首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim of the study was to investigate the effect of vitrification on viability, cytoskeletal integrity and in vitro developmental competence after in vitro fertilization (IVF) of oocytes vitrified before or after in vitro maturation (IVM) using a pig model. Oocytes from abattoir-derived porcine ovaries were vitrified at either the germinal vesicle (GV) or metaphase II (MII) stage by modified solid surface vitrification (SSV). Oocyte viability was evaluated by stereomicroscopic observation whereas their nuclear stage and morphology of microtubules and F-actin were observed by confocal microscopy after immunostaining. Fertilization was assessed by orcein staining. The survival rate after vitrification was higher for MII-stage than for GV-stage oocytes. However, the ability of surviving oocytes to reach the MII stage after vitrification at the GV stage (GV-vitrified oocytes) was similar to that of control oocytes. Furthermore, after IVM, GV-vitrified oocytes had better spindle and F-actin integrity than oocytes vitrified at the MII stage (MII-vitrified oocytes). In accordance with this result, GV-vitrified oocytes had better ability to extrude the second polar body and support male pronucleus formation after in vitro fertilization (IVF), in comparison to MII-vitrified oocytes. Fertilization rates did not differ among groups. Finally, the ability of GV-vitrified oocytes to develop into embryos was superior to that of MII-vitrified oocytes. However, both vitrified groups showed reduced blastocyst development compared with the control group. In conclusion vitrification of porcine oocytes at the GV stage is advantageous in conferring better cytoskeletal organization and competence to develop to the blastocyst stage in comparison with vitrification at the MII stage.  相似文献   

2.
This work studies the effect of vitrification of in vitro matured (IVM) prepubertal goat oocytes on: 1) oocyte damage assessed by reactive oxygen species (ROS) level and apoptosis and 2) embryo development after Intracytoplasmic sperm injection (ICSI) and Parthenogenic Activation (PA). Oocytes were IVM in supplemented TCM-199 for 22–24 h. Control group oocytes matured during 24 h were directly used for the analysis after IVM. Vitrified/warmed IVM-oocytes were vitrified after 22 h of IVM in 15% ethylene glycol (EG), 15% dimethyl sulfoxide (Me2SO) and 0.5 M sucrose and after subjected to warming procedure. Oocyte ROS level was measured by staining denuded IVM-oocytes with 10 μM 2′7′ dichlorodihydrofluorescein diacetate. Apoptosis was analyzed by Annexin V (AV) Apoptosis Detection kit and Propidium iodide (PI) signal and oocytes were classified as: Live (AV PI), early apoptotic (AV+ PI), dead non-apoptotic (AV PI+) and necrotic (AV+ PI+). Developmental competence of vitrified/warmed oocytes was assessed by PA (5 min in 5 μM Ionomycin plus 4 h in 2 mM 6-Dimethylaminopurine), and by ICSI fertilization. Presumptive zygotes were in vitro cultured for 8 days in commercial media BO-IVC. Vitrified/warmed oocytes showed higher ROS levels (P < 0.0001), lower live oocytes (44 vs. 66%; P: 0.0025) and higher dead non-apoptotic oocytes (33 vs. 13% P: 0.023) compared to control. No differences were found on normal zygote formation (2 PN) (32 vs. 25%) or blastocyst development (0 vs. 4%) after ICSI fertilization. However, after PA, significant differences were found in cleavage rate (59 vs.78%; P < 0.0343) and blastocyst formation (1 vs. 25%; P < 0.0001). In conclusion, vitrification reduced oocyte competence by increasing dead oocytes and ROS levels.  相似文献   

3.
The present study was designed to evaluate the viability, meiotic competence and subsequent development of porcine oocytes vitrified using the cryotop method at different stages of in vitro maturation (IVM). Cumulus–oocyte complexes (COCs) were cultured in IVM medium supplemented with 1 mM dibutyryl cAMP (dbcAMP) for 22 h and then for an additional 22 h without dbcAMP in the medium. Germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I (MI), anaphase I/telophase I (AI/TI) and metaphase II (MII) were found to occur predominantly at 0–22, 26, 32, 38 and 44 h of IVM, respectively. Oocytes were exposed to cryoprotectant (CPA) or vitrified after different durations of IVM (0, 22, 26, 32, 38 and 44 h). After CPA exposure and vitrification, surviving oocytes that were treated before completion of the 44 h maturation period were placed back into IVM medium for the remaining maturation period, and matured oocytes were incubated for 2 h. CPA treatment did not affect the viability of oocytes matured for 26, 32, 38 or 44 h, but significantly decreased survival rate of oocytes matured for 0 or 22 h. CPA treatment had no effect on the ability of surviving oocytes to develop to the MII stage regardless of the stage during IVM; however, blastocyst formation following PA was severely lower (P < 0.05) than that in the control. At 2 h post-warming, the survival rates of oocytes vitrified at 26, 32, 38 and 44 h of IVM were similar but were higher (P < 0.05) than those of oocytes vitrified at 0 or 22 h of IVM. The MII rates of surviving oocytes vitrified at 0 and 38 h of IVM did not differ from the control and were higher (P < 0.05) than those of oocytes vitrified at 22, 26 or 32 h of IVM. After parthenogenetic activation (PA), both cleavage and blastocyst rates of vitrified oocytes matured for 22, 26, 32, 38 and 44 h did not differ, but all were lower (P < 0.05) than those matured 0 h. In conclusion, our data indicate that survival, nuclear maturation and subsequent development of porcine oocytes may be affected by their stage of maturation at the time of vitrification; a higher percentage of blastocyst formation can be obtained from GV oocytes vitrified before the onset of maturation.  相似文献   

4.
Bovine cumulus oocyte complexes (COCs) were isolated from antral ovarian follicles (4-8 mm). Immature COCs were classified into four categories, based on the homogeneity and clearness of the ooplasm and the transparency and compactness of the cumulus investment. In this study, the incorporation of TCA-precipitable 35S-methionine and the protein synthesis patterns of oocytes of these four categories were examined. Before maturation in vitro, similar incorporation rates and identical protein synthesis patterns were observed between oocytes of categories 1-3. Immature oocytes of category 4 showed reduced incorporation rates and exhibited aberrant protein synthesis patterns. After maturation in vitro, the patterns of category 4 oocytes were identical with the patterns of those in categories 1-3. The incorporation of 35S-methionine into in vitro matured oocytes was lower (P less than .001) in all categories. Based on these results, it is concluded that the initial classification of oocytes into four categories can be reduced to two categories.  相似文献   

5.
Combination of in vitro maturation (IVM) and cryopreservation offers new opportunities for women with contraindication in ovarian stimulation, and females who desire to postpone the childbearing due to different problems. There are still controversies regarding IVM procedure and its impact on oocytes fertilization capability. This systematic review and meta-analysis were conducted to evaluate the impact of vitrification on human oocyte maturation rate during IVM procedure. In this review, we searched Medline, Embase, Scopus and ISI web of science to identify English-language studies. The last search was implemented on 3 February 2018. The original articles which assessed maturation rate after vitrification of MI or GV oocytes were included. Animal trials and the studies that performed cryopreservation using slow-freeze method were excluded. Bias and quality assessments were performed. 2476 articles were screened primarily. After duplication removing and the application of inclusion and exclusion criteria, 14 studies included for the analysis. All studies compared maturation rate between the oocytes that were vitrified at the GV or MI stage before maturation and oocytes which were matured in vitro without vitrification. Meta-analysis showed that oocyte vitrification at GV stage had a significant negative impact on maturation rate (RR = 0.76, 95% CI: 0.66–0.88); I2 = 85.2%; P = 0.000). Finally, based on our results, oocyte vitrification decreases the maturation rate by 24%.  相似文献   

6.
These studies were conducted to examine activation of in vitro-matured porcine oocytes in response to an electrical stimulus or to an ionophore. Cumulus-enclosed porcine oocytes were incubated in maturation medium supplemented with either FSH and LH (MM:Exp.1) or pregnant mare serum gonadotropin (PMSG; MM-P: experiments 2-4) at 39 degrees C in 5% CO2:95% air with high humidity. In experiment 1, groups of oocytes were stripped of cumulus and then shampulsed (control) or electrically pulsed with a Zimmerman Cell Fusion unit at 24, 31, 41, 48, and 65 h of incubation. Control oocytes were exposed to the activation medium for 20 sec, whereas oocytes to be pulsed were subjected to a single activation pulse (120 V, 30 microseconds). Oocytes were cultured for an additional 24 h and then fixed and examined. For oocytes pulsed at 24, 31, 41, 48, and 65 h, the proportions which activated were 0, 0, 87, 88, and 83%, respectively. In experiment 2, oocytes were electrically or sham-pulsed with a BTX 200 Embryomanipulation System at 24, 30, and 40 h of incubation and respective proportions of oocytes activating were 27%, 39%, and 72%. In experiment 3, oocytes were subjected to 0, 1, or 2 activation pulses after 41 h of incubation in MM-P. Double-pulsing halved the proportion of activated oocytes (P less than .0001). In experiment 4, oocytes were subjected to 0, 25, 50, or 100 microM ionophore at 48 h of incubation. Proportions of oocytes activated by ionophore were greater than for control (P less than .05), but activation was not increased by increasing dose of ionophore.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Zhao G  Wu K  Cui L  Zhao L  Liu Y  Tan X  Zhou H 《Theriogenology》2011,76(4):700-704
Three media were evaluated for their ability to support in vitro maturation of donkey (Equus asinus) oocytes and their development after parthenogenetic activation. The basal medium for Medium 1 (M1) and Medium 2 (M2) was M199 and DMEM/F12 respectively, whereas, Medium 3 (M3) consisted of equal parts (v/v) of M199 and DMEM/F12. All three media were supplemented with 10% (v/v) fetal calf serum, 0.01 units/mL porcine FSH, 0.01 units/mL equine LH, 200 ng/mL insulin-like growth factor 1(IGF-I), 10 μl/mL insulin-transferrin-selenium (ITS), 0.1 mg/mL taurine, 0.1 mg/mL L-cysteine, 0.05 mg/mL L-glutamine, 0.11 mg/mL sodium pyruvate, and 25 mg/mL gentamycin. There were no significant differences among the three maturation media for oocyte maturation. Maturation rate of donkey oocytes in M1 was 53% for compact (Cp) cumulus-oocyte complexes and 75% for expanded (Ex) cumulus-oocyte complexes; in M2 these were 55 and 77%, respectively; and in M3, 58 and 75%. The percentage of cleaved parthenotes and 4- or 8-cell embryos were not significantly different for oocytes matured in the various media (61 and 24% for M1; 66 and 32% for M2; and 67 and 33% for M3). Oocytes matured in M3 tended to yield a higher rate of advanced embryo development (morula) than oocytes matured in M1 (22 vs 9%; P = 0.07). In conclusion, donkey oocytes were matured and parthenogenetically activated in vitro, using methods similar to those used in the horse.  相似文献   

8.
The objective was to investigate the effects of oxygen tension and follicle cells (FCs) during in vitro maturation of porcine oocytes in only porcine (Sus scrofa domesticus) follicular fluid (pFF), using static and non-static (rotating) culture systems, on the nuclear maturation and subsequent in vitro fertilization of the oocytes. In the first experiment, cumulus-oocyte complexes (COCs) were matured for 48 h in pFF supplemented with (+) or without (−) FCs (5.2 × 106 cells/mL), using the static (S) and rotating (R) culture systems (+FC/S, −FC/S, +FC/R, and −FC/R) under 5% or 20% O2. Co-culture with FCs in the static culture system (+FC/S) had a detrimental effect on the meiotic competence of oocytes, whereas co-culture with FCs in the rotating culture system (+FC/R) increased maturation rates. In both culture systems, oxygen tension had no apparent effects on meiotic competence of oocytes, irrespective of culture system and FC addition. In the second experiment, COCs were matured under 5% or 20% O2 using the −FC/S or +FC/R culture systems and then fertilized. Oxygen tension had no significant effects on fertilization parameters, irrespective of the culture system. The rotating culture system increased rates of sperm penetration and male pronuclear formation and decreased polyspermic fertilization compared with the static culture system (P < 0.05). In conclusion, both −FC/S and +FC/R culture systems supported meiotic competence, irrespective of oxygen tension. However, the +FC/R culture system may be superior to the −FC/S culture system for promoting fertilization.  相似文献   

9.
Experiments were conducted to find an optimal incubation period in a sucrose solution during dilution of cryoprotectants for obtaining a higher level of survival and development of cat oocytes cryopreserved by vitrification method. In the first experiment, in vitro-matured fresh oocytes were exposed to 0.5M sucrose solution for 1 or 5 min before in vitro fertilization (IVF). The percentage of development to the blastocyst stage significantly decreased in oocytes exposed for 5 min, compared with oocytes exposed for 1 min and control oocytes without exposure to sucrose (P<0.05). In the second experiment, oocytes that had been vitrified in 40% ethylene glycol and 0.3M sucrose were liquefied and then incubated in 0.5M sucrose for 0.5, 1 or 5 min to dilute the cryoprotectant. The percentage of cleavage (>or=2-cell stage) of vitrified-liquefied oocytes incubated for 0.5 min was significantly higher (P<0.05) than that of other groups. Development of vitrified-liquefied oocytes to the morula and blastocyst stages after IVF was observed only in oocytes incubated in sucrose for 0.5 min. The present study indicates that the oocytes have sensitivity to the toxic effect of sucrose and that the incubation period during dilution of the cryoprotectant is of critical importance for developmental competence of vitrified-liquefied cat oocytes.  相似文献   

10.
In the present study, the effect of different protein supplementation on meiotic nuclear configuration, DNA fragmentation (TUNEL assay) and metabolic parameters of dog oocytes cultured in vitro for 72 h was investigated. TCM-199 medium was supplemented either with 0.3% bovine serum albumin (BSA) or with 10% bitch heat inactivated plasma (OBP) collected before the LH peak or with OBP collected between the LH peak and ovulation or OBP collected after ovulation. After culture, more than 70% of the cumulus-oocyte complexes cultured in plasma groups presented extensive cell expansion, while none of those cultured in BSA showed extensive expansion of the cumulus (P < 0.05). Glucose consumption and lactate production was lower (P < 0.05) in the BSA-supplemented medium than in plasma-supplemented groups. In all groups, high amounts of alanine were produced. A higher number of oocytes with DNA fragmentation were observed in the BSA group, while in the plasma-supplemented groups more oocytes presented undistinguishable nuclear material. Only a small percentage of the oocytes (7.4-12.7%) had intact DNA after culture and within these, no differences were observed between groups in number of oocytes at each chromatin configuration stage. No differences in the percentage of oocytes reaching metaphase II (MII) were observed between experimental groups. Still, only 2% of cultured oocytes reached MII, but 85.7% of these had intact DNA. Conversely, all other chromatin configurations presented a high proportion of fragmented DNA (germinal vesicle 79.8%; meiosis resumption 73.3%; unclassified 95.2%). In conclusion, a high percentage of canine oocytes that do not complete meiotic maturation to MII are degenerated, whereas a high proportion of MII oocytes have intact DNA, independently of the protein supplement used.  相似文献   

11.
12.
Based on the morphology and expansion of the cumulus cells, several different classes of porcine cumulus-oocyte complexes (COCs) can be distinguished, during their maturation in vitro. The goal of the present study was to find out the rate of each morphologic category in case of COCs and granulosa-cumulus-oocyte complexes (GCOCs), the characteristics of their nuclear progression, cytoplasmic maturation, and the frequency of monospermy after IVF. It was found that the frequency of cumulus expansion is higher in case of GCOCs than that of COCs. Nuclear progression of COCs was more accelerated than that of GCOCs. Oocytes attached to the bottom of culture dish with dark, compact cumulus underwent nuclear and acquired their ability to be activated earlier than that of oocytes showing normal cumulus expansion. The rate of monospermic fertilization after IVF of normal COCs showing normal cumulus expansion was higher than that of COCs attached to the dish. These results suggest that diverse behavior of cumulus cells during in vitro culture affects nuclear and cytoplasmic maturation of porcine oocytes, which also affects IVF results. It can be concluded that granulosa cells promote normal cumulus expansion thus decrease heterogeneity in nuclear and cytoplasmic maturation amongst oocytes.  相似文献   

13.
The aim of the study was to evaluate meiotic maturation, and expression of genes coding for oocyte secreted factors (GDF9, BMP15, TGFBR1, and BPR2) and apoptosis (BCL2, BAX and P53) after vitrification of immature goat cumulus oocyte complexes (COCs) and in vitro maturation. COCs were vitrified in a solution containing ethylene glycol, dimethyl sulfoxide and sucrose using either a conventional straw (CS), open pulled straw (OPS), cryoloop (CL), hemistraw (HS) or cryotop (CT). Freshly collected COCs (Control), COCs exposed to vitrification and dilution solutions without cryopreservation (EC) and vitrified-warmed COCs were matured in vitro for 27h. The viability of vitrified-warmed COCs 2 h post warming and in vitro maturation was similar for CL, HS and CT. The proportion of oocytes that extruded a 1st polar body and reached TI/MII was significantly higher with CT and HS followed by CL, OPS and CS. Gene expression of GDF9, BMP15, BMPR2, BAX and P53 were comparable to control levels for OPS, CL, HS and CT. The gene expression pattern in CS vitrified COCs was by contrast changed in that GDF9, BMP15, TGFBR1 and BAX were up regulated and BMPR2, BCL2 and P53 down regulated. In conclusion immature goat COCs vitrified using CT and HS showed that viability, maturation rates and expression of genes coding for oocyte secreted factors and apoptosis were similar to non-vitrified controls.  相似文献   

14.
The present study aimed to investigate the effect of vitrification on the expression of fertilization related genes (CD9 and CD81) and DNA methyl transferases (DNMT1 and DNMT3b) in bovine germinal vesicle (GV) oocytes and their resulting metaphase Ⅱ (MⅡ) stages after in vitro maturation culture. GV oocytes were vitrified using the open-pulled straw method; after warming, they were cultured in vitro. The vitrified-warmed GV oocytes and more developed MII oocytes were used to calculate the maturation rates (first polar body extrusion under a stereomicroscopy), and to detect mRNA expression (qRT-PCR). Fresh GV oocytes and their in vitro-derived MII oocytes served as controls. The results showed that both the maturation rate (54.23% vs. 42.93%) and the relative abundance of CD9 mRNA decreased significantly (p < 0.05) in bovine GV oocytes after vitrification, but the expression of CD81 and DNMT3b increased significantly. After in vitro maturation of vitrified GV oocytes, the resulting MII oocytes showed lower (p < 0.05) mRNA expression of genes (CD9, CD81, DNMT1 and DNMT3b) when compared to the control group (MII oocytes). Altogether, vitrification decreased the maturation rate of bovine GV oocytes and changed the expression of fertilization related genes and DNA methyl transferases during in vitro maturation.  相似文献   

15.
Oocyte cryopreservation is an approach for fertility preservation for normal women and cancer patients facing chemo and radiotherapy. The present study evaluated the effect of adding zinc chloride to the vitrification medium used for whole mouse ovaries and then assessing the in vitro maturation and fertilization of oocytes when they were subsequently extracted from these vitrified ovarian tissues. Four vitrification solutions with 0, 100,150 and 200 μg/dl zinc (V0, V1, V2 and V3 respectively) were compared. The viability of oocytes isolated from ovaries vitrified-warmed in the highest concentration of zinc (V3) was significantly higher after 24 than in the control V0 group (72.99 vs 85.97). Progression to the MII stage, fertilization and cleavage by 48 h was also higher in the V3 than V0 control group (35.55 vs 44.73), (47.67 vs 63.74), (28.72 vs 43.03) (P < 0.05) respectively. These results indicate that supplementation of vitrification medium for intact ovaries with zinc can improve the oocyte viability and in vitro maturation-fertilization rate.  相似文献   

16.
In the present study, we examined the ability of immature germinal vesicle (GV) and subjected to in vitro matured (MII) yak oocytes to survive after cryopreservation as well as their subsequent development following in vitro maturation and fertilization. Both GV and MII oocytes were cryopreserved by using two different vitrification solutions (VS); VS-I contained 10% ethylene glycol (EG) and 10% dimethylsulfoxide (DMSO) in TCM-199 + 20% (v/v) fetal calf serum (FCS) whereas VS-II contained 40% EG + 18% Ficoll + 0.5 M sucrose in TCM-199 + 20% FCS. The percentage of oocytes found to be morphologically normal was greater (P < 0.01) in VS-I group than in VS-II group. Rates of cleavage (30.6–42.2%) and blastocyst formation (2.9–8.9%) did not differ among groups, but were lower than in unfrozen control (55.7% and 25.4%, P < 0.01). These results show that a combination of EG and DMSO or EG, Ficoll and sucrose can be used to cryopreserve yak oocytes in French straws.  相似文献   

17.
We investigated survival, meiotic competence, cytoplasmic maturation, in vitro fertilization, and development of immature porcine (Sus scrofa) oocytes cryopreserved by a modified solid surface vitrification protocol. Cumulus-oocyte complexes (COCs) collected from follicles 3 to 6 mm in diameter in abattoir-derived ovaries of prepubertal gilts were either vitrified (Vitrified group), subjected to cryoprotectant treatment (CPA group), or used without any treatment (Control group). Oocyte viability was assayed by staining with fluorescein diacetate. Live oocytes were matured in vitro and their meiotic progression investigated by nuclear staining. In a series of experiments, the glutathione (GSH) content of in vitro-matured oocytes and viability of cumulus cells were assayed simultaneously. The in vitro-matured oocytes were also fertilized and cultured in vitro to assess their ability to be fertilized and to develop to the blastocyst stage, respectively. The proportion of viable oocytes in the Vitrified group was significantly lower than that in the CPA and Control groups (27.7%, 90.4%, and 100%, respectively). Among the three groups, there were no differences in meiotic competence, cumulus viability, and GSH levels at the end of in vitro maturation. Fertilization parameters (i.e., rates of male pronucleus formation, monospermy, and second polar body extrusion) were also similar among groups. However, comparison of the developmental abilities of oocytes in the Vitrified, CPA, and Control groups revealed that the Vitrified group had a significantly reduced ability to undergo first cleavage (34.4%, 63.3%, and 69.0%) and to develop to the blastocyst stage (5.1%, 25.5%, and 34.6%). The mean total cell numbers in blastocysts after 6 d of culture were not significantly different among the Vitrified, CPA, and Control groups (40.3, 42.8, and 43.4). In conclusion, despite low survival rates and impaired development in the Vitrified group, meiotic competence, cytoplasmic maturation, and subsequent fertilization characteristics of surviving germinal vesicle oocytes were unaffected by vitrification, and high-quality blastocysts were produced from vitrified immature oocytes.  相似文献   

18.
The present study was designed to determine whether different calcium concentrations in the vitrification solutions could improve the developmental competence of in vitro matured ovine oocytes after cryopreservation. In vitro matured oocytes were vitrified with 16.5% ethylene glycol (EG) + 16.5% dimethylsulfoxide (DMSO) vitrification media. The base media contain different calcium concentrations, so that five experimental groups were obtained: TCM/FCS (TCM 199 + 20% fetal calf serum (FCS), [Ca2+] 9.9 mg/dl); PBS/FCS (Dulbecco Phosphate Buffered Saline (PBS) + 20% FCS, [Ca2+] 4.4 mg/dl); PBSCaMg free/FCS (PBS without Ca2+ and Mg2+ + 20% FCS [Ca2+] 2.2 mg/dl); PBS/BSA (PBS + 0.4% bovine serum albumin (BSA), [Ca2+] 3.2 mg/dl) and PBSCaMg free/BSA (PBS without Ca2+ and Mg2+ +0.4% BSA, [Ca2+] 0.4 mg/dl). After warming, the oocytes from the five experimental groups were assessed for survival, spontaneous parthenogenetic activation and developmental capacity via in vitro fertilization. Oocyte survival after vitrification procedures was better preserved in group PBSCaMg free/FCS compared to the others (P < 0.05). In addition, a positive correlation was found between calcium concentration in vitrification solutions and spontaneous parthenogenetic activation (correlation index 0,82; P < 0.001). Development of vitrified oocytes was significantly affected by vitrification media composition (P < 0.01). In particular, oocytes from group PBSCaMg free/FCS led to higher cleavage rates and blastocyst rate compared to the others. Our data showed that lowering calcium concentration in the vitrification medium improves the blastocyst rate of vitrified ovine oocytes, probably reducing the effect of EG + DMSO during vitrification. On the contrary, the replacement of FCS with BSA dramatically reduces the developmental potential of these oocytes.  相似文献   

19.
20.
Regulatory effect of GH on follicular growth and development in the cow is well documented. The aim of this study was to investigate the role of GH on in vitro bovine oocyte maturation. Therefore bovine cumulus oocyte complexes (COCs) were cultured in M199 without FCS and gonadotropins and in the presence of 10, 100, or 1,000 ng/ml bovine GH (NIH-GH-B18). The COCs were incubated at 39°C in a humidified atmosphere with 5% CO2 in air and nuclear stage was assessed after 2, 4, 8, 16, 22, and 24 hr of incubation using DAPI staining. To assess the effect of GH on developmental capacity of the oocytes, COCs were incubated in the presence of GH for 22 hr, followed by IVF and in vitro embryo culture. Cultures without GH served as controls. For subsequent development, the embryos were cultured in M199 supplemented with 10% FCS on a monolayer of BRL cells. Embryos were scored morphologically and the efficiency of the culture system was evaluated as (1) the percentage of cleaved embryos 4 days after IVF, (2) the percentage of blastocysts on day 9 expressed on the basis of the number of oocytes at the onset of culture, and (3) the percentage of hatched blastocysts on day 11 expressed on the basis of the total number of blastocysts present at day 9. GH (100 and 1,000 ng/ml) significantly accelerated nuclear maturation (P < 0.001). A 4 and 8 h the percentage of oocytes in GV stage after GH treatment (54% and 19%) was significantly lower than the control (64% and 41%). Similarly at 16 and 22 h the percentage of oocytes in MII stage was significantly higher in the GH-treated group; (58% and 77%) and (46% and 62%) for GH and control respectively. The number of oocytes in MII beyond 22 hr of culture did not differ; 100 and 1,000 ng/ml GH induced significant cumulus expansion (P < 0.05), which was not observed in the absence of GH. Addition of 100 and 1,000 ng/ml GH during maturation significantly (P < 0.01) enhanced subsequent cleavage rate from (64% and 67%) in control to (75% and 81%) in GH-treated group; embryonic development in terms of day 9 blastocyst formation was also significantly increased in the presence of GH (29% and 34%) compared to the control (18% and 24%). The hatchability of the blastocysts was not influenced by GH. From the present data, it can be concluded that GH present during IVM has a beneficial effect on subsequent development. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号