首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
2.
The effect of various concentrations of exogenously applied 24-epibrassinolide (E) and 2α,3α,17β-trihydroxy-5α-androstan-6-one (A) on the activities of Photosystem 1 and the Hill reaction, the contents of photosynthetic pigments, and the growth of plants was examined in young maize (Zea mays L.) plants subjected to long-term chilling stress or grown in normal-temperature conditions. Neither the activity of Photosystem 1 nor the Hill reaction activity of plants was in any way affected by the treatment with brassinosteroids (BRs), which suggests that the photosynthetic complexes of thylakoid membranes are not the primary site of the influence of BRs on photosynthesis. An extremely low (10−14 M) concentration of A applied to the nonstressed plants significantly increased the length of their 4th to the 7th leaves and their height, as well as the contents of chlorophylls a and b and total carotenoids. However, under chilling conditions, this positive effect was significant for the chlorophyll content only and higher concentrations of BRs (10−12, 10−10, 10−8 M) usually had no effect at all.  相似文献   

3.
Mutations in cardiac ryanodine receptor (RYR2) and cardiac calsequestrin (CASQ2) genes are linked to catecholaminergic polymorphic ventricular tachycardia, a life-threatening genetic disease. They predispose young individuals to cardiac arrhythmia in the absence of structural abnormalities. One such mutation that changes an aspartic residue to histidine at position 307 in CASQ2 has been linked to catecholaminergic polymorphic ventricular tachycardia. In this study we made a transgenic mouse model expressing the mutant CASQ2D307H protein in a CASQ2 null background and investigated if the disease is caused by accelerated degradation of the mutant protein. Our data suggest that the mutant protein can be expressed, is relatively stable, and targets appropriately to the junctional sarcoplasmic reticulum. Moreover, it partially normalizes the ultrastructure of the sarcoplasmic reticulum, which was altered in the CASQ2 null background. In addition, overexpression of the mutant protein does not cause any pathology and/or structural changes in the myocardium. We further demonstrate, using purified protein, that the mutant protein is very stable under chemical and thermal denaturation but shows abnormal Ca2+ buffering characteristics at high calcium concentrations. In addition, trypsin digestion studies reveal that the mutant protein is more susceptible to protease activity only in the presence of high Ca2+. These studies collectively suggest that the D307H mutation can compromise the dynamic behavior of CASQ2 including supramolecular rearrangement upon Ca2+ activation.  相似文献   

4.
The photochemical activity of chloroplasts and subchloroplastparticles isolated from primary bean leaves between the 4thand 24th hour of illumination of etiolated seedlings is thesubject of this paper. The photosystem I activity (oxygen uptakein the presence of MV, DCIP, ascorbate and DCMU), expressedon a unit chlorophyll basis, decreased approximately 10-foldbetween 4 and 8 h of greening. At the same time the photosystemII activity (DCIP photoreduction in the presence of DPC) wasreduced to a half. The photosystem I activity also decreasedin all hitherto investigated fractions which were isolated fromthe digitonin-treated chloroplasts. However, at the initialphase of greening this decrease was the most significant inthe fraction containing heavy particles. After 24 h of greening DCMU, at concentrations higher than 10–10M, limited the rate of ferricyanide photoreduction by isolatedchloroplasts, whereas after 6 h of greening this effect wasobservable even in the presence of 10–12 M DCMU. The resultsobtained demonstrated that under those conditions both photosystemswere active after 4 h of greening and PS I activity developedmore rapidly than that of PS II. It also follows from the presenteddata that the water splitting reactions were delayed in developmentas compared to the other reactions investigated, and that PSII units may limit the electron flow in chloroplasts at earlierstages of leaf greening.  相似文献   

5.
9月和12月测定了生长于3种不同光强(100%、36%和16%的自然光)下生长的乔木荷树、黧蒴和灌木九节、罗伞盆栽幼苗叶片的Rubisco羧化速率(RCR)、碳酸酐酶(CA)活性和细胞间CO2浓度(Ci)。当生长光强降低时,4种供试植物的RCR和CA活性明显降低。9月时生长在16%自然光下荷树的RCR和CA比100%自然光者分别降低55%和50%,藜蒴则降低20%和35%,耐有的灌木树的降幅较小,仅为33%-38%(RCR)和22%-30%(CA)。12月的RCR和CA的水平较9月时低,翌年1月时自然林不同光强下生长的同类植物的RCA和CA随光强变化也有类似的趋势。RCR和CA活性呈正相关性,且两者与Ci呈弱负相关。推测高光强可能有利于激活Rubisco,促进CA内化的CO2→DlC(可溶性碳)→CO2活性和DlC的传输过程。  相似文献   

6.
Photoreceptors play an important role in plants and bacteria by converting extracellular stimuli into intracellular signals. One distinct class are the blue-light-sensitive phototropins harboring a light-oxygen-voltage (LOV) domain coupled to various effector domains. Photon absorption by the chromophore within the LOV domain results in an activation of the output domain via mechanisms that are hitherto not well understood. The photoreceptor YtvA from Bacillus subtilis is a bacterial analog of phototropins, consists of an LOV and a sulfate transporter/anti-sigma factor antagonist domain, and is involved in the response of the bacterium to environmental stress. We present here analytical ultracentrifugation studies and small-angle X-ray scattering experiments, showing that YtvA is a dimer. On the basis of these results, we present a low-resolution model of the dimer in the dark and the lit state of the protein. In addition, we show that YtvA does not change its oligomerization state or its overall shape upon light activation.  相似文献   

7.
Human-caused disturbances can lead to the extinction of indigenous (endemic and native) species, while facilitating and increasing the colonisation of exotic species; this increase can, in turn, promote the similarity of species compositions between sites if human-disturbed sites are consistently invaded by a regionally species-poor pool of exotic species. In this study, we analysed the extent to which epigean arthropod assemblages of four islands of the Azorean archipelago are characterised by nestedness according to a habitat-altered gradient. The degree of nestedness represents the extent to which less ubiquitous species occur in subsets of sites occupied by the more widespread species, resulting in an ordered loss/gain of species across environmental or ecological gradients. A predictable loss of species across communities while maintaining others may lead to more similar communities (i.e. lower beta-diversity). In contrast, anti-nestedness occurs when different species tend to occupy distinct sites, thus characterising a replacement of species across such gradients. Our results showed that an increase in exotic species does not promote assemblage homogenisation at the habitat level. On the contrary, exotic species were revealed as habitat specialists that constitute new and well-differentiated assemblages, even increasing the species compositional heterogeneity within human-altered landscapes. Therefore, contrary to expectations, our results show that both indigenous and exotic species established idiosyncratic assemblages within habitats and islands. We suggest that both the historical extinction of indigenous species in disturbed habitats and the habitat-specialised character of some exotic invasions have contributed to the construction of current assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号