 10 μM AEA. Whole-cell patch-clamp technique was employed to investigate the effect of AEA on the characteristics of APs. AEA (1 μM) significantly decreased the duration of AP. The effect of AEA on myocyte shortening and AP characteristics was not altered in the presence of pertussis toxin (PTX, 2 μg/ml for 4 h), AM251 and SR141716 (cannabinoid type 1 receptor antagonists; 0.3 μM) or AM630 and SR 144528 (cannabinoid type 2 receptor antagonists; 0.3 μM). The results suggest that AEA depresses ventricular myocyte contractility by decreasing the action potential duration (APD) in a manner independent of CB1 and CB2 receptors.  相似文献   

3.
Ryanodine receptor (RyR2) is the major Ca2+ channel of the cardiac sarcoplasmic reticulum (SR) and plays a crucial role in the generation of myocardial force. Changes in RyR2 gating properties and resulting increases in its open probability (Po) are associated with Ca2+ leakage from the SR and arrhythmias; however, the effects of RyR2 dysfunction on myocardial contractility are unknown. Here, we investigated the possibility that a RyR2 mutation associated with catecholaminergic polymorphic ventricular tachycardia, R4496C, affects the contractile function of atrial and ventricular myocardium. We measured isometric twitch tension in left ventricular and atrial trabeculae from wild-type mice and heterozygous transgenic mice carrying the R4496C RyR2 mutation and found that twitch force was comparable under baseline conditions (30°C, 2 mM [Ca2+]o, 1 Hz). However, the positive inotropic responses to high stimulation frequency, 0.1 µM isoproterenol, and 5 mM [Ca2+]o were decreased in R4496C trabeculae, as was post-rest potentiation. We investigated the mechanisms underlying inotropic insufficiency in R4496C muscles in single ventricular myocytes. Under baseline conditions, the amplitude of the Ca2+ transient was normal, despite the reduced SR Ca2+ content. Under inotropic challenge, however, R4496C myocytes were unable to boost the amplitude of Ca2+ transients because they are incapable of properly increasing the amount of Ca2+ stored in the SR because of a larger SR Ca2+ leakage. Recovery of force in response to premature stimuli was faster in R4496C myocardium, despite the unchanged rates of recovery of L-type Ca2+ channel current (ICa-L) and SR Ca2+ content in single myocytes. A faster recovery from inactivation of the mutant R4496C channels could explain this behavior. In conclusion, changes in RyR2 channel gating associated with the R4496C mutation could be directly responsible for the alterations in both ventricular and atrial contractility. The increased RyR2 Po and fractional Ca2+ release from the SR induced by the R4496C mutation preserves baseline contractility despite a slight decrease in SR Ca2+ content, but cannot compensate for the inability to increase SR Ca2+ content during inotropic challenge.  相似文献   

4.
Contractile dysfunction and diminished response to β-adrenergic agonists are characteristics for failing hearts. Chemically donated nitroxyl (HNO) improves contractility in failing hearts and thus may have therapeutic potential. Yet, there is a need for pharmacologically suitable donors. In this study we tested whether the pure and long acting HNO donor, 1-nitrosocyclohexyl acetate (NCA), affects contractile force in normal and pathological ventricular myocytes (VMs) as well as in isolated hearts. VMs were isolated from mice either subjected to isoprenaline-infusion (ISO; 30 μg/g per day) or to vehicle (0.9% NaCl) for 5 days. Sarcomere shortening and Ca2+ transients were simultaneously measured using the IonOptix system. Force of contraction of isolated hearts was measured by a Langendorff-perfusion system. NCA increased peak sarcomere shortening by + 40-200% in a concentration-dependent manner (EC50 ∼55 μM). Efficacy and potency did not differ between normal and chronic ISO VMs, despite the fact that the latter displayed a markedly diminished inotropic response to acute β-adrenergic stimulation with ISO (1 μM). NCA (60 μM) increased peak sarcomere shortening and Ca2+ transient amplitude by ∼200% and ∼120%, respectively, suggesting effects on both myofilament Ca2+ sensitivity and sarcoplasmic reticulum (SR) Ca2+ cycling. Importantly, NCA did not affect diastolic Ca2+ or SR Ca2+ content, as assessed by rapid caffeine application. NCA (45 μM) increased force of contraction by 30% in isolated hearts. In conclusion, NCA increased contractile force in normal and β-adrenergically desensitized VMs as well as in isolated mouse hearts. This profile warrants further investigations of this HNO donor in the context of heart failure.  相似文献   

5.
p21-Activated kinase-1 (Pak1) is a serine-threonine kinase that associates with and activates protein phosphatase 2A in adult ventricular myocytes and, thereby, induces increased Ca2+ sensitivity of skinned-fiber tension development mediated by dephosphorylation of myofilament proteins (Ke Y, Wang L, Pyle WG, de Tombe PP, Solaro RJ. Circ Res 94: 194-200, 2004). We test the hypothesis that activation of Pak1 also moderates cardiac contractility through regulation of intracellular Ca2+ fluxes. We found no difference in field-stimulated intracellular Ca2+ concentration ([Ca2+]i) transient amplitude and extent of cell shortening between myocytes expressing constitutively active Pak1 (CA-Pak1) and controls expressing LacZ; however, time to peak shortening was significantly faster and rate of [Ca2+]i decay and time of relengthening were slower. Neither caffeine-releasable sarcoplasmic reticulum (SR) Ca2+ content nor fractional release was different in CA-Pak1 myocytes compared with controls. Isoproterenol application revealed a significantly blunted increase in [Ca2+]i transient amplitude, as well as a slowed rate of [Ca2+]i decay, increased SR Ca2+ content, and increased cell shortening, in CA-Pak1 myocytes. We found no significant change in phospholamban phosphorylation at Ser16 or Thr17 in CA-Pak1 myocytes. Analysis of cardiac troponin I revealed a significant reduction in phosphorylated species that are primarily attributable to Ser(23/24) in CA-Pak1 myocytes. Nonstimulated, spontaneous SR Ca2+ release sparks were significantly smaller in amplitude in CA-Pak1 than LacZ myocytes. Propagation of spontaneous Ca2+ waves resulting from SR Ca2+ overload was significantly slower in CA-Pak1 myocytes. Our data indicate that CA-Pak1 expression has significant effects on ventricular myocyte contractility through altered myofilament Ca2+ sensitivity and modification of the [Ca2+]i transient.  相似文献   

6.
The present study was undertaken to compare the effects of hypothyroidism and hyperthyroidism on sarcoplasmic reticulum (SR) Ca2+-pump activity, together with assessment of the functional role of SR in providing activator Ca2+ under these altered thyroid states. In response to a shift from hypothyroid to hyperthyroid state, a 10 fold and 2 fold increase in SR Ca2+-pump activity in atria and ventricles, respectively, were observed. This was associated with the 8-9 fold increases in atrial contractility (+dT/dt) and relaxation (-dT/dt), but only with a 3-4 fold increase in their ventricular counterparts. Also, the recirculation fraction of activator Ca2+ (RFA) increased to a far greater extent in atria (4 fold) than in papillary muscles, and the relative increment in inhibition of developed tension by ryanodine became 3 times larger in atria than in papillary muscles. A positive force-frequency relationship (FFR) was observed in hypothyroid atria, whereas the hyperthyroid atria, hypothyroid and hyperthyroid papillary muscles showed a negative FFR. These results suggest the greater role of transsarcolemmal (SL) Ca2+ and smaller role of SR Ca2+ in activating contraction in hypothyroid atria compared to other preparations. Thyroid hormones decrease the contribution of SL and increase that of SR in providing activator Ca2+ to the greater extent in atria than in ventricles. This effect of thyroid hormones is based on larger stimulation of SR Ca2+-pump in atria compared to ventricles.  相似文献   

7.
Although the combined use of hydralazine and isosorbide dinitrate confers important clinical benefits in patients with heart failure, the underlying mechanism of action is still controversial. We used two models of nitroso-redox imbalance, neuronal NO synthase-deficient (NOS1−/−) mice and spontaneously hypertensive heart failure rats, to test the hypothesis that hydralazine (HYD) alone or in combination with nitroglycerin (NTG) or isosorbide dinitrate restores Ca2+ cycling and contractile performance and controls superoxide production in isolated cardiomyocytes. The response to increased pacing frequency was depressed in NOS1−/− compared with wild type myocytes. Both sarcomere length shortening and intracellular Ca2+ transient (Δ[Ca2+]i) responses in NOS1−/− cardiomyocytes were augmented by HYD in a dose-dependent manner. NTG alone did not affect myocyte shortening but reduced Δ[Ca2+]i across the range of pacing frequencies and increased myofilament Ca2+ sensitivity thereby enhancing contractile efficiency. Similar results were seen in failing myocytes from the heart failure rat model. HYD alone or in combination with NTG reduced sarcoplasmic reticulum (SR) leak, improved SR Ca2+ reuptake, and restored SR Ca2+ content. HYD and NTG at low concentrations (1 μm), scavenged superoxide in isolated cardiomyocytes, whereas in cardiac homogenates, NTG inhibited xanthine oxidoreductase activity and scavenged NADPH oxidase-dependent superoxide more efficiently than HYD. Together, these results revealed that by reducing SR Ca2+ leak, HYD improves Ca2+ cycling and contractility impaired by nitroso-redox imbalance, and NTG enhanced contractile efficiency, restoring cardiac excitation-contraction coupling.  相似文献   

8.
The dyadic organization of ventricular myocytes ensures synchronized activation of sarcoplasmic reticulum (SR) Ca2+ release during systole. However, it remains obscure how the dyadic organization affects SR Ca2+ handling during diastole. By measuring intraluminal SR Ca2+ ([Ca2+]SR) decline during rest in rabbit ventricular myocytes, we found that ∼76% of leaked SR Ca2+ is extruded from the cytosol and only ∼24% is pumped back into the SR. Thus, the majority of Ca2+ that leaks from the SR is removed from the cytosol before it can be sequestered back into the SR by the SR Ca2+-ATPase (SERCA). Detubulation decreased [Ca2+]SR decline during rest, thus making the leaked SR Ca2+ more accessible for SERCA. These results suggest that Ca2+ extrusion systems are localized in T-tubules. Inhibition of Na+-Ca2+ exchanger (NCX) slowed [Ca2+]SR decline during rest by threefold, however did not prevent it. Depolarization of mitochondrial membrane potential during NCX inhibition completely prevented the rest-dependent [Ca2+]SR decline. Despite a significant SR Ca2+ leak, Ca2+ sparks were very rare events in control conditions. NCX inhibition or detubulation increased Ca2+ spark activity independent of SR Ca2+ load. Overall, these results indicate that during rest NCX effectively competes with SERCA for cytosolic Ca2+ that leaks from the SR. This can be explained if the majority of SR Ca2+ leak occurs through ryanodine receptors in the junctional SR that are located closely to NCX in the dyadic cleft. Such control of the dyadic [Ca2+] by NCX play a critical role in suppressing Ca2+ sparks during rest.  相似文献   

9.
The dyadic organization of ventricular myocytes ensures synchronized activation of sarcoplasmic reticulum (SR) Ca2+ release during systole. However, it remains obscure how the dyadic organization affects SR Ca2+ handling during diastole. By measuring intraluminal SR Ca2+ ([Ca2+]SR) decline during rest in rabbit ventricular myocytes, we found that ∼76% of leaked SR Ca2+ is extruded from the cytosol and only ∼24% is pumped back into the SR. Thus, the majority of Ca2+ that leaks from the SR is removed from the cytosol before it can be sequestered back into the SR by the SR Ca2+-ATPase (SERCA). Detubulation decreased [Ca2+]SR decline during rest, thus making the leaked SR Ca2+ more accessible for SERCA. These results suggest that Ca2+ extrusion systems are localized in T-tubules. Inhibition of Na+-Ca2+ exchanger (NCX) slowed [Ca2+]SR decline during rest by threefold, however did not prevent it. Depolarization of mitochondrial membrane potential during NCX inhibition completely prevented the rest-dependent [Ca2+]SR decline. Despite a significant SR Ca2+ leak, Ca2+ sparks were very rare events in control conditions. NCX inhibition or detubulation increased Ca2+ spark activity independent of SR Ca2+ load. Overall, these results indicate that during rest NCX effectively competes with SERCA for cytosolic Ca2+ that leaks from the SR. This can be explained if the majority of SR Ca2+ leak occurs through ryanodine receptors in the junctional SR that are located closely to NCX in the dyadic cleft. Such control of the dyadic [Ca2+] by NCX play a critical role in suppressing Ca2+ sparks during rest.  相似文献   

10.
Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is an X-linked disease affecting male and rarely adult heterozygous females, resulting in death by the late 20s to early 30s. Previous studies reported depressed left ventricular function in DMD patients which may result from deranged intracellular Ca2+-handling. To decipher the mechanism(s) underlying the depressed LV function, we tested the hypothesis that iPSC-CMs generated from DMD patients feature blunted positive inotropic response to β-adrenergic stimulation. To test the hypothesis, [Ca2+]i transients and contractions were recorded from healthy and DMD-CMs. While in healthy CMs (HC) isoproterenol caused a prominent positive inotropic effect, DMD-CMs displayed a blunted inotropic response. Next, we tested the functionality of the sarcoplasmic reticulum (SR) by measuring caffeine-induced Ca2+ release. In contrast to HC, DMD-CMs exhibited reduced caffeine-induced Ca2+ signal amplitude and recovery time. In support of the depleted SR Ca2+ stores hypothesis, in DMD-CMs the negative inotropic effects of ryanodine and cyclopiazonic acid were smaller than in HC. RNA-seq analyses demonstrated that in DMD CMs the RNA-expression levels of specific subunits of the L-type calcium channel, the β1-adrenergic receptor (ADRβ1) and adenylate cyclase were down-regulated by 3.5-, 2.8- and 3-fold, respectively, which collectively contribute to the depressed β-adrenergic responsiveness.  相似文献   

11.
Diabetic cardiomyopathy is characterized by delayed cardiac relaxation. Delayed relaxation is suggested to be associated with sarcoplasmic reticulum (SR) dysfunction and/or increase in myofilament sensitivity to Ca2+. Although MCC-135, an intracellular Ca2+-handling modulator, accelerates the delayed relaxation without inotropic effect in the ventricular muscle isolated from rats with diabetic cardiomyopathy, the underlying mechanism has not been fully understood. We tested the hypotheses that MCC-135 modulates Ca2+ uptake by SR and myofilament sensitivity to Ca2+. Wistar rats were made diabetic by a single injection of streptozotocin (40 mg/kg i.v.). Seven months later, the left ventricular papillary muscle was isolated and skinned fibers with and without functional SR were prepared by treatment of the papillary muscle with saponin to study SR Ca2+ uptake and myofilament sensitivity to Ca2+, respectively. In diabetic rats, SR Ca2+ uptake was decreased, which was related to decrease in protein level of SR Ca2+-ATPase determined by western blot analysis. MCC-135 enhanced SR Ca2+ uptake in diabetic rats, but not in normal rats. In diabetic rats, maximum force was decreased but force at diastolic level of Ca2+ was increased, without significant change in myofilament sensitivity to Ca2+ compared with normal rats. MCC-135 decreased force at any pCa tested (pCa 7.0-4.4), but had no significant effect on myofilament sensitivity to Ca2+ in diabetic rats. These results suggest that MCC-135 enhances SR Ca2+ uptake and shifts force-pCa curve downward without modulating myofilament sensitivity to Ca2+. These effects may contribute to positive lusitropic effect without inotropic effect of MCC-135 observed in the ventricular muscle of diabetic cardiomyopathy.  相似文献   

12.
The functional importance of threonine 5 (T5) in modulating the activity of sarcolipin (SLN), a key regulator of sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) pump was studied using a transgenic mouse model with cardiac specific expression of threonine 5 to alanine mutant SLN (SLNT5A). In these transgenic mice, the SLNT5A protein replaces the endogenous SLN in atria, while maintaining the total SLN content. The cardiac specific expression of SLNT5A results in severe cardiac structural remodeling accompanied by bi-atrial enlargement. Biochemical analyses reveal a selective downregulation of SR Ca2+ handling proteins and a reduced SR Ca2+ uptake both in atria and in the ventricles. Optical mapping analysis shows slower action potential propagation in the transgenic mice atria. Doppler echocardiography and hemodynamic measurements demonstrate a reduced atrial contractility and an impaired diastolic function. Together, these findings suggest that threonine 5 plays an important role in modulating SLN function in the heart. Furthermore, our studies suggest that alteration in SLN function can cause abnormal Ca2+ handling and subsequent cardiac remodeling and dysfunction.  相似文献   

13.
Adult women have longer QT intervals compared with men of a similar age, indicating differences in the speed of repolarisation of the ventricles. We investigate the influences of gender on ventricular electrophysiology and intracellular Ca2+ regulation of the guinea pig heart. Comparing sexually mature animals, females exhibited a significantly longer APD. Peak L-type Ca2+ current (ICaL) was larger in females and when this current was inhibited with nifedipine the gender differences in APD were removed. APD differences also disappeared when the SR was depleted of Ca2+. Inactivation of ICaL during a clamp step is faster in females but slower during an action potential and SR Ca2+ content is larger. We suggest that gender differences in APD result from variation in the kinetics of ICaL stemming from alterations to Ca2+ release.  相似文献   

14.
The myonemes in the marine pelagic protozoa Acantharia are contractile organelles involved in buoyancy regulation. It was previously shown that they can perform three kinds of movement: rapid contraction, slow undulation and slow relaxation. They consist of a periodically striated bundle of 2–4 nm nonactin filaments that are twisted in pairs and shortened by a coiling mechanism. After permeabilization or demembranation, contraction and relaxation can still be performed by varying Ca2+ concentration and ATP is not needed. In the present paper, we have studied the role of Ca2+ and inhibitors of energy production in intact cells. Our data suggest that; (i) the in vivo rapid contraction subsequent to mechanical or electrical stimulation is triggered by Ca2+ influx across the cell membrane; (ii) the slow contraction that takes place during the undulating movement depends on Ca2+ release provided by internal calcium stores; (iii) the rapid contraction as well as the progressive shortening that occurs during the slow undulating movement are caused by Ca2+ binding to the myoneme filaments; (iv) ATP is not directly involved in the saturation by Ca2+ of Ca2+ sensitive sites located along the myoneme microstrands; (v) regulation of the movements of Ca2+ within the cytoplasm depends mainly upon the alternative pathway of ATP production; (vi) calmodulin is presumably involved in this regulation. A tentative cytophysiologic interpretation of the mechanism of contractility is proposed.  相似文献   

15.
Summary The subcellular mechanisms of twitch-force potentiation with paired electrical stimulation was studied in ferret ventricular myocardium using the bioluminescent calcium indicator aequorin. It is demonstrated for the first time that interpolation of an extrasystole in a train of conditioned twitches results in a beat-to-beat change in [Ca2+]i and force. Steady-state twitch force and Ca i 2+ were increased with paired stimulation. Increased [Ca2+]0 in the setting of paired stimulation resulted in an increase in the amplitude of the postextrasystole and associated Ca2+ transient. Verapamil, a Ca2+ channel antagonist, had the opposite effect of increased [Ca2+]0. Postextrasystole potentiation was still present, but diminished in amplitude. These results indicate that postextrasystole potentiation is in part due to a verapamil-depletable store (Ca2+). Postextrasystole potentiation is therefore predominantly dependent on sarcoplasmic reticulum (SR) Ca2+ loading. Ryanodine, an alkaloid which induces Ca2+ leakage from the SR, abolished postextrasystole potentiation; however, in the presence of ryanodine the extrasystole was potentiated. Caffeine, a phosphodiesterase inhibitor which induces SR Ca2+ release and impairs uptake, also abolished postextrasystole potentiation. As with ryanodine there was resultant potentiation of the extrasystole. In the case of caffeine the calcium transient consisted of a second slow component associated with extrasystole twitch potentiation. The results are consistent with sarcolemmal Ca2+ influx playing a role in potentiation of the extrasystole in the presence of an impaired SR. These data indicate that transsarcolemmal Ca2+ influx in the presence of impaired intracellular Ca2+ buffering can directly activate the myofilaments in agreement with reports on human myocardium.Abbreviations C conditioned stimulus - ESI extrasystolic interval - Lmax active tension - PES postextrasystole - PESI postextrasystolic interval - SR sarcoplasmic reticulum - T test stimulus  相似文献   

16.
Of the many ongoing controversies regarding the workings of the sarcoplasmic reticulum (SR) in cardiac myocytes, two unresolved and interconnected topics are 1), mechanisms of calcium (Ca2+) wave propagation, and 2), speed of Ca2+ diffusion within the SR. Ca2+ waves are initiated when a spontaneous local SR Ca2+ release event triggers additional release from neighboring clusters of SR release channels (ryanodine receptors (RyRs)). A lack of consensus regarding the effective Ca2+ diffusion constant in the SR (DCa,SR) severely complicates our understanding of whether dynamic local changes in SR [Ca2+] can influence wave propagation. To address this problem, we have implemented a computational model of cytosolic and SR [Ca2+] during Ca2+ waves. Simulations have investigated how dynamic local changes in SR [Ca2+] are influenced by 1), DCa,SR; 2), the distance between RyR clusters; 3), partial inhibition or stimulation of SR Ca2+ pumps; 4), SR Ca2+ pump dependence on cytosolic [Ca2+]; and 5), the rate of transfer between network and junctional SR. Of these factors, DCa,SR is the primary determinant of how release from one RyR cluster alters SR [Ca2+] in nearby regions. Specifically, our results show that local increases in SR [Ca2+] ahead of the wave can potentially facilitate Ca2+ wave propagation, but only if SR diffusion is relatively slow. These simulations help to delineate what changes in [Ca2+] are possible during SR Ca2+release, and they broaden our understanding of the regulatory role played by dynamic changes in [Ca2+]SR.  相似文献   

17.
We have investigated the effects of acute acidosis on ventricular myocyte shortening and intracellular Ca2+ in streptozotocin (STZ)-induced diabetic rat. Shortening and intracellular Ca2+ were measured in electrically stimulated myocytes superfused with either normal Tyrode solution pH adjusted to either 7.4 (control solution) or 6.4 (acid solution). Experiments were performed at 35–36°C. At 8–12 weeks after treatment, the rats that received STZ had lower body and heart weights compared to controls, and blood glucose was characteristically increased. Contractile defects in myocytes from diabetic rat were characterized by prolonged time to peak shortening. Superfusion of myocytes from control and diabetic rats with acid solution caused a significant reduction in the amplitude of shortening; however, the magnitude of the response was not altered by STZ treatment. Acid solution also caused significant and quantitatively similar reductions in the amplitude of Ca2+ transients in myocytes from control and diabetic rats. Effects of acute acidosis on amplitude of myocyte contraction and Ca2+ transient were not significantly altered by STZ treatment. Altered myofilament sensitivity to Ca2+ and altered mechanisms of sarcoplasmic reticulum Ca2+ transport might partly underlie the acidosis-evoked reduction in amplitude of shortening in myocytes from control and STZ-induced diabetic rat. (Mol Cell Biochem 261: 227–233, 2004)  相似文献   

18.
We have previously demonstrated that intermittent high-altitude (IHA) hypoxia significantly attenuates ischemia-reperfusion (I/R) injury-induced excessive increase in resting intracellular Ca2+ concentrations ([Ca2+]i). Because the sarcoplasmic reticulum (SR) and Na+/Ca2+ exchanger (NCX) play crucial roles in regulating [Ca2+]i and both are dysfunctional during I/R, we tested the hypothesis that IHA hypoxia may prevent I/R-induced Ca2+ overload by maintaining Ca2+ homeostasis via SR and NCX mechanisms. We thus determined the dynamics of Ca2+ transients and cell shortening during preischemia and I/R injury in ventricular cardiomyocytes from normoxic and IHA hypoxic rats. IHA hypoxia did not affect the preischemic dynamics of Ca2+ transients and cell shortening, but it significantly suppressed the I/R-induced increase in resting [Ca2+]i levels and attenuated the depression of the Ca2+ transients and cell shortening during reperfusion. Moreover, IHA hypoxia significantly attenuated I/R-induced depression of the protein contents of SR Ca2+ release channels and/or ryanodine receptors (RyRs) and SR Ca2+ pump ATPase (SERCA2) and SR Ca2+ release and uptake. In addition, a delayed decay rate time constant of Ca2+ transients and cell shortening of Ca2+ transients observed during ischemia was accompanied by markedly inhibited NCX currents, which were prevented by IHA hypoxia. These findings indicate that IHA hypoxia may preserve Ca2+ homeostasis and contraction by preserving RyRs and SERCA2 proteins as well as NCX activity during I/R. intracellular Ca2+ concentration; Ca2+ transients; Ca2+ transporters; myofilament Ca2+ sensitivity  相似文献   

19.
Airway smooth muscle (ASM) regulation of airway structure and contractility is critical in fetal/neonatal physiology in health and disease. Fetal lungs experience higher Ca2+ environment that may impact extracellular Ca2+ ([Ca2+]o) sensing receptor (CaSR). Well-known in the parathyroid gland, CaSR is also expressed in late embryonic lung mesenchyme. Using cells from 18-22 week human fetal lungs, we tested the hypothesis that CaSR regulates intracellular Ca2+ ([Ca2+]i) in fetal ASM (fASM). Compared with adult ASM, CaSR expression was higher in fASM, while fluorescence Ca2+ imaging showed that [Ca2+]i was more sensitive to altered [Ca2+]o. The fASM [Ca2+]i responses to histamine were also more sensitive to [Ca2+]o (0–2 mM) compared with an adult, enhanced by calcimimetic R568 but blunted by calcilytic NPS2143. [Ca2+]i was enhanced by endogenous CaSR agonist spermine (again higher sensitivity compared with adult). Inhibition of phospholipase C (U73122; siRNA) or inositol 1,4,5-triphosphate receptor (Xestospongin C) blunted [Ca2+]o sensitivity and R568 effects. NPS2143 potentiated U73122 effects. Store-operated Ca2+ entry was potentiated by R568. Traction force microscopy showed responsiveness of fASM cellular contractility to [Ca2+]o and NPS2143. Separately, fASM proliferation showed sensitivity to [Ca2+]o and NPS2143. These results demonstrate functional CaSR in developing ASM that modulates airway contractility and proliferation.  相似文献   

20.
The sarcoplasmic reticulum (SR) plays a critical role in mediating cardiac contractility and its function is abnormal in the diabetic heart. However, the mechanisms underlying SR dysfunction in the diabetic heart are not clear. Because protein phosphorylation regulates SR function, this study examined the phosphorylation state of phospholamban, a key SR protein that regulates SR calcium (Ca2+) uptake in the heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ; 65 mg kg–1 i.v.), and the animals were humanely killed after 6 weeks and cardiac SR function was examined. Depressed cardiac performance was associated with reduced SR Ca2+-uptake activity in diabetic animals. The reduction in SR Ca2+-uptake was consistent with a significant decrease in the level of SR Ca2+-pump ATPase (SERCA2a) protein. The level of phospholamban (PLB) protein was also decreased, however, the ratio of PLB to SERCA2a was increased in the diabetic heart. Depressed SR Ca2+-uptake was also due to a reduction in the phosphorylation of PLB by the Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA). Although the activities of the SR-associated Ca2+-calmodulin-dependent protein kinase (CaMK), cAMP-dependent protein kinase (PKA) were increased in the diabetic heart, depressed phosphorylation of PLB could partly be attributed to an increase in the SR-associated protein phosphatase activities. These results suggest that there is increased inhibition of SERCA2a by PLB and this appears to be a major defect underlying SR dysfunction in the diabetic heart. (Mol Cell Biochem 261: 245–249, 2004)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号