首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee GS  Hyun SH  Kim HS  Kim DY  Lee SH  Lim JM  Lee ES  Kang SK  Lee BC  Hwang WS 《Theriogenology》2003,59(9):1949-1957
This study was conducted to improve a porcine somatic cell nuclear transfer (SCNT) technique by optimizing donor cell and recipient oocyte preparations. Adult and fetal fibroblasts, and cumulus and oviduct cells were used as donor cells, and in vivo- and in vitro-matured oocytes were employed as recipient oocytes. The percentages of fusion and development to the blastocyst stage, the ratio of blastocysts to 2-cell embryos, and cell number of blastocysts were monitored as experimental parameters. In Experiment 1, donor cells of four different types were transferred to enucleated oocytes matured in vitro, and more (P < 0.05) blastocysts were derived from SCNT of fetal fibroblasts than from that of other cells (15.9% versus 3.1-7.9%). For SCNT using fetal fibroblasts, increasing the number of subcultures up to 15 times did not improve developmental competence to the blastocyst stage (12.2-16.7%). In Experiment 2, fetal fibroblasts were transferred to enucleated oocytes that matured in vivo or in vitro. When parthenogenetic activation of both types of oocytes was conducted as a preliminary control treatment, a significant increase in blastocyst formation was found for in vivo-matured compared with in vitro-matured oocytes (36.4% versus 29.5%). However, no improvement was achieved in SCNT using in vivo-matured oocytes. In conclusion, the type of donor somatic cell is important for improving development after porcine SCNT, and fetal fibroblasts were the most effective among examined cells. A system with good reproducibility has been established using fetal fibroblasts as the donor karyoplast after subculturing 1-10 times, and using both in vivo and in vitro-matured oocytes as the recipient cytoplast.  相似文献   

2.
The present study was conducted to investigate effects of antioxidants during maturation culture of recipient oocytes and/or culture of gene-transfected donor cells on the meiotic competence of recipient oocytes, and the developmental competence and quality of the reconstructed embryos after nuclear transfer (NT) in cattle. Gene-transfected donor cells had negative effects on the proportions of blastocyst formation, total cell numbers, and DNA fragmentation indices of reconstructed embryos. Supplementation of either vitamin E (alpha-tocopherol: 100 microM) or vitamin C (ascorbic acid: 100 microM) during maturation culture significantly enhanced the cytoplasmic maturation of oocytes and subsequent development of embryos reconstructed with the oocytes and gene-transfected donor cells, but did not have synergistic effects. The supplementation of vitamin E during maturation culture of recipient oocytes increased the proportions of fusion and blastocyst formation of gene-transfected NT embryos, in which the proportions were similar to those of nontransfected NT embryos. When the gene-transfected donor cells that had been cultured with 0, 50, or 100 microM of vitamin E were transferred into recipient oocytes matured with vitamin E (100 microM), 50 microM of vitamin E increased the proportion of blastocyst formation and reduced the index of DNA fragmentation of blastocysts. In conclusion, gene-transfected donor cells have negatively influenced the NT outcome. Supplementation of vitamin E during both recipient oocyte maturation and donor cell culture enhanced the blastocyst formation and efficiently blocked DNA damage in transgenic NT embryos.  相似文献   

3.
Rat sperm freeze-dried in a solution containing Tris and ethylenediaminetetraacetic acid (EDTA) (TE buffer) can be preserved at 4 °C, and oocytes injected with these sperm developed into offspring though developmental ability was low. We studied the culture conditions to improve the developmental ability of oocytes injected with freeze-dried sperm. After being injected with fresh sperm, the zygotes were cultured in modified Krebs–Ringer bicarbonate (mKRB), modified rat 1-cell embryo culture medium (mR1ECM)/BSA, and mR1ECM with different osmolality, before being cultured in mR1ECM. High proportion of zygotes cultured in mKRB (270 mOsm) before being cultured in mR1ECM developed into blastocysts compared to zygotes cultured only with mR1ECM (50% vs. 28%, P < 0.05). Culturing in mKRB also led to a high proportion of zygotes developing into blastocysts after the injection of freeze-dried sperm than zygotes cultured only with mR1ECM (32% vs. 15%, P < 0.05). Offspring (16%) were obtained when 19 2-cell embryos derived from oocytes that had been injected with freeze-dried sperm preserved at 4 °C for 1 year were transferred. This study demonstrated that the culture conditions soon after the injection of sperm markedly influenced the subsequent development of embryos. Also, rat sperm after freeze-drying in TE buffer were preserved at 4 °C for long term without their deterioration.  相似文献   

4.
Sphingosine 1-phosphate (S1P) is a sphingolipid metabolite that can block apoptosis by counteracting the proapoptotic effects of ceramide. Experiments were performed to evaluate whether S1P blocks the disruption in oocyte developmental competence caused by heat shock. Cumulus-oocyte complexes (COCs) were placed in maturation medium and cultured at 38.5 or 41 degrees C for the first 12 h of maturation. Incubation during the last 10 h of maturation, fertilization, and embryonic development were performed at 38.5 degrees C. Heat shock during the first 12 h of maturation reduced cleavage rate, the number of oocytes developing to the blastocyst stage, and the percentage of cleaved embryo that subsequently developed to blastocysts. Addition of 50 nM S1P to maturation medium had no effect on oocytes matured at 38.5 degrees C but blocked effects of thermal stress on cleavage and subsequent development. The blastocysts formed at Day 8 did not differ between S1P and control groups in caspase activity, total cell number, or percentage of cells that were apoptotic. Blocking endogenous generation of S1P by addition of 50 nM N1N-dimethylsphingosine, a sphingosine kinase inhibitor, reduced or tended to reduce cleavage rate and blastocyst development regardless of whether maturation of COCs was at 38.5 or 41 degrees C. Results demonstrate that S1P protects oocytes from a physiologically relevant heat shock and affects oocyte maturation even in the absence of heat shock. The S1P-treated oocytes that survived heat shock and became blastocysts had a normal developmental potential as determined by caspase activity, total cell number, and percentage of apoptotic cells. Thus, modulation of developmental competence of oocytes using S1P may be a useful approach for enhancing fertility in situations where developmental competence of oocytes is compromised.  相似文献   

5.
Sucrose and trehalose are conventional cryoprotectant additives for oocytes and embryos. Ethanol can artificially enhance activation of inseminated mature oocytes. This study aims to investigate whether artificial oocyte activation (AOA) with ethanol can promote the development competence of in vitro matured oocytes. A total of 810 human immature oocytes, obtained from 325 patients undergoing normal stimulated oocyte retrieval cycles, were in vitro maturated (IVM) either immediately after collection (Fresh group n = 291)) or after being vitrified as immature oocytes (Vitrified group n = 519). These groups were arbitrarily assigned. All fresh and vitrified oocytes which matured after a period of IVM then underwent intra-cytoplasmic sperm injection (ICSI). Half an hour following ICSI, they were either activated by 7% ethanol (AOA group) or left untreated (Non-AOA group). Fertilization, cleavage rate, blastocyst quality and aneuploidy rate were then evaluated. High-quality blastocysts were only obtained in both the fresh and vitrified groups which had undergone AOA after ICSI. Trehalose vitrification slightly, but not significantly, increased the formation rates of high-quality embryos (21.7% VS 15.4%, P > 0.05) and blastocysts (15.7% VS 7.69%, P > 0.05)) when compared with sucrose vitrification. Aneuploidy was observed in 12 of 24 (50%) of the AOA derived high quality blastocysts. High-quality blastocysts only developed from fresh or vitrified immature oocytes if the ICSI was followed by AOA. This information may be important for human immature oocytes commonly retrieved in normal stimulation cycles and may be particularly important for certain patient groups, such as cancer patients. AOA with an appropriate concentration of ethanol can enhance the developmental competence of embryos.  相似文献   

6.
The present study examined the competence of oocytes from bovine ovaries stored at low temperatures for at least 1 day, which is the necessary time period to complete inspection for bovine spongiform encephalopathy. Storage of ovaries at 10 degrees C for 24 h did not affect oocyte maturation (68% versus 68%) or the potential of oocytes to develop into day 8 blastocysts after in vitro fertilization (25% versus 27%), parthenogenetic activation (19% versus 25%), or somatic cell nucleus transfer (27% versus 32%) compared with controls. In vitro-fertilized and parthenogenetic oocytes from ovaries stored at 10 degrees C for 48 h had a significantly decreased maturation rate and developmental potential, but nucleus-transferred oocytes that received cultured cumulus cells did not (27% versus 32%). Thus, bovine ovaries can be stored at 10 degrees C for at least 24 h without decreasing oocyte maturation competence or the developmental potential of in vitro-fertilized, parthenogenetically activated, and somatic cell nucleus-transferred oocytes, at least to the blastocyst stage. The present study provides valuable information with regard to removing bovine ovaries from abattoirs after testing for bovine spongiform encephalopathy.  相似文献   

7.
The effect of the stage of the cell cycle of donor cells and recipient cytoplasts on the timing of DNA replication and the developmental ability in vitro of bovine nuclear transfer embryos was examined. Embryos were reconstructed by fusing somatic cells with unactivated recipient cytoplasts or with recipient cytoplasts that were activated 2 h before fusion. Regardless of whether recipient cytoplasts were unactivated or activated, the embryos that were reconstructed from donor cells at the G0 phase initiated DNA synthesis at 6-9 h postfusion (hpf). The timing of DNA synthesis was similar to that of parthenogenetic embryos, and was earlier than that of the G0 cells in cell culture condition. Most embryos that were reconstructed from donor cells at the G1/S phase initiated DNA synthesis within 6 hpf. The developmental rate of embryos reconstructed by a combination of G1/S cells and activated cytoplasts was higher than the rates of embryos in the other combination of donor cells and recipient cytoplasts. The results suggest that the initial DNA synthesis of nuclear transfer embryos is affected by the state of the recipient oocytes, and that the timing of initiation of the DNA synthesis depends on the donor cell cycle. Our results also suggest that the cell cycles of somatic cells synchronized in the G1/S phase and activated cytoplasts of recipient oocytes are well coordinated after nuclear transfer, resulting in high developmental rates of nuclear transfer embryos to the blastocyst stage in vitro.  相似文献   

8.
The objective of this study was to determine the effect of storage temperature during ovary transport on the developmental competence of bovine oocytes for use in somatic cell nuclear transfer (SCNT). Ovaries obtained from a slaughterhouse were stored in physiological saline for 3-4h at one of the three temperatures: 15 °C, 25 °C, or 35 °C. The developmental competence of oocytes used for SCNT was ascertained by cleavage and blastocyst formation rate, total cell number, apoptosis index, and the relative abundance of Bax and Hsp70.1 in day 7 blastocysts. Ovaries stored at 35 °C for 3-4h reduced the recovery rate of grade I and II oocytes compared with those stored at 25 °C or 15 °C (45.1±0.7% vs. 76.7±1.2% or 74.8±2.0%, P<0.05). The proportion of oocytes matured to the MII stage (maturation rate) for oocytes stored at 35 °C was significantly lower than those stored at 25 °C or 15 °C (51.3±0.9% vs. 75.1±1.4% or 71.7±1.3%, P<0.05). Cleavage rate (77.7±2.1%, 77.9±1.1% and 72.1±0.7% for 15 °C, 25 °C and 35 °C groups, respectively) and blastocyst formation rate (39.1±0.5%, 36.8±1.4% and 32.2±0.9% for 15 °C, 25 °C and 35 °C groups, respectively) following SCNT were not significantly different between treatments. Oocytes from ovaries stored at 15 °C, however, produced blastocysts with higher cell numbers (97.3±8.6 vs. 80.2±10.8 or 77.4±11.7; P<0.05) and lower apoptotic index (5.1±1.3 vs. 13.5±1.6 or 18.6±1.1, P<0.05) than those stored at 25 °C or 35 °C. The relative abundance of Bax and Hsp70.1 in day 7 blastocysts produced from oocytes derived from ovaries stored at 15 °C was lower than those stored at 25 °C or 35 °C (P<0.05). It was concluded that a storage temperature of 15 °C for a 3-4h period had a significant beneficial effect on the quality and developmental competence of oocytes used for SCNT due to the alleviation of stresses on the oocytes compared with those subjected to storage temperatures of 25 °C or 35 °C.  相似文献   

9.
Development of interspecies cloned embryos in yak and dog   总被引:4,自引:0,他引:4  
Interspecies nuclear transfer (NT) could be an alternative to replicate animals when supply of recipient oocytes is limited or in vitro embryo production systems are incomplete. In the present study, embryonic development was assessed following interspecies NT of donor cumulus cells derived from yak and dog into the recipient ooplasm of domestic cow. The percentages of fusion and subsequent embryo development to the eight-cell stage of interspecies NT embryos were comparable to those of intraspecies NT embryos (cow-cow NT embryos). The percentage of development to blastocysts was significantly lower (p < 0.05) in yak-cow NT embryos than that in cow-cow NT embryos (10.9% vs. 39.8%). In dog-cow NT embryos, only one embryo (0.4%) developed to the blastocyst stage. These results indicate that interspecies NT embryos possess equally developmental competence to the eight-cell stage as intraspecies NT embryos, but the development to blastocysts is very low when dog somatic cells are used as the donor nuclei.  相似文献   

10.
Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF.  相似文献   

11.
Mouse sperm desiccated and stored in trehalose medium without freezing   总被引:7,自引:0,他引:7  
Mouse sperm with and without trehalose were desiccated under nitrogen gas and stored at 4 degrees C and 22 degrees C. After rehydration, sperm were injected into oocytes using intracytoplasmic sperm injection and embryonic development was followed. Sperm were dried for 5.0, 6.25, or 7.5 min, stored at 22 degrees C for 1 wk with and without trehalose. The percentages of blastocysts that developed from sperm with trehalose were 51%, 31%, and 20%, respectively, which was significantly higher than sperm without trehalose (10%, 3%, and 5%, respectively). Desiccation and storage in medium with trehalose significantly increased sperm developmental potential compared to medium without trehalose. Sperm dried for 5 min produced more blastocysts than sperm dried for 6.25 or 7.5 min. When sperm were dried in trehalose for 5 min and stored for 1 wk, 2 wk, 1 mo, or 3 mo at 4 degrees C, the percentages of blastocysts were 73%, 84%, 63%, and 39%; whereas those stored at 22 degrees C for 1 wk, 2 wk, or 1 mo were significantly lower (53%, 17%, and 6%, respectively). Embryos from sperm partially desiccated in trehalose for 5 min and stored at 4 degrees C for 1 or 3 mo were transferred to 10 pseudopregnant recipients. Implantation rates were 81% and 48%; live fetuses were 26% and 5%, respectively. One of the recipients delivered three live fetuses. The results show that trehalose has a significant beneficial effect in preserving the developmental potential of mouse sperm following partial desiccation and storage at temperatures above freezing.  相似文献   

12.
During ovary storage oocytes lose some of their developmental competence. In the present study, we maintained storage solutions of phosphate-buffered saline (PBS) at various temperatures (20 or 35 degrees C) or supplemented them with magnesium (Mg), raffinose and sucrose. Subsequently, we examined the kinetics of electrolytes in the follicular fluid (FF) during the ovary storage period (9 h), the survival rate of granulosa cells in the follicles, and the developmental competence of oocytes after the storage. Lowering the temperature from 35 to 20 degrees C increased the total cell number of blastocysts that developed at 7 days after in vitro maturation and in vitro fertilization of oocytes. In stock solution with supplements of 15 mM Mg or a combination of 5 mM Mg and 10 mM raffinose or sucrose, a significantly higher number of oocytes developed into blastocysts with a large number of cells in each blastocyst, and a significantly higher number of living granulosa cells were obtained as compared with stock solutions without any supplements. During ovary storage, the concentrations of potassium and chloride in the FF were increased, and the addition of Mg to the stock solution increased the concentration of Mg in the FF. Germinal vesicle breakdown in oocytes that were collected from ovaries stored in the solution supplemented with 15 mM Mg or a combination of 5 mM Mg and 10 mM of raffinose occurred at a slower rate than that in oocytes collected from ovaries stored in PBS alone. On the other hand, the oocytes collected from ovaries stored in the solution supplemented with 15 mM Mg or a combination of 5 mM Mg and 10 mM raffinose reached the metaphase II (MII) stage more rapidly than the oocytes collected from ovaries stored in the PBS alone. In conclusion, the modification of stock solution by the addition of Mg and raffinose improved the developmental competence of oocytes obtained from ovaries preserved for a long period.  相似文献   

13.
To determine the role of cumulus cells in oocyte maturation, we carried out an investigation on the effects of addition of cumulus cells to the maturation medium on the developmental competence of corona-enclosed oocytes and oocytes denuded from their somatic cells. The addition of cumulus cell (1.6 x 10(6) cells/mL) improved the development of bovine corona-enclosed oocytes, however, addition of a similar number of cumulus cells as cumulus-oocyte-complexes (COCs, cumulus cell density: 4.2 x 10(6) cells/mL) had no effect on the development of oocytes denuded from their somatic cells. To determine if corona-enclosed oocytes can obtain developmental competence without the addition of extra cumulus cells, the effects of cell density during in vitro maturation on the developmental competence were studied. A density of 1.6 to 3.2 x 10(6) cumulus cells/mL was the most effective for in vitro maturation of oocytes with intact gap junctions. The effects of the medium conditioned by COCs on the developmental competence of oocytes was also examined. It was demonstrated that COC-conditioned medium improved the development of bovine oocytes to the blastocyst stage. These data suggest that the developmental competence of bovine oocytes surrounded with corona cells is supported in a cell density-dependent manner in the maturation medium. In addition, the data indicate that cumulus cells benefit bovine oocyte development either by secreting soluble factors which induce developmental competence or by removing an embryo development-suppressive component from the medium.  相似文献   

14.
Jang G  Bhuiyan MM  Jeon HY  Ko KH  Park HJ  Kim MK  Kim JJ  Kang SK  Lee BC  Hwang WS 《Theriogenology》2006,65(9):1800-1812
In an attempt to produce transgenic cloned cows secreting alpha 1-antitrypsin (alpha1-AT) protein into milk, bovine cumulus cells were transfected with a plasmid containing an alpha1-AT gene and green fluorescent protein (GFP) reporter gene using Fugene 6 as a lipid carrier. The GFP-expressing cells were selected and transferred into enucleated bovine oocytes. Couplets were fused, chemically activated and cultured. Developmental competence was monitored and the number of inner cell mass (ICM) and trophectoderm (TE) cells in blastocysts were counted after differential staining. The percentage of blastocysts was lower (P < 0.05) in transgenic cloned embryos compared to non-transgenic cloned embryos (23% versus 35%). No difference in the numbers of ICM and TE cells between the two groups of embryos was observed. One or two GFP-expressing blastocysts were transferred into the uterus of each recipient cow. Out of 49 recipient cows, three pregnancies were detected by non-return estrus and rectal palpation. However, the pregnancies failed to maintain to term; two fetuses were aborted at Day 60 and 150, respectively, and one fetus at Day 240. The genomic DNA from the aborted fetus was amplified by polymerase chain reaction (PCR) to investigate integration of the transgene in the fetus. The expected PCR product was sequenced and was identical to the sequence of alpha1-AT transgene. In conclusion, the present study demonstrated that developmental competence of cloned embryos derived from transgenic donor cells was lower than embryos derived from non-transfected donor cells. Although we failed to obtain a viable transgenic cloned calf, integration of alpha1-AT gene into the fetus presents the possibility of producing transgenic cloned cows by somatic cell nuclear transfer.  相似文献   

15.
The present study examined effects of genetic manipulation and serum starvation on in vitro developmental potential of bovine somatic cell nuclear transfer (SCNT) embryos and vitrification on in vivo developmental competence of transgenic SCNT blastocysts. Fetal oviduct epithelial cells (FOECs) were isolated from the oviduct of a Day 147 bovine fetus and transfected with a plasmid (pCE-EGFP-IRES-NEO) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes. There were no significant differences (P > 0.05) in cleavage rates or development rates to the blastocyst stage for SCNT embryos derived from FOECs (72.5 and 47.8%, respectively) or transfected FOECs (TFOECs, 73.8 and 47.7%, respectively); nor from serum-fed (73.6 and 47.2%, respectively) or serum-starved (72.7 and 48.3%, respectively) cells. Seventeen of Day 7 GFP-embryos (eight fresh blastocysts and nine vitrified/thawed blastocysts ) were transferred to recipients with one embryo per recipient. Two (25%) recipients were confirmed pregnant at Day 60 in fresh blastocysts group, and three recipients (33%) were confirmed pregnant at Day 60 in vitrified/thawed blastocysts group. Two healthy calves (25%) were obtained from fresh blastocysts and one (11%) from vitrified/thawed blastocysts. Microsatellite analysis confirmed that the three clones were genetically identical to the donor cells. Moreover, PCR and Southern blot demonstrated integration of transgene in genomic DNA of all three cloned calves. Expression of GFP in skin biopsies isolated from transgenic cloned calves and fibroblasts derived from the skin biopsies revealed the activity of EGFP gene, and G418 resistance in vitro of these fibroblasts confirmed the activity of Neor gene. Our results show that genetic manipulation and serum starvation of donor cells (FOECs) do not affect in vitro developmental competence of bovine SCNT embryos, and vitrified transgenic SCNT blastocysts can develop to term successfully.  相似文献   

16.
Bovine oocyte diameter in relation to developmental competence   总被引:2,自引:0,他引:2  
This study was conducted to determine the diameter of bovine oocytes that were able to attain their full developmental competence to blastocysts. Oocytes were recovered by aspiration of surface-visible follicles (1 to 7 mm in diameter) from slaughterhouse ovaries. Only healthy-looking cumulus-oocyte complexes were used for in vitro maturation, and they were divided into six groups based on diameter: < 110 microm, 110 to < 115 microm, 115 to < 120 microm, 120 to < 125 microm, 125 to < 130 microm and >/= 130 microm. Oocytes were processed through standard procedures for in vitro maturation, fertilization and culture. Following in vitro maturation or fertilization, some oocytes were stained to assess nuclear maturation and penetration rates. The numbers of embryos that cleaved at 42 h post insemination and developed to blastocysts and hatched blastocysts after 8 days of culture were recorded. The mean oocyte diameters were 114.0 +/- 4.8 microm. The oocytes displayed size-related ability to undergo meiotic maturation. The rates of nuclear maturation of oocytes in the greater than 115-microm size range were significantly higher than those of oocytes with diameters < 115 microm. In the < 120 microm diameter groups, the polyspermic fertilization rates of oocytes < 115 microm were significantly higher than those of oocytes 115 to < 120 microm in diameter. The rates of cleavage and development to blastocysts and hatched blastocysts rose as oocyte diameter increased. Among oocytes with a diameter >110 microm, oocytes < 120 microm were found to have significantly lower developmental competence than oocytes 120 to < 130 microm in diameter. These results suggest that bovine oocytes have acquired full meiotic competence at a diameter of 115 microm but not yet attained full developmental competence to blastocysts, and that oocytes have acquired full developmental competence at a diameter of 120 microm.  相似文献   

17.
The article summarizes results of studies concerning: 1/ qualitative evaluation of pig nuclear donor cells to somatic cell cloning, 2/ developmental potency of sheep somatic cells to create chimera, 3/ efficient production of chicken chimera. The quality of nuclear donor cells is one of the most important factors to determine the efficiency of somatic cell cloning. Morphological criteria commonly used for qualitative evaluation of somatic cells may be insufficient for practical application in the cloning. Therefore, different types of somatic cells being the source of genomic DNA in the cloning procedure were analyzed on apoptosis with the use of live-DNA or plasma membrane fluorescent markers. It has been found that morphological criteria are a sufficient selection factor for qualitative evaluation of nuclear donor cells to somatic cell cloning. Developmental potencies of sheep somatic cells in embryos and chimeric animals were studied using blastocyst complementation test. Fetal fibroblasts stained with vital fluorescent dye and microsurgically placed in morulae or blastocysts were later identified in embryos cultured in vitro. Transfer of Polish merino blastocysts harbouring Heatherhead fibroblasts to recipient ewes brought about normal births at term. Newly-born animals were of merino appearance with dark patches on their noses, near the mouth and on their clovens. This overt chimerism shows that fetal fibroblasts introduced to sheep morulae/blastocysts revealed full developmental plasticity. To achieve the efficient production of chicken chimeras, the blastodermal cells from embryos of the donor breeds, (Green-legged Partridgelike breed or GPxAraucana) were transferred into the embryos of the recipient breed (White Leghorn), and the effect of chimerism on the selected reproductive and physiological traits of recipients was examined. Using the model which allowed identification of the chimerism at many loci, it has been found that 93.9% of the examined birds were chimeras. The effect of donor cells on the reproduction and physiology of the recipients was evident.  相似文献   

18.
19.
Hyun S  Lee G  Kim D  Kim H  Lee S  Nam D  Jeong Y  Kim S  Yeom S  Kang S  Han J  Lee B  Hwang W 《Biology of reproduction》2003,69(3):1060-1068
A system for somatic cell nuclear transfer (SCNT) was developed and led to the successful production of GFP-transfected piglets. In experiment 1, two groups of SCNT couplets reconstructed with porcine fetal fibroblasts (PFF) and enucleated sow (S) or gilt oocytes (G): 1). received a simultaneous electrical fusion/activation (S-EFA or G-EFA groups), or 2). were electrically fused followed by activation with ionomycin (S-EFIA or G-EFIA groups), or 3). were subjected to electrical fusion and subsequent activation by ionomycin, followed by 6-dimethylaminopurine treatment (S-EFIAD or G-EFIAD groups). The frequency of blastocyst formation was significantly higher in S-EFA (26%) compared with that observed in the other experimental groups (P < 0.05), but not with S-EFIA (23%). Sow oocytes yielded significantly higher cleavage frequencies (68%-69%) and total cell numbers of blastocysts when compared with gilt oocytes, regardless of fusion/activation methods (P < 0.05). However, the ratio of inner cell mass (ICM)/total cells in G-EFA and S-EFA was significantly lower than in the other groups (P < 0.05). In experiment 2, SCNT couplets reconstructed with PFF cultured in the presence or absence of serum and enucleated sow oocytes were subjected to EFA. There were no effects of serum starvation on cell-cycle synchronization, developmental competence, total cell numbers, and ratio of ICM/total cells. In experiment 3, SCNT couplets reconstructed with PFF transfected with an enhanced green fluorescence protein (EGFP) gene using FuGENE-6 and enucleated sow oocytes were subjected to EFA and cultured for 7 days. Expression frequencies of GFP gene during development were 100%, 78%, 72%, 71%, and 70% in fused, two-cell, four to eight cells, morulae, and blastocysts, respectively. In experiment 4, SCNT embryos derived from different recipient cytoplasts (sows or gilts) and donor karyoplasts (PFF or GFP-transfected) were subjected to EFA and transferred to the oviducts of surrogates. The pregnancy rates in SCNT embryos derived from sow oocytes (66%-69%) were higher than those with gilt oocytes (23%-27%) regardless of donor cell types. One live offspring from GFP-SCNT embryos and two from PFF-SCNT embryos were delivered. Microsatellite analysis confirmed that the clones were genetically identical to the donor cells and polymerase chain reaction (PCR) from genomic DNA of cloned piglets and subsequent southern blot analysis confirmed the integration of EGFP gene into chromosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号