共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Keller JN Dimayuga E Chen Q Thorpe J Gee J Ding Q 《The international journal of biochemistry & cell biology》2004,36(12):2376-2391
In order to successfully respond to stress all cells rely on the ability of the proteasomal and lysosomal proteolytic pathways to continually maintain protein turnover. Increasing evidence suggests that as part of normal aging there are age-related impairments in protein turnover by the proteasomal proteolytic pathway, and perturbations of the lysosomal proteolytic pathway. Furthermore, with numerous studies suggest an elevated level of a specialized form of lysosomal proteolysis (autophagy or macroautophagy) occurs during the aging of multiple cell types. Age-related alterations in proteolysis are believed to contribute to a wide variety of neuropathological manifestations including elevations in protein oxidation, protein aggregation, and cytotoxicity. Within the brain altered protein turnover is believed to contribute to elevations in multiple forms of protein aggregation ranging from tangle and Lewy body formation, to lipofuscin-ceroid accumulation. In this review we discuss and summarize evidence for proteolytic alterations occurring in the aging brain, the contribution of oxidative stress to disruption of protein turnover during normal aging, the evidence for cross-talk between the proteasome and lysosomal proteolytic pathways in the brain, and explore the contribution of altered proteolysis as a mediator of oxidative stress, neuropathology, and neurotoxicity in the aging brain. 相似文献
3.
4.
5.
6.
7.
8.
Rachid Karam Chih-Hong Lou Heike Kroeger Lulu Huang Jonathan H Lin Miles F Wilkinson 《EMBO reports》2015,16(5):599-609
Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), an essential adaptive intracellular pathway that relieves the stress. Although the UPR is an evolutionarily conserved and beneficial pathway, its chronic activation contributes to the pathogenesis of a wide variety of human disorders. The fidelity of UPR activation must thus be tightly regulated to prevent inappropriate signaling. The nonsense-mediated RNA decay (NMD) pathway has long been known to function in RNA quality control, rapidly degrading aberrant mRNAs, and has been suggested to regulate subsets of normal mRNAs. Here, we report that the NMD pathway regulates the UPR. NMD increases the threshold for triggering the UPR in vitro and in vivo, thereby preventing UPR activation in response to normally innocuous levels of ER stress. NMD also promotes the timely termination of the UPR. We demonstrate that NMD directly targets the mRNAs encoding several UPR components, including the highly conserved UPR sensor, IRE1α, whose NMD-dependent degradation partly underpins this process. Our work not only sheds light on UPR regulation, but demonstrates the physiological relevance of NMD''s ability to regulate normal mRNAs. 相似文献
9.
10.
Primary events in the development of melanoma are gradually being pieced together but a more complete picture of evolution of the disease requires additional understanding of secondary events consequent on initiation of the malignancy. Arguably, the most important driver of secondary events is signals resulting from induction of endoplasmic reticulum (ER) stress for example due to hypoglycaemia and anoxia. This may result in a variety of responses such as apoptosis, autophagy and senescence depending on the initiating event and cell type but most importantly it may result in progression of melanoma due to adaptation and selection of melanoma cells to ER stress. The following reviews what is known about the adaptive responses and how this information may provide new initiatives in treatment of the disease. 相似文献
11.
Recently, there has been an increasing amount of literature published on the effects of 4-phenylbutyric acid (4-PBA) in various biological systems. 4-PBA is currently used clinically to treat urea cycle disorders under the trade name Buphenyl. Recent studies however have explored 4-PBA in the context of a low weight molecular weight chemical chaperone. Its properties as a chemical chaperone prevent misfolded protein aggregation and alleviate endoplasmic reticulum (ER) stress. As the ER is responsible for folding proteins targeted for use in membranes or secreted out of the cell, failure of maintaining adequate ER homeostasis may lead to protein misfolding and subsequent cell and organ pathology. Accumulation of misfolded proteins within the ER activates the unfolded protein response (UPR), a molecular repair response. The activation of the UPR aims to restore ER and cellular proteostasis by regulating the rate of synthesis of newly formed proteins as well as initiating molecular programs aimed to help fold or degrade misfolded proteins. If proteostasis is not restored, the UPR may initiate pro-apoptotic pathways. It is suggested that 4-PBA may help fold proteins in the ER, attenuating the activation of the UPR, and thus potentially alleviating various pathologies. This review discusses the biomedical research exploring the potential therapeutic effects of 4-PBA in various in vitro and in vivo model systems and clinical trials, while also commenting on the possible mechanisms of action. 相似文献
12.
Andrew J. Ambrose Christopher J. Zerio Jared Sivinski Cody J. Schmidlin Taoda Shi Alison B. Ross Kimberly J. Widrick Steven M. Johnson Donna D. Zhang Eli Chapman 《Bioorganic & medicinal chemistry letters》2019,29(14):1689-1693
Glucose-regulated protein 78 (GRP78) is the ER resident 70 kDa heat shock protein 70 (HSP70) and has been hypothesized to be a therapeutic target for various forms of cancer due to its role in mitigating proteotoxic stress in the ER, its elevated expression in some cancers, and the correlation between high levels for GRP78 and a poor prognosis. Herein we report the development and use of a high throughput fluorescence polarization-based peptide binding assay as an initial step toward the discovery and development of GRP78 inhibitors. This assay was used in a pilot screen to discover the anti-infective agent, hexachlorophene, as an inhibitor of GRP78. Through biochemical characterization we show that hexachlorophene is a competitive inhibitor of the GRP78-peptide interaction. Biological investigations showed that this molecule induces the unfolded protein response, induces autophagy, and leads to apoptosis in a colon carcinoma cell model, which is known to be sensitive to GRP78 inhibition. 相似文献
13.
14.
《Autophagy》2013,9(6):997-1001
Protein folding stress is a salient feature of the most frequent neurodegenerative diseases. Although the accumulation of abnormally folded proteins is a well-characterized event underlying the pathology, the way cells respond to this phenomenon is not well understood. Signs of endoplasmic reticulum (ER) stress are a common marker of neurodegeneration in many diseases, which may represent two contrasting processes: cell protection events due to activation of adaptive programs, or a chronic stress state that culminates in apoptosis to eliminate irreversibly injured cells. Autophagy has been proposed as a protective mechanism to overcome neurodegeneration that is also modulated by ER stress. In this issue of autophagy Bertrand Mollereau’s group provides novel evidence indicating that engagement of nonharmful levels of ER stress protects against experimental Parkinson disease. At the mechanistic level, a homeostatic crosstalk between ER stress signaling and the autophagy pathway was proposed to mediate the therapeutic effects. This study, together with recent findings, supports the involvement of a “hormesis mechanism” to handle degeneration through preconditioning mediated by a dynamic balance between ER stress and autophagy. The implications for aging and future therapeutic development are discussed. 相似文献
15.
Protein folding stress is a salient feature of the most frequent neurodegenerative diseases. Although the accumulation of abnormally folded proteins is a well-characterized event underlying the pathology, the way cells respond to this phenomenon is not well understood. Signs of endoplasmic reticulum (ER) stress are a common marker of neurodegeneration in many diseases, which may represent two contrasting processes: cell protection events due to activation of adaptive programs, or a chronic stress state that culminates in apoptosis to eliminate irreversibly injured cells. Autophagy has been proposed as a protective mechanism to overcome neurodegeneration that is also modulated by ER stress. In this issue of autophagy Bertrand Mollereau's group provides novel evidence indicating that engagement of nonharmful levels of ER stress protects against experimental Parkinson disease. At the mechanistic level, a homeostatic crosstalk between ER stress signaling and the autophagy pathway was proposed to mediate the therapeutic effects. This study, together with recent findings, supports the involvement of a "hormesis mechanism" to handle degeneration through preconditioning mediated by a dynamic balance between ER stress and autophagy. The implications for aging and future therapeutic development are discussed. 相似文献
16.
Mhaidat NM Thorne R Zhang XD Hersey P 《Apoptosis : an international journal on programmed cell death》2008,13(12):1505-1512
Our previous studies revealed that Docetaxel-induced apoptosis of melanoma cells is entirely dependent on activation of the
JNK signalling pathway. Here, we show that Docetaxel-induced apoptosis is mediated by induction of ER stress. This was shown
by Docetaxel-induced activation of proteins involved in ER stress signalling namely GRP78, ATF6, IRE1α, and PERK/eIF2α. Knockdown
of IRE1α by siRNA markedly inhibited Docetaxel-induced JNK activation and downstream targets of JNK indicating that activation
of IRE1α was upstream of activation of the JNK. Co-immunoprecipitation experiments showed that activation of JNK is due to
activation of ASK1 through formation of an IRE1α-TRAF2-ASK1 complex. ER stress mediated activation of the JNK pathway is downstream
of activation of PKCδ in that downregulation of PKCδ expression using specific PKCδ siRNA significantly inhibited Docetaxel-induced
activation of IRE1α and the JNK pathway. These findings provide new insights to understand the mode of action of taxanes in
treatment of human melanoma. 相似文献
17.
18.
Suzuki C Isaka Y Takabatake Y Tanaka H Koike M Shibata M Uchiyama Y Takahara S Imai E 《Biochemical and biophysical research communications》2008,368(1):100-106
Renal ischemia-reperfusion (I/R) injury is inevitable in transplantation, and it results in renal tubular epithelial cells undergoing cell death. We observed an increase in autophagosomes in the tubular epithelial cells of I/R-injured mouse models, and in biopsy specimens from human transplanted kidney. However, it remains unclear whether autophagy functions as a protective pathway, or contributes to I/R-induced cell death. Here, we employed the human renal proximal tubular epithelial cell line HK-2 in order to explore the role of autophagy under hypoxia (1% O2) or activation of reactive oxygen species (500 μM H2O2). When compared to normoxic conditions, 48 h of hypoxia slightly increased LC3-labeled autophagic vacuoles and markedly increased LAMP2-labeled lysosomes. We observed similar changes in the mouse IR-injury model. We then assessed autophagic generation and degradation by inhibiting the downstream lysosomal degradation of autophagic vacuoles using lysosomal protease inhibitor. We found that autophagosomes increased markedly under hypoxia in the presence of lysosomal protease inhibitors, thus suggesting that hypoxia induces high turnover of autophagic generation and degradation. Furthermore, inhibition of autophagy significantly inhibited H2O2-induced cell death. In conclusion, high turnover of autophagy may lead to autophagic cell death during I/R injury. 相似文献
19.
细胞在生理状态下自体吞噬出现的频率很低,很难用正常细胞来研究自体吞噬活动,一般都通过诱导自体吞噬来获得有关自体吞噬活动的资料。本实验观察了肝、肾、睾丸等组织的32种细胞,发现睾丸间质细胞中自体吞噬出现频率远远高于其他细胞,平均每100个细胞切面中可以看到25个自噬小体,从而为研究自体吞噬的过程和机理提供了一个正常细胞模型。本实验还观察到睾丸间质细胞的自体吞噬活动可分为前自噬小体、早期自噬小体和晚期自噬小体三个阶段,是一个连续的过程。前自噬小体和早期自噬小体不含溶酶体酶,只有在自噬小体与溶酶体接触后,才从后者获取溶酶体酶并将其内容物消化分解,成为晚期自噬小体。由自体吞噬所产生的残余体并不在睾丸间质细胞内积聚,而是通过胞吐作用排出细胞外。 相似文献
20.
Xiaohan Zhang Bhoomanyu Malik Crystal Young Hao Zhang Dennis Larkin Xiao-Hui Liao Samuel Refetoff Ming Liu Peter Arvan 《The Journal of biological chemistry》2022,298(7)
Congenital hypothyroidism with biallelic thyroglobulin (Tg protein, encoded by the TG gene) mutation is an endoplasmic reticulum (ER) storage disease. Many patients (and animal models) grow an enlarged thyroid (goiter), yet some do not. In adulthood, hypothyroid TGcog/cog mice (bearing a Tg-L2263P mutation) exhibit a large goiter, whereas adult WIC rats bearing the TGrdw/rdw mutation (Tg-G2298R) exhibit a hypoplastic thyroid. Homozygous TG mutation has been linked to thyroid cell death, and cytotoxicity of the Tg-G2298R protein was previously thought to explain the lack of goiter in WIC-TGrdw/rdw rats. However, recent studies revealed that TGcog/cog mice also exhibit widespread ER stress–mediated thyrocyte death, yet under continuous feedback stimulation, thyroid cells proliferate in excess of their demise. Here, to examine the relative proteotoxicity of the Tg-G2298R protein, we have used CRISPR–CRISPR-associated protein 9 technology to generate homozygous TGrdw/rdw knock-in mice in a strain background identical to that of TGcog/cog mice. TGrdw/rdw mice exhibit similar phenotypes of defective Tg protein folding, thyroid histological abnormalities, hypothyroidism, and growth retardation. TGrdw/rdw mice do not show evidence of greater ER stress response or stress-mediated cell death than TGcog/cog mice, and both mouse models exhibit sustained thyrocyte proliferation, with comparable goiter growth. In contrast, in WIC-TGrdw/rdw rats, as a function of aging, the thyrocyte proliferation rate declines precipitously. We conclude that the mutant Tg-G2298R protein is not intrinsically more proteotoxic than Tg-L2263P; rather, aging-dependent difference in maintenance of cell proliferation is the limiting factor, which accounts for the absence of goiter in adult WIC-TGrdw/rdw rats. 相似文献