首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streptococcus pyogenes is responsible for a variety of infectious diseases and immunological complications. In this study, 91 isolates of S. pyogenes recovered from oropharynx secretions were submitted to antimicrobial susceptibility testing, emm typing and pulsed-field gel electrophoresis (PFGE) analysis. All isolates were susceptible to ceftriaxone, levofloxacin, penicillin G and vancomycin. Resistance to erythromycin and clindamycin was 15.4%, which is higher than previous reports from this area, while 20.9% of the isolates were not susceptible to tetracycline. The macrolide resistance phenotypes were cMLSB (10) and iMLSB (4). The ermB gene was predominant, followed by the ermA gene. Thirty-two emm types and subtypes were found, but five (emm1, emm4, emm12, emm22, emm81) were detected in 48% of the isolates. Three new emm subtypes were identified (emm1.74, emm58.14, emm76.7). There was a strong association between emm type and PFGE clustering. A variety of PFGE profiles as well as emm types were found among tetracycline and erythromycin-resistant isolates, demonstrating that antimicrobial resistant strains do not result from the expansion of one or a few clones. This study provides epidemiological data that contribute to the development of suitable strategies for the prevention and treatment of such infections in a poorly studied area.  相似文献   

2.
One hundred sixty non duplicate erythromycin resistant Streptococcus agalactiae isolates were collected in Tunisia from January 2005 to December 2007 They were investigated to determine their resistance level to different macrolides and the mechanisms involved. Most erythromycin resistant S. agalactiae isolates were isolated from urinary specimens (38.75%, 62/160). The constitutive MLSB phenotype (cMLS) showed in 84.3% (135/160) with high MICs of macrolides and lincosamides (MIC90>256 microg/mL) and 8.2% (13/160) inducible MLSB phenotype (iMLS) with high MICs of macrolides (MIC90>256 microg/mL) and moderately increased MICs of lincosamides (MIC90=8 microg/mL). The M phenotype showed in 7.5% (12/160) with moderately increased MICs of macrolides (MIC90=32 microg/mL) and low MICs of lincosamides (MIC90=0.75 microg/mL). All strains were susceptible to quinupristun-dalfopristin association and linezolid (MIC90: 05 and 0.38 microg/mL respectively). Strains with MLSB phenotype harboured erm(B) gene with 825% (n=132), erm(TR) gene with 8.12% (n=13) and erm(B) plus mef (A) with 1.88% (n=3). All strains categorized as M phenotype carried the mef(A) gene (75%, n=12). cMLSB phenotype conferring cross resistance to macrolides, lincosamides and streptogramins B with high level of resistance was the most prevalent.  相似文献   

3.
For 31 clinical strains of S. aureus the correlation between phenotype and genotype of resistance to macrolides, lincosamides and streptogramins B (MLSB) was established.. Phenotypes were determined on the basis of: susceptibility to erythromycin and clindamycin and the ability to an induction of the resistance (phenotypes S, susceptible; R , constitutive resistant, D, resistant after induction with erythromycin, D+, resistant after induction with erythromycin and with a presence of the small colonies inside inhibition zone between erythromycin and clindamycin discs), and on the basis of the resistance to spectinomycin (spR, resistant, spS, susceptible). Among examined S. aureus strains eight phenotypes of resistance to MLSB were recognized (the corresponding genotypes are given in brackets). Six phenotypes were typical: SspS (lack of MLS-B resistance genes), NEGspS (msrA/B, 1 strain), D+spS (ermCi, 4 strains),. DspR (ermAi, 11 strains and ermAi + msrA/B, 2 strains), RspR (ermAc, 4 strains and ermA + msrA/B,1 strain and ermA + ermC, 1 strain) and RspS (ermCc, 6 strains and ermB, 1 strain). Two rare phenotypes in two single strains were observed: SspR (ermAi, the strain with altered inducibility, inductor other than erythromycin) and DspS (ermAi, presumably mutation or lack of spc in Tn554).  相似文献   

4.
This study aimed to correlate the presence of ica genes, biofilm formation and antimicrobial resistance in 107 strains of Staphylococcus epidermidis isolated from blood cultures. The isolates were analysed to determine their methicillin resistance, staphylococcal cassette chromosome mec (SCCmec) type, ica genes and biofilm formation and the vancomycin minimum inhibitory concentration (MIC) was measured for isolates and subpopulations growing on vancomycin screen agar. The mecA gene was detected in 81.3% of the S. epidermidis isolated and 48.2% carried SCCmec type III. The complete icaADBC operon was observed in 38.3% of the isolates; of these, 58.5% produced a biofilm. Furthermore, 47.7% of the isolates grew on vancomycin screen agar, with an increase in the MIC in 75.9% of the isolates. Determination of the MIC of subpopulations revealed that 64.7% had an MIC ≥ 4 μg mL-1, including 15.7% with an MIC of 8 μg mL-1 and 2% with an MIC of 16 μg mL-1. The presence of the icaADBC operon, biofilm production and reduced susceptibility to vancomycin were associated with methicillin resistance. This study reveals a high level of methicillin resistance, biofilm formation and reduced susceptibility to vancomycin in subpopulations of S. epidermidis. These findings may explain the selection of multidrug-resistant isolates in hospital settings and the consequent failure of antimicrobial treatment.  相似文献   

5.
Aims: We report the analysis of genetic determinants conferring resistance to pristinamycin in Staphylococcus epidermidis strains and epidemiology typing of these strains by pulsed‐field gel electrophoresis. Methods and Results: Staphylococcus epidermidis (346 isolates) were searched for strains with pristinamycin resistance. Pristinamycin‐resistant strains (seven isolates) were isolated in five patients with haematological cancer in the Bone Marrow Transplant Centre of Tunisia in 2002. Resistance to pristinamycin was observed in 2% of isolates. The seven pristinamycin‐resistant strains shared resistance to oxacillin (MIC = 8–512 μg ml?1), gentamicin (MIC = 16–512 μg ml?1), erythromycin (MIC > 1024 μg ml?1), lincomycin (MIC > 1024 μg ml?1), pristinamycin (MIC = 4–16 μg ml?1) and rifampin (MIC = 128–256 μg ml?1). erm genes were amplified: ermA from six strains and ermC from one. vga gene encoding streptogramins A resistance (pristinamycin résistance) was amplified from all strains and typed as vgaA by analysis after electrophoresis of restriction profiles of vga amplicons (two fragments with Sau3A of 164 and 378 bp; one fragment with EcoRI). Pulsed‐field gel electrophoresis (PFGE) of SmaI chromosomal DNA digests of the seven S. epidermidis isolates divided them into two distinct pattern types: pulsed‐field type A (classified from A1 to A6 subtypes) and type B. The six strains harbouring ermA genes belonged to the PFGE type A while the strain harbouring ermC genes belonged to the PFGE type B. We characterized an epidemic strain carrying the vgaA and ermA genes responsible for the outbreak. Conclusions: Two clones of pristinamycin‐resistant S. epidermidis were isolated in our patients. One of them, isolated in all patients, had expanded over six months suggesting acquisition by cross‐contamination. Significance and Impact of the study: Increasing isolation of pristinamycin resistant S. epidermidis strains is an alarming indicator of nosocomial dissemination. The vector will be determined to establish a system of epidemiological surveillance.  相似文献   

6.
Klebsiella pneumoniae U25 is a multidrug resistant strain isolated from a tertiary care hospital in Chennai, India. Here, we report the complete annotated genome sequence of strain U25 obtained using PacBio RSII. This is the first report of the whole genome of K. pneumoniaespecies from Chennai. It consists of a single circular chromosome of size 5,491,870-bp and two plasmids of size 211,813 and 172,619-bp. The genes associated with multidrug resistance were identified. The chromosome of U25 was found to have eight antibiotic resistant genes [blaOXA-1,blaSHV-28, aac(6’)1b-cr,catB3, oqxAB, dfrA1]. The plasmid pMGRU25-001 was found to have only one resistant gene (catA1) while plasmid pMGRU25-002 had 20 resistant genes [strAB, aadA1,aac(6’)-Ib, aac(3)-IId,sul1,2, blaTEM-1A,1B,blaOXA-9, blaCTX-M-15,blaSHV-11, cmlA1, erm(B),mph(A)]. A mutation in the porin OmpK36 was identified which is likely to be associated with the intermediate resistance to carbapenems in the absence of carbapenemase genes. U25 is one of the few K. pneumoniaestrains to harbour clustered regularly interspaced short palindromic repeats (CRISPR) systems. Two CRISPR arrays corresponding to Cas3 family helicase were identified in the genome. When compared to K. pneumoniaeNTUHK2044, a transposase gene InsH of IS5-13 was found inserted.  相似文献   

7.

Background

Staphylococcus epidermidis and S. aureus have been identified as the most common bacteria responsible for sub-clinical and overt breast implant infections and their ability to form biofilm on the implant as been reported as the essential factor in the development of this type of infections. Biofilm formation is a complex process with the participation of several distinct molecules, whose relative importance in different clinical settings has not yet been fully elucidated. To our knowledge this is the first study aimed at characterizing isolates causing breast peri-implant infections.

Results

Thirteen S. aureus and seven S. epidermidis causing breast peri-implant infections were studied.Using the broth microdilution method and the E-test, the majority of the strains were susceptible to all antibiotics tested. Methicillin resistance was detected in two S. epidermidis. All strains had different RAPD profiles and were able to produce biofilms in microtitre plate assays but, while all S. aureus carried and were able to express icaA and icaD genes, this was only true for one S. epidermidis. Biofilm development was glucose- and NaCl-induced (5 S. aureus and 1 S. epidermidis) or glucose-induced (the remaining strains). Proteinase K and sodium metaperiodate treatment had different effects on biofilms dispersion revealing that the strains studied were able to produce chemically different types of extracellular matrix mediating biofilm formation.All S. aureus strains harboured and expressed the atlA, clfA, FnA, eno and cna genes and the majority also carried and expressed the sasG (10/13), ebpS (10/13) genes.All S. epidermidis strains harboured and expressed the atlE, aae, embp genes, and the majority (six strains) also carried and expressed the fbe, aap genes.Genes for S. aureus capsular types 5 and 8 were almost equally distributed. The only leukotoxin genes detected were lukE/lukD (6/13).

Conclusions

S. aureus and S. epidermidis breast peri-implant infections are caused by heterogeneous strains with different biofilm development mechanisms.Since the collagen adhesin (cna) gene is not ubiquitously distributed among S. aureus, this protein could have an important role in the cause of breast peri-implant infections.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-015-0368-x) contains supplementary material, which is available to authorized users.  相似文献   

8.
To determine the prevalence of drug resistant bacteria colonizing laboratory mice, we isolated and characterized vancomycin-resistant Enterococcus species (VRE) from commercially available mice. A total of 24 VRE isolates were obtained from 19 of 21 mouse strains supplied by 4 commercial breeding companies. Of these, 19 isolates of E. gallinarum and 5 isolates of E. casseliflavus possessing the vanC1 and vanC2/3 genes intrinsically, exhibited intermediate resistance to vancomycin respectively. In addition, these isolates also exhibited diverse resistant patterns to erythromycin, tetracycline, and ciprofloxacin, whereas the use of antibiotics had not been undertaken in mouse strains tested in this study. Although 6 virulence-associated genes (ace, asa, cylA, efaA, esp, and gelE) and secretion of gelatinase and hemolysin were not detected in all isolates, 23 of 24 isolates including the isolates of E. casselifalvus secreted ATP into culture supernatants. Since secretion of ATP by bacteria resident in the intestinal tract modulates the local immune responses, the prevalence of ATP-secreting VRE in mice therefore needs to be considered in animal experiments that alter the gut microflora by use of antibiotics.  相似文献   

9.
In analyzing the drug resistance phenotype and mechanism of resistance to macrolide antibiotics of clinical Pseudomonas aeruginosa isolates, the agar dilution method was used to determine the minimum inhibitory concentrations (MICs), and PCR (polymerase chain reaction) was applied to screen for macrolide antibiotics resistance genes. The macrolide antibiotics resistance genes were cloned, and their functions were identified. Of the 13 antibiotics tested, P. aeruginosa strains showed high resistance rates (ranging from 69.5–82.1%), and MIC levels (MIC90 > 256 μg/ml) to macrolide antibiotics. Of the 131 known macrolide resistance genes, only two genes, mphE and msrE, were identified in 262 clinical P. aeruginosa isolates. Four strains (1.53%, 4/262) carried both the msrE and mphE genes, and an additional three strains (1.15%, 3/262) harbored the mphE gene alone. The cloned msrE and mphE genes conferred higher resistance levels to three second-generation macrolides compared to two first-generation ones. Analysis of MsrE and MphE protein polymorphisms revealed that they are highly conserved, with only 1–3 amino acids differences between the proteins of the same type. It can be concluded that even though the strains showed high resistance levels to macrolides, known macrolide resistance genes are seldom present in clinical P. aeruginosa strains, demonstrating that a mechanism other than this warranted by the mphE and msrE genes may play a more critical role in the bacteria’s resistance to macrolides.Key words: Pseudomonas aeruginosa, macrolide, resistance gene, mphE, msrE  相似文献   

10.
Antibiotic-resistant Staphylococci are a global issue affecting humans, animals, and numerous natural environments. Antibiotic-resistant Staphylococcus epidermidis is an opportunistic pathogen frequently isolated from patients and healthy individuals. This study aimed to examine the antibiotic resistance of S. epidermidis isolated from patients, healthy students and compare the results with antibiotic-resistant bacteria isolated from pasteurized milk. Clinical strain isolation was performed in several hospitals in the Riyadh. Skin swabs from 100 healthy undergraduate candidate students were obtained at King Saud University. The pasteurized milk samples were obtained from local market (company, X). After isolation, identification and susceptibility tests were performed using an automated system. A multiplex tuf gene-based PCR assay was used to confirm identification. Biofilm production and biofilm-related gene expression were studied. S. epidermidis represented 17% of clinical bacterial isolates, and 1.7% of isolates obtained from healthy students were multiantibiotic-resistant. All patient strains were teicoplanin- and vancomycin-susceptible, while all student strains were gentamicin-, levofloxacin-, moxifloxacin-, and trimethoprim/sulfamethoxazole-susceptible. All the bacteria isolated from pasteurized milk were benzylpenicillin and oxacillin-resistant strains. Of the S. epidermidis strains, 91% could produce biofilms, and mecA, icaADBR, ica-ADB, ica-AD, ica-A only, and ica-C only were expressed in 83, 17.1, 25.7, 37.1, 20, and 0% of the strains, respectively. This work demonstrates that S. epidermidis can be accurately identified using a multiplex tuf-based assay, and that multiantibiotic-resistant S. epidermidis strains are widespread amongst patients and healthy students.  相似文献   

11.
Staphylococcus epidermidis strains were isolated from the expressed human breast milk (EHM) of 14 healthy donor mothers. Genetic diversity was evaluated using RAPD-PCR REP-PCR and pulse-field gel electrophoresis (PFGE). PFGE allowed the best discrimination of the isolates, since it provided for the greatest diversity of the analyzed genomes. Among the S. epidermidis strains, resistance to gentamicin, tetracycline, erythromycin, clindamycin or vancomycin was detected, whilst four isolates were multiresistant. The results from our study demonstrate that staphylococci from EHM could be reservoirs of resistance genes, since we showed that tetK could be transferred from EHM staphylococci to Gram-negative Escherichia coli. Most of the staphylococcal strains displayed excellent proteolytic and lipolytic activities. Additionally, the presence of ica genes, which was related to their ability to form a biofilm on tissue culture plates, and the presence of virulence factors including autolysin/adhesin AtLE, point to their pathogenic potential.  相似文献   

12.
《Anaerobe》2009,15(6):237-240
150 Clostridium difficile strains isolated from diarrheal feces were collected from three parts of Hungary and the presence of genes responsible for toxin A and B, and binary toxin production were examined. MIC distribution against clindamycin, erythromycin, metronidazole, moxifloxacin and rifampin of 80 toxigenic strains selected from the above-mentioned strains and 20 large clostridial toxins (LCTs)-positive strains chosen from our earlier strain collection were determined. 80% of the examined 150 strains were positive for both tcdA and tcdB, and no toxin A-negative, toxin B-positive isolates were found during the study period. 5.3% of toxigenic strains proved to be positive for binary toxin too. Among binary toxin-positive strains, one strain showed the same pattern characteristic of PCR ribotype 027. Comparison of recent findings and our earlier results, the prevalence of toxin-producing and binary toxin-positive strains among C. difficile isolated from diarrheal specimens increased. No metronidazole resistant isolate was detected among strains isolated in 2002–2003 and 2006–2007. The rates of resistance to erythromycin, clindamycin, moxifloxacin and rifampin among strains isolated between 2006 and 2007 were 25%, 27.5%, 25% and 6.3%, respectively. Erythromycin resistance was frequently associated with clindamycin and moxifloxacin resistance, however this resistant phenotype was not found among strains isolated in 2002–2003.  相似文献   

13.
The purpose of this study was to investigate the prevalence and genetic mechanisms of erythromycin resistance in staphylococci. A total of 102 erythromycin resistant non-duplicate clinical isolates of staphylococci [78 coagulase negative stapylococci (CNS), 24 Staphylococcus aureus] were collected between October 2003 and August 2004 in Istanbul Faculty of Medicine in Turkey. The majority of the isolates were from blood and urine specimens. Antimicrobial susceptibilities were determined by the agar dilution procedure and the resistance phenotypes by the double disk induction test. A multiplex PCR was performed, using primers specific for erm(A), erm(B), erm(C), and msrA genes. Among the 78 CNS isolates, 57.8% expressed the MLSB-constitutive, 20.6% the MLSB-inducible, and 21.6% the MSB phenotypes. By PCR, 78.2% of these isolates harbored the erm(C) gene, 8.9% erm(A), 6.4% erm(B), and 11.5% msrA genes. In S. aureus, the constitutive MLSB (58.3%) was more common than the inducible phenotype (20.8%). erm(A) was detected in 50% and erm(C) in 62.5% of the isolates, while 37.5% contained both erm(A) and erm(C). erm(C)-associated macrolide resistance was the most prevalent in CNS, while erm(C) and erm(A, C) was the most prevalent in S. aureus.  相似文献   

14.
Soybeans with genes for resistance select against Heterodera glycines with the corresponding genes for avirulence. There may be a differential effect of sex with some specific gene interactions, which would influence the magnitude of gene frequency changes. No effect on H. glycines males was detected with one selected nematode population and the resistant soybean line PI88788. The selective effect of PI89772 against male nematodes was greater with two inbred nematode populations than with one selected (on PI88788) population, presumably due to differences in H. glycines gene frequencies. ''Peking'' also had few males with the one inbred nematode population, whereas Forrest and ''Pickett 71'' had intermediate numbers. Apparently Forrest and Pickett 71 did not get all the Peking genes for resistance that affect male as well as female nematode development. Other H. glycines-soybean genes stop only females, since there were few or no cysts, except on the susceptible soybean Williams. The number of males'' phenotype will help identify specific genes in both organisms.  相似文献   

15.
Staphylococcus epidermidis is an opportunistic pathogen that is one of the leading causes of medical device infections. Global regulators like the agr quorum-sensing system in this pathogen have received a limited amount of attention, leaving important questions unanswered. There are three agr types in S. epidermidis strains, but only one of the autoinducing peptide (AIP) signals has been identified (AIP-I), and cross talk between agr systems has not been tested. We structurally characterized all three AIP types using mass spectrometry and discovered that the AIP-II and AIP-III signals are 12 residues in length, making them the largest staphylococcal AIPs identified to date. S. epidermidis agr reporter strains were developed for each system, and we determined that cross-inhibitory interactions occur between the agr type I and II systems and between the agr type I and III systems. In contrast, no cross talk was observed between the type II and III systems. To further understand the outputs of the S. epidermidis agr system, an RNAIII mutant was constructed, and microarray studies revealed that exoenzymes (Ecp protease and Geh lipase) and low-molecular-weight toxins were downregulated in the mutant. Follow-up analysis of Ecp confirmed the RNAIII is required to induce protease activity and that agr cross talk modulates Ecp activity in a manner that mirrors the agr reporter results. Finally, we demonstrated that the agr system enhances skin colonization by S. epidermidis using a porcine model. This work expands our knowledge of S. epidermidis agr system function and will aid future studies on cell-cell communication in this important opportunistic pathogen.  相似文献   

16.
The occurrence and antibiotic susceptibility profile of Staphylococcus isolates of healthy farm animal origin in Nkonkobe Municipality as well as the prevalence of putative antibiotic resistance genes were investigated using phenotypic and molecular methods. A total of 120 Staphylococcus isolates were isolated from 150 animal samples and consisted of Staphylococcus haemolyticus (30 %) and Staphylococcus aureus (23.3 %) from pig, Staphylococcus capitis (15 %) from goat, S. haemolyticus (5 %) and Staphylococcus xylosus (15 %) from cattle, and other staphylococci (11.7 %) from dead chicken and pigs. Besides this, the presence of these isolates was observed from the animal dung, showing that the organisms are shed to the environment. About 23.3 % of these isolates were coagulase-positive and 76.7 % were coagulase-negative Staphylococcus. Between 75 and 100 % of the isolates were resistant to penicillin G, tetracycline, sulfamethoxazole, and nalidixic acid; about 38 % were methicillin-resistant staphylococci, including 12.6 % methicillin-resistant S. aureus from pigs. In total, 12 % of all isolates were vancomycin resistant. Also, 12 % of the isolates were erythromycin resistant, while 40.2 % were resistant to ceftazidime. Only the genes mecA and mphC could be confirmed, whereas the genes vanA, vanB, ermA, ermB, and ermC could not be detected. The high phenotypic antibiotic resistance and the presence of some associated resistance genes is a potential threat to public health and suggest the animals to be important reservoirs of antibiotic resistance determinants in the environment.  相似文献   

17.
18.
We analyzed the occurrence and mechanisms of fusidic acid resistance present in staphylococci isolated from 59 healthy volunteers. The fingers of the volunteers were screened for the presence of staphylococci, and the collected isolates were tested for resistance to fusidic acid. A total of 34 fusidic acid resistant staphylococcal strains (all were coagulase-negative) were isolated from 22 individuals (22/59, 37.3%). Examination of the resistance genes revealed that acquired fusB or fusC was present in Staphylococcus epidermidis, Staphylococcus capitis subsp. urealyticus, Staphylococcus hominis subsp. hominis, Staphylococcus warneri and Staphylococcus haemolyticus. Resistance islands (RIs) carrying fusB were found in S. epidermidis and S. capitis subsp. urealyticus, while staphylococcal chromosome cassette (SCC)-related structures harboring fusC were found in S. hominis subsp. hominis. Genotypic analysis of S. epidermidis and S. hominis subsp. hominis indicated that the fus elements were disseminated in diverse genetic strain backgrounds. The fusC elements in S. hominis subsp. hominis strains were highly homologous to SCCfusC in the epidemic sequence type (ST) 239/SCCmecIII methicillin-resistant S. aureus (MRSA) or the pseudo SCCmec in ST779 MRSA. The presence of acquired fusidic acid resistance genes and their genetic environment in commensal staphylococci suggested that the skin commensal staphylococci may act as reservoir for fusidic acid resistance genes.  相似文献   

19.
Background:Antibiotics called macrolide, lincosamide and streptogramin B (MLSB) are being used to treat staphylococci infections. Multiple pathways that impart resistance to MLSB antibiotics have been confirmed to cause clinical failure. The present work aimed to determine the frequency of constitutive and inducible clindamycin resistant among coagulase-negative staphylococci (CoNS) isolates of different clinical samples in Al-Basrah governorate, Iraq.Methods:The 28 CoNS, traditional techniques and the Vitek®2 system were used to identify the isolates. The disk diffusion technique was used to detect methicillin resistance and antibiotic sensitivity patterns via cefoxitin, gentamicin, ciprofloxacin, amikacin, teicoplanin, linezolid, doxycycline and vancomycin disks. Erythromycin and clindamycin antibiotic disks was used to detect the inducible and constitutive clindamycin resistance as well as a D-test according to CLSI guidelines.Results:Among 28 CoNS isolated, the Staphylococcus aureus 11(39.29%), Staphylococcus epidermidis 7(25 %), Staphylococcus haemolyticus 4(14.29%) and Staphylococcus saprophyticus 3 (10.71%) were predominant isolated species. Out of 28 CoNS isolates, 15(53.57%) were methicillin resistant coagulase-negative staphylococci (MRCoNS) isolates and 13(46.43%) were methicillin sensitive coagulase-negative staphylococci (MSCoNS) isolates. The 15(53.57%) isolates out of 28 CoNS, showed erythromycin resistance while 6(40%) isolates out of 15 CoNS, showed inducible macrolide-lincosamide-streptogramin B (iMLSB) and 2(13.3%) of CONS isolated showed constitutive macrolide-lincosamide-streptogramin B (cMLSB).Conclusion:In order to achive the best result in choosing the suitable treatment and avoiding the loses the money and time, it is better to use the D-test for inducible clindamycin resistance in the daily routine work of antibiotic susceptibility testing in hospital and private clinical laboratories.Key Words: Anti-Bacterial Agents, Clindamycin, Staphylococcus  相似文献   

20.

Background

The methicillin-resistant Staphylococcus aureus clone USA300 contains a novel mobile genetic element, arginine catabolic mobile element (ACME), that contributes to its enhanced capacity to grow and survive within the host. Although ACME appears to have been transferred into USA300 from S. epidermidis, the genetic diversity of ACME in the latter species remains poorly characterized.

Methodology/Principal Findings

To assess the prevalence and genetic diversity of ACME, 127 geographically diverse S. epidermidis isolates representing 86 different multilocus sequence types (STs) were characterized. ACME was found in 51% (65/127) of S. epidermidis isolates. The vast majority (57/65) of ACME-containing isolates belonged to the predominant S. epidermidis clonal complex CC2. ACME was often found in association with different allotypes of staphylococcal chromosome cassette mec (SCCmec) which also encodes the recombinase function that facilities mobilization ACME from the S. epidermidis chromosome. Restriction fragment length polymorphism, PCR scanning and DNA sequencing allowed for identification of 39 distinct ACME genetic variants that differ from one another in gene content, thereby revealing a hitherto uncharacterized genetic diversity within ACME. All but one ACME variants were represented by a single S. epidermidis isolate; the singular variant, termed ACME-I.02, was found in 27 isolates, all of which belonged to the CC2 lineage. An evolutionary model constructed based on the eBURST algorithm revealed that ACME-I.02 was acquired at least on 15 different occasions by strains belonging to the CC2 lineage.

Conclusions/Significance

ACME-I.02 in diverse S. epidermidis isolates were nearly identical in sequence to the prototypical ACME found in USA300 MRSA clone, providing further evidence for the interspecies transfer of ACME from S. epidermidis into USA300.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号