共查询到20条相似文献,搜索用时 15 毫秒
1.
Histone deacetylases (HDACs) play vital roles in the pathophysiology of heart failure, which is associated with mitochondrial dysfunction. Tumor necrosis factor-α (TNF-α) contributes to the genesis of heart failure and impairs mitochondria. This study evaluated the role of HDACs in TNF-α-induced mitochondrial dysfunction and investigated their therapeutic potential and underlying mechanisms. We measured mitochondrial oxygen consumption rate (OCR) and ATP production using Seahorse XF24 extracellular flux analyzer and bioluminescent assay in control and TNF-α (10 ng/ml, 24 h)-treated HL-1 cells with or without HDAC inhibition. TNF-α increased Class I and II (but not Class IIa) HDAC activities (assessed by Luminescent) with enhanced expressions of Class I (HDAC1, HDAC2, HDAC3, and HDAC8) but not Class IIb HDAC (HDAC6 and HDAC10) proteins in HL-1 cells. TNF-α induced mitochondrial dysfunction with impaired basal, ATP-linked, and maximal respiration, decreased cellular ATP synthesis, and increased mitochondrial superoxide production (measured by MitoSOX red fluorescence), which were rescued by inhibiting HDACs with MPT0E014 (1 μM, a Class I and IIb inhibitor), or MS-275 (1 μM, a Class I inhibitor). MPT0E014 reduced TNF-α-decreased complex I and II enzyme (but not III or IV) activities (by enzyme activity microplate assays). Our results suggest that Class I HDAC actions contribute to TNF-α-induced mitochondrial dysfunction in cardiomyocytes with altered complex I and II enzyme regulation. HDAC inhibition improves dysfunctional mitochondrial bioenergetics with attenuation of TNF-α-induced oxidative stress, suggesting the therapeutic potential of HDAC inhibition in cardiac dysfunction. 相似文献
2.
3.
Recent advancement in mitochondrial research has significantly extended our knowledge on the role and regulation of mitochondria in health and disease. One important breakthrough is the delineation of how mitochondrial morphological changes, termed mitochondrial dynamics, are coupled to the bioenergetics and signaling functions of mitochondria. In general, it is believed that fusion leads to an increased mitochondrial respiration efficiency and resistance to stress-induced dysfunction while fission does the contrary. This concept seems not applicable to adult cardiomyocytes. The mitochondria in adult cardiomyocytes exhibit fragmented morphology (tilted towards fission) and show less networking and movement as compared to other cell types. However, being the most energy-demanding cells, cardiomyocytes in the adult heart possess vast number of mitochondria, high level of energy flow, and abundant mitochondrial dynamics proteins. This apparent discrepancy could be explained by recently identified new functions of the mitochondrial dynamics proteins. These “non-canonical” roles of mitochondrial dynamics proteins range from controlling inter-organelle communication to regulating cell viability and survival under metabolic stresses. Here, we summarize the newly identified non-canonical roles of mitochondrial dynamics proteins. We focus on how these fission and fusion independent roles of dynamics proteins regulate mitochondrial bioenergetics. We also discuss potential molecular mechanisms, unique intracellular location, and the cardiovascular disease relevance of these non-canonical roles of the dynamics proteins. We propose that future studies are warranted to differentiate the canonical and non-canonical roles of dynamics proteins and to identify new approaches for the treatment of heart diseases. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers. 相似文献
4.
Jing Fan Jurre J Kamphorst Robin Mathew Michelle K Chung Eileen White Tomer Shlomi Joshua D Rabinowitz 《Molecular systems biology》2013,9(1)
Mammalian cells can generate ATP via glycolysis or mitochondrial respiration. Oncogene activation and hypoxia promote glycolysis and lactate secretion. The significance of these metabolic changes to ATP production remains however ill defined. Here, we integrate LC‐MS‐based isotope tracer studies with oxygen uptake measurements in a quantitative redox‐balanced metabolic flux model of mammalian cellular metabolism. We then apply this approach to assess the impact of Ras and Akt activation and hypoxia on energy metabolism. Both oncogene activation and hypoxia induce roughly a twofold increase in glycolytic flux. Ras activation and hypoxia also strongly decrease glucose oxidation. Oxidative phosphorylation, powered substantially by glutamine‐driven TCA turning, however, persists and accounts for the majority of ATP production. Consistent with this, in all cases, pharmacological inhibition of oxidative phosphorylation markedly reduces energy charge, and glutamine but not glucose removal markedly lowers oxygen uptake. Thus, glutamine‐driven oxidative phosphorylation is a major means of ATP production even in hypoxic cancer cells. 相似文献
5.
6.
7.
Daznia Bompart Jorge Núñez-Durán Daniel Rodríguez Vladimir V. Kouznetsov Carlos M. Meléndez Gómez Felipe Sojo Francisco Arvelo Gonzalo Visbal Alvaro Alvarez Xenón Serrano-Martín Yael García-Marchán 《Bioorganic & medicinal chemistry》2013,21(14):4426-4431
A series of diverse simple C2-aryl quinolines was synthesized de novo via a straightforward synthesis based on the acid-catalyzed multicomponent imino Diels–Alder reactions. Seven selected quinolines were evaluated at different stages of Leishmania braziliensis parasite. Among them, the 6-ethyl-2-phenylquinoline 5f was able to inhibit the growth of promastigotes of this parasite without affecting the mammalian cells viability and decreasing the number of intracellular L. braziliensis amastigotes on BMDM macrophages. The mechanism of action studied for the selected compound consisted in: (1) alteration of parasite bioenergetics, by disrupting mitochondrial electrochemical potential and alkalinization of acidocalcisomes, and (2) inhibition of ergosterol biosynthetic pathway in promastigote forms. These results validate the efficiency of quinoline molecules as leishmanicide compounds. 相似文献
8.
Wenjie Guo Yang Sun Wen Liu Xingxin Wu Lele Guo Peifen Cai Xuefeng Wu Xudong Wu Yan Shen Yongqian Shu Yanhong Gu Qiang Xu 《Autophagy》2014,10(6):972-985
Nonresolving inflammation in the intestine predisposes individuals to the development of colitis-associated cancer (CAC). Inflammasomes are thought to mediate intestinal homeostasis, and their dysregulation contributes to inflammatory bowel diseases and CAC. However, few agents have been reported to reduce CAC by targeting inflammasomes. Here we show that the small molecule andrographolide (Andro) protects mice against azoxymethane/dextran sulfate sodium-induced colon carcinogenesis through inhibiting the NLRP3 inflammasome. Administration of Andro significantly attenuated colitis progression and tumor burden. Andro also inhibited NLRP3 inflammasome activation in macrophages both in vivo and in vitro, as indicated by reduced expression of cleaved CASP1, disruption of NLRP3-PYCARD-CASP1 complex assembly, and lower IL1B secretion. Importantly, Andro was found to trigger mitophagy in macrophages, leading to a reversed mitochondrial membrane potential collapse, which in turn inactivated the NLRP3 inflammasome. Moreover, downregulation of the PIK3CA-AKT1-MTOR-RPS6KB1 pathway accounted for Andro-induced autophagy. Finally, Andro-driven inhibition of the NLRP3 inflammasome and amelioration of murine models for colitis and CAC were significantly blocked by BECN1 knockdown, or by various autophagy inhibitors. Taken together, our findings demonstrate that mitophagy-mediated NLRP3 inflammasome inhibition by Andro is responsible for the prevention of CAC. Our data may help guide decisions regarding the use of Andro in patients with inflammatory bowel diseases, which ultimately reduces the risk of CAC. 相似文献
9.
《Autophagy》2013,9(6):972-985
Nonresolving inflammation in the intestine predisposes individuals to the development of colitis-associated cancer (CAC). Inflammasomes are thought to mediate intestinal homeostasis, and their dysregulation contributes to inflammatory bowel diseases and CAC. However, few agents have been reported to reduce CAC by targeting inflammasomes. Here we show that the small molecule andrographolide (Andro) protects mice against azoxymethane/dextran sulfate sodium-induced colon carcinogenesis through inhibiting the NLRP3 inflammasome. Administration of Andro significantly attenuated colitis progression and tumor burden. Andro also inhibited NLRP3 inflammasome activation in macrophages both in vivo and in vitro, as indicated by reduced expression of cleaved CASP1, disruption of NLRP3-PYCARD-CASP1 complex assembly, and lower IL1B secretion. Importantly, Andro was found to trigger mitophagy in macrophages, leading to a reversed mitochondrial membrane potential collapse, which in turn inactivated the NLRP3 inflammasome. Moreover, downregulation of the PIK3CA-AKT1-MTOR-RPS6KB1 pathway accounted for Andro-induced autophagy. Finally, Andro-driven inhibition of the NLRP3 inflammasome and amelioration of murine models for colitis and CAC were significantly blocked by BECN1 knockdown, or by various autophagy inhibitors. Taken together, our findings demonstrate that mitophagy-mediated NLRP3 inflammasome inhibition by Andro is responsible for the prevention of CAC. Our data may help guide decisions regarding the use of Andro in patients with inflammatory bowel diseases, which ultimately reduces the risk of CAC. 相似文献
10.
Mitochondrial dysfunction has been found to be associated with neuronal inflammation; however, no effective drug is available to attenuate neuroinflammation via sustaining mitochondrial function. In the current study, experiments were performed to understand the beneficial effects of mitochonic acid 5 (MA-5) on tumor necrosis factor-α (TNF-α)-mediated neuronal injury and mitochondrial damage. Our data illustrated that MA-5 pretreatment reduced inflammation response induced by TNF-α in CATH.a cells. Molecular investigations demonstrated that MA-5 pretreatment repressed oxidative stress, inhibited endoplasmic reticulum stress, sustained cellular energy metabolism, and blocked cell apoptosis induced by TNF-α stress. Further, we found that MA-5 treatment elevated the expression of Sirtuin 3 (Sirt3) and this effect was dependent on the activation of AMP-activated protein kinase (AMPK) pathway. Blockade of AMPK abolished the promotive action of MA-5 on Sirt3 and thus mediated mitochondrial damage and cell death. Besides, we also found that MA-5 treatment augmented Parkin-related mitophagy and increased mitophagy promoted CATH.a cells survival via improving mitochondrial function. Knockdown of Parkin abolished the beneficial action of MA-5 on mitochondrial homeostasis and CATH.a cell survival. Altogether, our results confirm that MA-5 is an effective drug to attenuate neuroinflammation via sustaining mitochondrial damage and promoting CATH.a cell survival. The protective action of MA-5 on neuronal damage is associated with Parkin-related mitophagy and the activation of AMPK–Sirt3 pathways. 相似文献
11.
Cannino G Ferruggia E Luparello C Rinaldi AM 《Journal of inorganic biochemistry》2008,102(8):1668-1676
It was reported that cadmium is able to exert a cytotoxic effect on tumor MDA-MB231 cells, which shows signs of “non-classical” apoptosis and is characterized by drastic changes in gene expression pattern. In this study, we have extended our knowledge of metal-breast cancer cell interactions by analyzing some mitochondria-related aspects of the stress response to CdCl2 at either 5 or 50 μM 24- or 96-h exposure, by cytochemical, conventional PCR and Northern/Western blot techniques. We demonstrated that (i) no modification of the mitochondrial mass was detectable due to CdCl2 exposure; (ii) the respiration activity appeared to be increased after 96-h exposures, while the production of reactive oxygen species was significantly induced, as well; (iii) hsp60, hsp70, COXII and COXIV expressions were dependent on the duration of Cd exposure; (iv) a different hsp60 protein distribution was observed in mitochondrial and post-mitochondrial extracts and (v) 96-h exposure induced the over-expression of hsc/hsp70 proteins and, conversely, the down-regulation of cytochrome oxidase subunits II and IV. These observations, in addition to providing more information on the cellular and molecular aspects of the interaction between CdCl2 and MDA-MB231 breast tumor cells, contribute to the comprehension of the intracellular molecular mechanisms implicated in the regulation of some mitochondrial proteins. 相似文献
12.
Donghua Huang Yizhong Peng Zhiliang Li Sheng Chen Xiangyu Deng Zengwu Shao Kaige Ma 《Journal of cellular and molecular medicine》2020,24(10):5850-5864
The current research aimed to explore the possible relationship between PINK1/PARKIN-mediated mitophagy and the compression-induced senescence of nucleus pulposus cells (NPCs). Therefore, the stages of senescence in NPCs were measured under compression lasting 0, 24 and 48 hours. The mitophagy-related markers, autophagosomes and mitochondrial membrane potential were tested to determine the levels of PINK1/PARKIN-mediated mitophagy under compression. The PINK1 and PARKIN levels were also measured by immunohistochemistry of human and rat intervertebral disc (IVD) tissues taken at different degenerative stages. A specific mitophagy inhibitor, cyclosporine A (CSA) and a constructed PINK1-shRNA were used to explore the relationship between mitophagy and senescence by down-regulating the PINK1/PARKIN-mediated mitophagy levels. Our results indicated that compression significantly enhanced the senescence of NPCs in a time-dependent manner. Also, PINK1/PARKIN-mediated mitophagy was found to be activated by the extended duration of compression on NPCs as well as the increased degenerative stages of IVD tissues. After inhibition of PINK1/PARKIN-mediated mitophagy by CSA and PINK1-shRNA, the senescence of NPCs induced by compression was strongly rescued. Hence, the excessive degradation of mitochondria in NPCs by mitophagy under continuous compression may accelerate the senescence of NPCs. Regulating PINK1/PARKIN-mediated mitophagy might be a potential therapeutic treatment for IVD degeneration. 相似文献
13.
蛋白质跨线粒体膜的运送 总被引:6,自引:1,他引:6
杨福愉 《Acta biochimica et biophysica Sinica》1999,31(4):353-356
线粒体约含1000种左右蛋白质,其中98%以上系由细胞核编码,在细胞质核酸体上以前体形式合成之后再运至线粒体并选分定位于各部分,现对定位于基持和内膜的蛋白质的运送途径研究的新进展作一扼要介绍,脱血红素细胞色素c是细胞色素c的前体,它既不含导肽,在线粒体外膜迄今也未发现共受体,对其转运的研究概况也作了评述。 相似文献
14.
Many anticancer drugs activate caspases via the mitochondrial apoptosis pathway. Activation of this pathway triggers a concomitant bioenergetic crisis caused by the release of cytochrome‐c (cyt‐c). Cancer cells are able to evade these processes by altering metabolic and caspase activation pathways. In this study, we provide the first integrated system study of mitochondrial bioenergetics and apoptosis signalling and examine the role of mitochondrial cyt‐c release in these events. In accordance with single‐cell experiments, our model showed that loss of cyt‐c decreased mitochondrial respiration by 95% and depolarised mitochondrial membrane potential ΔΨm from ?142 to ?88 mV, with active caspase‐3 potentiating this decrease. ATP synthase was reversed under such conditions, consuming ATP and stabilising ΔΨm. However, the direction and level of ATP synthase activity showed significant heterogeneity in individual cancer cells, which the model explained by variations in (i) accessible cyt‐c after release and (ii) the cell's glycolytic capacity. Our results provide a quantitative and mechanistic explanation for the protective role of enhanced glucose utilisation for cancer cells to avert the otherwise lethal bioenergetic crisis associated with apoptosis initiation. 相似文献
15.
Numsen Hail Jr. Ping Chen Jadwiga J. Kepa 《Apoptosis : an international journal on programmed cell death》2009,14(7):849-863
Prostate tumorigenesis is coupled with an early metabolic switch in transformed prostate epithelial cells that effectively
increases their mitochondrial bioenergetic capacity. The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) inhibits prostate cancer development in vivo, and triggers reactive oxygen species (ROS)-dependent
prostate cancer cell apoptosis in vitro. The possibility that 4HPR-induced ROS production is associated with mitochondrial
bioenergetics and required for apoptosis induction in transformed prostate epithelial cells in vitro would advocate a prospective
mechanistic basis for 4HPR-mediated prostate cancer chemoprevention in vivo. We investigated this tenet by comparing and contrasting
4HPR’s effects on premalignant PWR-1E and malignant DU-145 human prostate epithelial cells. 4HPR promoted a dose- and/or time-dependent
apoptosis induction in PWR-1E and DU-145 cells, which was preceded by and dependent on an increase in mitochondrial ROS production.
In this regard, the PWR-1E cells were more sensitive than the DU-145 cells, and they consumed roughly twice as much oxygen
as the DU-145 cells suggesting oxidative phosphorylation was higher in the premalignant cells. Interestingly, increasing the
[Ca2+] in the culture medium of the PWR-1E cells attenuated their proliferation as well as their mitochondrial bioenergetic capacity
and 4HPR’s cytotoxic effects. Correspondingly, the respiration-deficient derivatives (i.e., ρ0 cells lacking mitochondrial DNA) of DU-145 cells were markedly resistant to 4HPR-induced ROS production and apoptosis. Together,
these observations implied that the reduction of mitochondrial bioenergetics protected PWR-1E and DU-145 cells against the
cytotoxic effects of 4HPR, and support the concept that oxidative phosphorylation is an essential determinant in 4HPR’s apoptogenic
signaling in transformed human prostate epithelial cells. 相似文献
16.
17.
Mitochondrial biogenesis requires the import of hundreds of different proteins from the cytosol. Protein import into mitochondria is a multistep pathway that includes recognition of precursor proteins by machinery both in the cytoplasm and on the mitochondrial surface, translocation of the precursor across one or both mitochondrial membranes, and folding of the protein after its import into the organelle. Over the past several years, many components of the import machinery have been identified using both biochemical and genetic methods. Recently, significant progress has been made determining the function of some of these import proteins. One purpose of this minireview is to summarize our current understanding of the import pathway, and to introduce the topics of the minireviews that will follow. The other goal of this minireview is to discuss recent findings suggesting that proteins are translocated across both the mitochondrial inner and outer membranes through aqueous channels. 相似文献
18.
The seasonal changes in somatic energy content of Gulf of Alaska yellowfin sole, Pleuronectes asper 总被引:3,自引:0,他引:3
Seasonal measurement of body energy content was made for Pleuronectes asper (Pallas, 1814) from the Gulf of Alaska. Whole body energy content of complete fish (~ 3472 J g?1 wet wt) was minimal in May for females as their overwintering phase ended, then increased to ~ 4456 J g?1 prior to spawning. The ovarian index [(g.w./t.w.) × 100] and energy content of ovaries (J g?1) was highest in June and May respectively, and then declined markedly by August as spawning occurred. Throughout the year male whole body energy content of complete fish ranged from 3351 to 4590 J g?1 with the lowest values in May and highest values occurring during June to September, the feeding season. The testes index [(g.w./t.w.) × 100] and total energy content of testes (J g?1) were high in March and lowest during June and July. On a weight-specific basis, males and females had similar whole body energy values throughout the year. Juveniles followed the same seasonal trends in energy storage as adults and had similar whole body energy values. Whole body energy content was linearly related to wet and dry weight condition factor with r2 values of 0.70 and 0.87, respectively. Dry body weight as percent of wet body weight was the best predictor of body energy (r2=0.91). Yellowfin sole had an annual energy cycle with energy accumulation and growth from May to September. Thereafter they utilized stored energy for metabolic and reproductive needs. Spawning began in late May or early June and fish were spent by August. Whole body energy content increased by 28, 33 and 35% between May and June, for females, juveniles, and males, respectively, the most dramatic change during the year long survey. This suggests that intense feeding in May must be an important aspect of their energy storage cycle. 相似文献
19.
Sudharshan Sekar Surianarayanan Mahadevan Bhuvanesh Kumar Shanmugam Asit Baran Mandal 《Biotechnology progress》2012,28(6):1400-1408
Bioreaction calorimetric studies of degradation of the dye acid blue 113 by Staphylococcus lentus are reported for the first time. The heat released during the dye degradation process can be successfully measured using reaction calorimeter. Power time and oxygen uptake rate (OUR) profile followed each other suggesting that heat profiles could monitor the progress of the dye degradation in biocalorimetry. The shifts observed in power–time profile indicated three distinct phases of the bioprocess indicating simultaneous utilization of glucose (primary) and dye (secondary carbon source). Secretion of azoreductase enzyme enhanced the degradation process. Optimization of aeration and agitation rates was observed to be vital to efficient dye degradation. The degradative pathway for acid blue 113 by S. lentus was delineated via high‐performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FT‐IR), and gas chromatography coupled with mass spectrometry (GC‐MS) analyses. Interestingly the products of degradation were found to have low toxicity, as per cytotoxicity measurements. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012 相似文献
20.
Yi Liu Yili Fu Xianoxing Hu Shuo Chen Jinbai Miao Yang Wang Ying Zhou Yuan Zhang 《Journal of cellular physiology》2020,235(2):1197-1208
Chemotherapy is the first-line treatment option for patients with lung cancer. However, therapeutic resistance occurs through an incompletely understood mechanism. Our research wants to investigate the influence of Caveolin-1 (Cav-1) on the therapeutic sensitivity of lung cancer in vitro. Results in this study demonstrated that Cav-1 levels were markedly inhibited in A549 lung cancer cells after exposure to cisplatin. Knockdown of caveolin further enhanced cisplatin-triggered cancer death in A549 cells. The functional investigation demonstrated that Cav-1 inhibition amplified the mitochondrial stress signaling induced by cisplatin, as evidenced by the mitochondrial reactive oxygen species burst, cellular metabolic disruption, mitochondrial membrane potential reduction, and mitochondrial caspase-9-related apoptosis activation. At the molecular level, cav-1 augmented cisplatin-mediated mitochondrial damage by inhibiting Parkin-related mitochondrial autophagy. Mitophagy activation effectively attenuated the promotive impact of Cav-1 knockdown on mitochondrial damage and cell death. Furthermore, our data indicated that Cav-1 affected Parkin-related mitophagy by activating the Rho-associated coiled-coil kinase 1 (ROCK1) pathway; inhibition of the ROCK1 axis prevented cav-1 knockdown-mediated cell death and mitochondrial damage. Taken together, our results provide ample data illuminate the necessary action exerted by Cav-1 on affecting cisplatin-related therapeutic resistance. Silencing of Cav-1 inhibited Parkin-related mitophagy, thus amplifying cisplatin-mediated mitochondrial apoptotic signaling. This finding identifies the Cav-1/ROCK1/Parkin/mitophagy axis as a potential target to overcome cisplatin-related resistance in lung cancer cells. 相似文献