首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013–2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha-1 year-1 (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013–2014 and 2014–2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013–2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014–2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration.  相似文献   

2.

Background

Bipolar disorder patients often display abnormalities in circadian rhythm, and they are sensitive to irregular diurnal rhythms. CRY2 participates in the core clock that generates circadian rhythms. CRY2 mRNA expression in blood mononuclear cells was recently shown to display a marked diurnal variation and to respond to total sleep deprivation in healthy human volunteers. It was also shown that bipolar patients in a depressive state had lower CRY2 mRNA levels, nonresponsive to total sleep deprivation, compared to healthy controls, and that CRY2 gene variation was associated with winter depression in both Swedish and Finnish cohorts.

Principal Findings

Four CRY2 SNPs spanning from intron 2 to downstream 3′UTR were analyzed for association to bipolar disorder type 1 (n = 497), bipolar disorder type 2 (n = 60) and bipolar disorder with the feature rapid cycling (n = 155) versus blood donors (n = 1044) in Sweden. Also, the rapid cycling cases were compared with bipolar disorder cases without rapid cycling (n = 422). The haplotype GGAC was underrepresented among rapid cycling cases versus controls and versus bipolar disorder cases without rapid cycling (OR = 0.7, P = 0.006−0.02), whereas overrepresentation among rapid cycling cases was seen for AAAC (OR = 1.3−1.4, P = 0.03−0.04) and AGGA (OR = 1.5, P = 0.05). The risk and protective CRY2 haplotypes and their effect sizes were similar to those recently suggested to be associated with winter depression in Swedes.

Conclusions

We propose that the circadian gene CRY2 is associated with rapid cycling in bipolar disorder. This is the first time a clock gene is implicated in rapid cycling, and one of few findings showing a molecular discrimination between rapid cycling and other forms of bipolar disorder.  相似文献   

3.
The human melanopsin gene has been reported to mediate risk for seasonal affective disorder (SAD), which is hypothesized to be caused by decreased photic input during winter when light levels fall below threshold, resulting in differences in circadian phase and/or sleep. However, it is unclear if melanopsin increases risk of SAD by causing differences in sleep or circadian phase, or if those differences are symptoms of the mood disorder. To determine if melanopsin sequence variations are associated with differences in sleep-wake behavior among those not suffering from a mood disorder, the authors tested associations between melanopsin gene polymorphisms and self-reported sleep timing (sleep onset and wake time) in a community sample (N?=?234) of non-Hispanic Caucasian participants (age 30-54 yrs) with no history of psychological, neurological, or sleep disorders. The authors also tested the effect of melanopsin variations on differences in preferred sleep and activity timing (i.e., chronotype), which may reflect differences in circadian phase, sleep homeostasis, or both. Daylength on the day of assessment was measured and included in analyses. DNA samples were genotyped for melanopsin gene polymorphisms using fluorescence polarization. P10L genotype interacted with daylength to predict self-reported sleep onset (interaction p?相似文献   

4.
Information on positional behavior contributes to the understanding of the ecological adaptation mechanisms in animals. We collected data on the positional behavior of white‐headed langurs (Trachypithecus leucocephalus) at the Guangxi Chongzuo White‐Headed Langur National Nature Reserve from September 2016 to August 2017 via instantaneous scan sampling method. This study aimed to examine the importance of positional behavior flexibility in limestone forests characterized by seasonal variations in climate and food resources. Our results indicated that langurs adopted leaping (47.92% ± 5.50%) and vertical climbing (40.13% ± 6.20%) as their predominant locomotor modes and sitting (83.08% ± 4.70%) as their predominant posture. Their positional behavior exhibited marked seasonal variations. More specifically, langurs used quadrupedal walking more frequently during the dry season than during the rainy months. In the stationary state, they sat more frequently during the dry season, whereas they laid and suspended more often during the rainy season. Their positional behavior was affected by fruit availability, day length, and temperature. Quadrupedal walking increased with the decrease in fruit availability, whereas leaping was positively correlated with fruit availability. Moreover, sitting was positively correlated with average temperature but negatively correlated with day length. Lying was also negatively correlated with temperature but positively correlated with day length. We conclude that white‐headed langurs adapt to limestone forests with positional behavior flexibility in response to seasonality. Our research provides evidence of the effects of food availability, ambient temperature, and day length on the positional behavior of white‐headed langurs, highlighting the need to understand their behavioral ecology and the influence of ecological factors on behavioral adaptation.  相似文献   

5.
Estimates of daily activity and consequent demand for food during winter are scarce for many polar seabirds, yet essential for assessing constraints on foraging effort, demand for food, and potential competition with local fisheries. We affixed archival temperature tags to gentoo penguins (Pygoscelis papua) from two colonies in the South Shetland Islands to measure the frequency, timing, and duration of foraging trips and to estimate minimum food requirements during winter. Foraging trip frequencies ranged from 0.85 to 1.0 trips day−1 and were positively correlated with day length. Early winter foraging trips more closely matched day length than late winter foraging trips. The data suggest that individuals maximize foraging time during the early winter period, likely to recover body mass following the breeding season and molt. The more attenuated response of foraging trip durations to increasing day length in late winter may be related to differences in local resource availability or individual behaviors prior to the upcoming breeding season. Minimum food requirements also exhibited a seasonal cycle with a mid-winter minimum. On average, minimum food requirements were estimated at 0.70 ± 0.12 kg day−1. Extrapolated to the regional population of gentoo penguins, winter food requirements by gentoo penguins were equivalent to roughly 33% of annual krill catches by commercial fisheries in the South Shetland Island region over the past decade. Current expansion of the gentoo population and the krill fishery in the southern Scotia Sea warrants continued monitoring of gentoo penguins during winter.  相似文献   

6.
There is extensive literature describing the effect of season on mortality rates, especially in cardiovascular and respiratory disease. This study compares latitude with the extent of seasonal variation of monthly deaths from all causes. In developed countries, there is a peak of deaths in winter and a trough in summer. Monthly numbers of deaths were established in 89 countries in the Northern and Southern Hemisphere. Using cosinor analysis, the extent of seasonal variation (amplitude) was established and correlated with latitude. The amplitude of seasonality was greatest in mid-latitude around 35°, but low or absent near the equator and subpolar regions. The amplitude can differ at the same latitude. The weather in equatorial regions and in habitations near the Arctic Circle is very different, but death has a similar seasonal rhythm. The purpose is to record this epidemiological finding even though no simple explanation is provided. Weather alone cannot explain it, and it is possible that day length (photoperiod) has an important, but complex, underlying role.  相似文献   

7.
The study examines objective characteristics of sleep in women (n=31) with and without seasonal affective disorder, winter type, before and after a week of light treatment (at either 0800-1000 h, 1600-1800 h or 1800-2000 h). Subsamples of 13 patients and 7 controls were studied additionally in summer, and, among these patients, 9 were also recorded in spring and fall. Ranking the results from the lowest to the largest degree of deviation of sleep structure in patients from the norm yields the sequence: spring -> summer -> winter after light treatment -> fall -> winter before light treatment. In winter before light treatment the total amounts and percentage of slow wave sleep were significantly lower in responders to light (n=13) compared to both nonresponders (n=8) and controls (n=10), while following light treatment the difference disappeared. The reduced amounts of slow wave sleep in the depressive state predicted higher reduction and low posttreatment scores on psychiatric scales. Light treatment and summer season showed similar effects on patients' sleep: they caused an increase of slow wave sleep and a decline of sleep stage 2. Our data do not suggest that time of light treatment is important to achieve an antidepressant effect. Moreover, phase shifting effects of light treatment and of changing season on sleep EEG were not considerable. At the same time, subjective ratings of arousal demonstrated an advance shift of the arousal rhythm after morning and a delay shift after afternoon LT. We did not find significant changes in total amounts and percentage of REM sleep over time. The data suggest that abnormally increased need for REM sleep results in the hypersomnia and may be considered as a trait marker of winter depression. An abnormal architecture of nonREM sleep appears to be a state marker of those patients who benefit from bright light administered during waking hours.  相似文献   

8.

Background

Although environmental factors, mainly nutrition and UV-B radiation, have been considered major determinants of vitamin D status, they have only explained a modest proportion of the variation in serum 25-hydroxyvitamin D. We aimed to study the seasonal impact of genetic factors on serum 25-hydroxyvitamin D concentrations.

Methodology/Principal findings

204 same-sex twins, aged 39–85 years and living at northern latitude 60°, were recruited from the Swedish Twin Registry. Serum 25-hydroxyvitamin D was analysed by high-pressure liquid chromatography and mass spectrometry. Genetic modelling techniques estimated the relative contributions of genetic, shared and individual-specific environmental factors to the variation in serum vitamin D. The average serum 25-hydroxyvitamin D concentration was 84.8 nmol/l (95% CI 81.0–88.6) but the seasonal variation was substantial, with 24.2 nmol/l (95% CI 16.3–32.2) lower values during the winter as compared to the summer season. Half of the variability in 25-hydroxyvitamin D during the summer season was attributed to genetic factors. In contrast, the winter season variation was largely attributable to shared environmental influences (72%; 95% CI 48–86%), i.e., solar altitude. Individual-specific environmental influences were found to explain one fourth of the variation in serum 25-hydroxyvitamin D independent of season.

Conclusions/Significance

There exists a moderate genetic impact on serum vitamin D status during the summer season, probably through the skin synthesis of vitamin D. Further studies are warranted to identify the genes impacting on vitamin D status.  相似文献   

9.
Our work aims at the exploration of cortisol secretion in the Bedouin goat, native to the Algerian Sahara desert, to understand the mechanisms of adaptation to extreme hot climates. In the present study, diurnal and seasonal variations of cortisol concentrations were measured in basal conditions, as well as the response to ACTH stimulation tests across seasons in bucks. The plasma concentrations of cortisol showed no diurnal cycle but a large variation across seasons. The highest levels occurred in summer and winter when the environmental conditions are at their extreme levels. The rectal temperature showed nychthemeral and seasonal variations, and BW was also different across seasons with highest values in summer and lowest in winter. The results obtained after administration of two doses (2 or 10 μg/kg BW) of synthetic ACTH to three different age groups (kids, adults and elderly animals) showed a strong increase in plasma cortisol concentrations under all conditions with maximum levels achieved between 15 and 120 min. The analysis of the area under the cortisol curve showed no significant difference between the responses to the two doses of ACTH and between age groups, but showed seasonal variations with the lowest response in autumn than in other seasons. We conclude that season significantly affects secretion of cortisol in both basal state and under ACTH stimulation. However, the variation of adrenal reactivity to ACTH is not sufficient to explain seasonal differences, and in particular the summer peak in basal circulating cortisol concentrations. Further research should focus on the respective contribution of environmental factors (such as day length, temperature, humidity) and the mechanisms involved in cortisol regulation.  相似文献   

10.
In small mammals living in highly seasonal environments, observationalstudies show that female home range size and exclusiveness aresmaller in the nonbreeding winter season than in the breedingsummer season. This has led to the notion that nonbreeding femalesare more social and decrease territorial behavior during winter.However, because territoriality decreases with increasing populationdensity, and density normally increases during the breedingseason, the effects of density and season on social structureare usually confounded. To find out which of the 2 factors explainsspace use, we experimentally established 3 high-density and3 low-density root vole (Microtus oeconomus) populations inlate spring and monitored the populations into the nonbreedingwinter season. Population sizes were controlled throughout thebreeding period to minimize seasonal variation in density. Homerange sizes were larger in founder females than in field-bornfemales but did not change with season or density. Area exclusivelyused by individual females was lower in winter than summer,and founder females decreased exclusiveness as density increased.We argue that this seasonal pattern of space use might be causedby variation in benefits of group living, whereas founder femalesalso responded to density-dependent competition by reducingarea exclusively used.  相似文献   

11.
Adaptation to seasonal changes in the northern hemisphere includes an ability to predict the forthcoming cold season from gradual changes in environmental cues early enough to prepare for the harsh winter conditions. The magnitude and speed of changes in these cues vary between the latitudes, which induces strong selection pressures for local adaptation.We studied adaptation to seasonal changes in Drosophila montana, a northern maltfly, by defining the photoperiodic conditions leading to adult reproductive diapause along a latitudinal cline in Finland and by measuring genetic differentiation and the amount of gene flow between the sampling sites with microsatellites. Our data revealed a clear correlation between the latitude and the critical day length (CDL), in which half of the females of different cline populations enter photoperiodic reproductive diapause. There was no sign of limited gene flow between the cline populations, even though these populations showed isolation by distance. Our results show that local adaptation may occur even in the presence of high gene flow, when selection for locally adaptive life-history traits is strong. A wide range of variation in the CDLs of the fly strains within and between the cline populations may be partly due to gene flow and partly due to the opposing selection pressures for fly reproduction and overwinter survival. This variation in the timing of diapause will enhance populations' survival over the years that differ in the severity of the winter and in the length of the warm period and may also help them respond to long-term changes in environmental conditions.  相似文献   

12.
Little is known about human entrainment under natural conditions, partly due to the complexity of human behavior, torn between biological and social time and influenced by zeitgebers (light–dark cycles) that are progressively “polluted” (and thereby weakened) by artificial light. In addition, data about seasonal variations in sleep parameters are scarce. We, therefore, investigated seasonal variation in cross-sectional assessments of sleep/wake times of 9765 subjects from four European populations (EGCUT?=?Estonian Genome Centre, University of Tartu in Estonia; KORA?=?Cooperative Health Research in the Region of Augsburg in Germany; KORCULA?=?The Korcula study in Croatia; and ORCADES?=?The Orkney Complex Disease Study in Scotland). We identified time-of-year dependencies for the distribution of chronotype (phase of entrainment assessed as the mid-sleep time point on free days adjusted for sleep deficit of workdays) in cohorts from Estonia (EGCUT) and Germany (KORA). Our results indicate that season (defined as daylight saving time – DST and standard zonetime periods – SZT) specifications of photoperiod influence the distribution of chronotype (adjusted for age and sex). Second, in the largest investigated sample, from Estonia (EGCUT; N?=?5878), we could detect that seasonal variation in weekly average sleep duration was dependent on individual chronotype. Later chronotypes in this cohort showed significant variation in their average sleep duration across the year, especially during DST (1?h advance in social time from the end of March to end of October), while earlier chronotypes did not. Later chronotypes not only slept less during the DST period but the average chronotype of the population assessed during this period was earlier than during the SZT (local time for a respective time zone) period. More in detail, hierarchical multiple regression analyses showed that, beyond season of assessment (DST or SZT), social jetlag (SJl; the discrepancy between the mid sleep on free and work days – which varied with age and sex) contributed to a greater extent to the variation in sleep duration than chronotype (after taking into account factors that are known to influence sleep duration, i.e. age, sex and body mass index). Variation in chronotype was also dependent on age, sex, season of assessment and SJl (which is highly correlated with chronotype – SJl was larger among later chronotypes). In summary, subjective assessments of sleep/wake times are very reliable to assess internal time and sleep duration (e.g. reproducing sleep duration and timing tendencies related to age and sex across the investigated populations), but season of assessment should be regarded as a potential confounder. We identified in this study photoperiod (seasonal adaptation) and SJl as two main factors influencing seasonal variation in chronotype and sleep duration. In conclusion, season of assessment, sex and age have an effect on epidemiological variation in sleep duration, chronotype and SJl, and should be included in studies investigating associations between these phenotypes and health parameters, and on the development of optimal prevention strategies.  相似文献   

13.
动物中普遍存在雌雄个体身体大小的性二态现象。了解近缘种之间身体大小性二态现象的差异,可为深入探讨身体大小性二态现象的潜在驱动机制提供证据。国外对欧亚大山雀(Parus major)的研究发现,其喙长、跗跖长、翅长等 6 项身体大小指标存在着明显的性二态,且喙长的性二态存在季节间差异。大山雀(P. cinereus)曾被作为欧亚大山雀的一个亚种,其形态和行为与欧亚大山雀存在着诸多相似之处。为探讨大山雀是否也存在身体大小性二态及季节性差异,本研究分析了 2018 至 2020 年间在河南董寨国家级自然保护区捕捉的 226 只(雌性 96 只和雄性 130 只)大山雀的喙长、头喙长、跗跖长、翅长、尾长和体长这 6 项体征指标的两性差异及其季节变化。结果显示,大山雀上述 6 项身体大小指标均存在不同程度的性二态现象,且雄性个体仅喙长与雌性的差异不显著,其余 5 项指标均显著大于雌性。此外,身体大小指标的两性差异不随季节显著变化,但两性的跗跖长在秋季均显著短于冬季和繁殖季,尾长在繁殖季均显著长于秋季和冬季。上述结果表明,大山雀身体大小的性二态及其季节性差异与欧亚大山雀并不完全相似。无论其身体大小存在性二态和季节变化的原因,还是其与欧亚大山雀在身体大小性二态模式上的差别,都有待今后进一步的研究。  相似文献   

14.
Abstract.  1. In horned beetles selection favours males that adjust their investment in horn development in relation to cues that predict adult body size. Here it is shown that in the Japanese horned beetle, Allomyrina dichotoma . There is a significant discontinuity in the horn length body size allometry. This can be described as a linear relationship that is shifted towards an increased horn length to body length ratio in males with horns longer than 16 mm.
2. Larval nutrition explains morph determination in A. dichotoma . However, unlike other species, variation in larval nutrition was the result of a seasonal time constraint that limits the time available for feeding prior to the onset of winter diapause.
3. Even when eggs were reared with an ad libitum food supply, minor morphs were still observed. Individuals that were oviposited later in the season had less time to feed, shorter development times, eclosed as smaller individuals and, in the case of males, were more likely to be hornless. Major morphs, minor morphs, and females all reduced their body size in response to seasonal time constraints in the same way. However, males that were laid later in the season had faster development times than females laid at the same time, but showed no reduction in their size relative to females, suggesting seasonal time constraints increase growth rates in males but not in females.
4. No evidence was found that seasonal time constraints resulted in a reduction of size-corrected fat reserves at eclosion, or that minor morphs gained any developmental advantage by reducing investment in horn length.  相似文献   

15.
黑龙江小兴安岭地区黄鼬夏冬季毛皮性状比较   总被引:3,自引:0,他引:3  
Coat characteristics of seasonal molting mammals reveal significant seasonal variation as an adaptive strategy to cope with seasonal climate changes. However, the adaptive significance of such morphological variation has not yet been addressed. We analyzed seasonal variation of microscopic indices of hair and skin of adult Siberian weasels (Mustela sibirica manchurica Brass) from the Tonghe forest area of the Xiaoxing’anling Mountains, Heilongjiang. Skins from 8 males and 8 females were collected from summe...  相似文献   

16.
Altitudinal localities of the northern India are associated with high seasonal changes. Drosophila melanogaster flies are darker during the winter season as compared to the autumn season. We tested the hypothesis whether there are altitudinal clines for mating related traits. We observed negative cline for mating latency and positive for copulation period along altitude in D. melanogaster. We further tested if seasonally varying body melanisation is correlated with mating propensity in D. melanogaster. Thus, we examined the D. melanogaster flies collected during autumn and winter season for changes in body melanisation and mating-related traits. Flies from the winter season show high melanisation, copulation duration and fecundity/day as compared to the autumn season flies. By contrast mating latency is longer during autumn as compared to winter season. Based on within- and between-population analysis, body melanisation shows positive correlation with copulation duration and fecundity/day, while negative correlation with mating latency. Within-population analyses show no correlation between body size and ovariole number with body melanisation. Thus, our data suggest that seasonal changes in body melanisation are correlated with mating latency, copulation duration and fecundity/day, but no correlation with body size and ovariole numbers. Further, we observed that seasonal changes in these clines, although have some component of plasticity, have strong genetic basis as the seasonal and population differences were maintained for various traits after 8 generations in the laboratory.  相似文献   

17.
The distribution range of Amethyst Sunbirds (Chalcomitra amethystina) within southern Africa includes an altitudinal gradient from the Drakensberg to the coast of KwaZulu-Natal. We expected that, over this altitudinal gradient, Amethyst Sunbirds would exhibit variation in hematocrit levels pre- and post-acclimation, as well as seasonally. Sunbirds from three locations; Underberg (1,553 m asl), Howick (1,075 m asl) and Oribi Gorge (541 m asl) were used for this study. Birds were then acclimated at 25°C for 6 weeks on a 12L:12D cycle. Hematocrit levels were taken pre-acclimation and pre-release. We found significant variation in hematocrit levels during summer, but surprisingly little variation during winter. Season and location had a significant combined effect on pre-acclimation hematocrit levels of Amethyst Sunbirds. Underberg and Howick had greater values in summer compared with winter whereas the converse was found in Oribi Gorge. In contrast, season and location had no significant combined effect on post-acclimation hematocrit levels of Amethyst Sunbirds, with post-acclimation levels similar for the three sites irrespective of season. This study emphasizes the need to understand flexibility in hematocrit levels and acknowledge seasonal and altitudinal differences within a species.  相似文献   

18.
Sundvik M  Kudo H  Toivonen P  Rozov S  Chen YC  Panula P 《FASEB journal》2011,25(12):4338-4347
The histaminergic and hypocretin/orexin (hcrt) neurotransmitter systems play crucial roles in alertness/wakefulness in rodents. We elucidated the role of histamine in wakefulness and the interaction of the histamine and hcrt systems in larval zebrafish. Translation inhibition of histidine decarboxylase (hdc) with morpholino oligonucleotides (MOs) led to a behaviorally measurable decline in light-associated activity, which was partially rescued by hdc mRNA injections and mimicked by histamine receptor H1 (Hrh1) antagonist pyrilamine treatment. Histamine-immunoreactive fibers targeted the dorsal telencephalon, an area that expresses histamine receptors hrh1 and hrh3 and contains predominantly glutamatergic neurons. Tract tracing with DiI revealed that projections from dorsal telencephalon innervate the hcrt and histaminergic neurons. Translation inhibition of hdc decreased the number of hcrt neurons in a Hrh1-dependent manner. The reduction was rescued by overexpression of hdc mRNA. hdc mRNA injection alone led to an up-regulation of hcrt neuron numbers. These results suggest that histamine is essential for the development of a functional and intact hcrt system and that histamine has a bidirectional effect on the development of the hcrt neurons. In summary, our findings provide evidence that these two systems are linked both functionally and developmentally, which may have important implications in sleep disorders and narcolepsy. development via histamine receptor H1 in zebrafish.  相似文献   

19.
Seasonal variation in daily food intake is a well-documented phenomenon in many organisms including wild-type coho salmon where the appetite is noticeably reduced during periods of decreased day length and low water temperature. This reduction may in part be explained by altered production of cholecystokinin (CCK) and growth hormone (GH). CCK is a hormone produced in the brain and gut that mediates a feeling of satiety and thus has an inhibitory effect on food intake and foraging behaviour. Growth hormone (GH) enhances feeding behaviour and consequently growth, but its production is reduced during winter. The objectives of this study were: first, to compare the seasonal feeding behaviour of wild and GH-transgenic coho salmon; second, to determine the behavioural effect of blocking the action of CCK (by using devazepide) on the seasonal food intake; and third, to measure CCK expression in brain and gut tissues between the two genotypes across seasons. We found that, in contrast to wild salmon, food intake in transgenic salmon was not reduced during winter indicating that seasonal control of appetite regulation has been disrupted by constitutive production of GH in transgenic animals. Blocking of CCK increased food intake in both genotypes in all seasons. The increase was stronger in wild genotypes than transgenic fish; however blocking CCK in wild-type fish in winter did not elevate appetites to levels observed in the summer. The response to devazepide was generally faster in transgenic than in wild salmon with more rapid effects observed during summer than during winter, possibly due to a higher temperature in summer. Overall, a seasonal effect on CCK mRNA levels was observed in telencephalon with levels during winter being higher compared to the summer in wild fish, but with no seasonal effect in transgenic fish. No differences in seasonal CCK expression were found in hypothalamus. Higher levels of CCK were detected in the gut of both genotypes in winter compared to summer. Thus, CCK appears to mediate food intake among seasons in both wild-type and GH-transgenic salmon, and an altered CCK regulation may be responsible at least in part for the seasonal regulation of food intake.  相似文献   

20.
The aim of the study was to assess the influence of summer and winter seasons on semen quality and plasma hormone concentrations in cross-bred bulls. Semen was collected by an artificial vagina from eight bulls and microscopically evaluated for quality parameters. Semen volume was higher in summer season (p < 0.05) than winter season, whereas nonsignificant variation (p > 0.05) was observed in mass motility, individual motility, sperm viability, sperm concentration and percentage of membrane-intact and acrosome-intact spermatozoa. Plasma prolactin and testosterone concentration were significantly (p < 0.01) higher in summer season than winter season. Plasma testosterone levels were positively correlated with semen volume and negatively correlated with individual motility (p < 0.05). Prolactin showed a significant positive correlation with semen volume. A well-defined seasonal pattern in semen characteristics was not observed and few correlations existed between plasma hormone levels and semen characteristics in Karan Fries bulls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号