首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposing bovine chromaffin cells to a single 5 ns, high-voltage (5 MV/m) electric pulse stimulates Ca2+ entry into the cells via L-type voltage-gated Ca2+ channels (VGCC), resulting in the release of catecholamine. In this study, fluorescence imaging was used to monitor nanosecond pulse-induced effects on intracellular Ca2+ level ([Ca2+]i) to investigate the contribution of other types of VGCCs expressed in these cells in mediating Ca2+ entry. ω-Conotoxin GVIA and ω-agatoxin IVA, antagonists of N-type and P/Q-type VGCCs, respectively, reduced the magnitude of the rise in [Ca2+]i elicited by a 5 ns pulse. ω-conotoxin MVIIC, which blocks N- and P/Q-type VGCCs, had a similar effect. Blocking L-, N-, and P\Q-type channels simultaneously with a cocktail of VGCC inhibitors abolished the pulse-induced [Ca2+]i response of the cells, suggesting Ca2+ influx occurs only via VGCCs. Lowering extracellular K+ concentration from 5 to 2 mM or pulsing cells in Na+-free medium suppressed the pulse-induced rise in [Ca2+]i in the majority of cells. Thus, both membrane potential and Na+ entry appear to play a role in the mechanism by which nanoelectropulses evoke Ca2+ influx. However, activation of voltage-gated Na+ channels (VGSC) is not involved since tetrodotoxin (TTX) failed to block the pulse-induced rise in [Ca2+]i. These findings demonstrate that a single electric pulse of only 5 ns duration serves as a novel stimulus to open multiple types of VGCCs in chromaffin cells in a manner involving Na+ transport across the plasma membrane. Whether Na+ transport occurs via non-selective cation channels and/or through lipid nanopores remains to be determined.  相似文献   

2.
《Cell calcium》1996,20(3):303-314
In Fura-2 loaded-single guinea pig adrenal chromaffin cells, muscarine, nicotine and KCl all caused an early peak rise in intracellular Ca concentration ([Ca2+]i) followed by a sustained rise. In Ca2+-free solution, muscarine, but neither nicotine nor KCl, caused a transient increase in [Ca2+]i, which was partially reduced by preceding application of caffeine or by treatment with ryanodine plus caffeine. In voltage-clamped cells at a holding potential of −60 mV, the muscarine-induced [Ca2+]i, rise, especially its sustained phase, decreased in magnitude. intracellular application of inositol 1,4,5-trisphosphate caused a transient increase in [Ca2+]i and inhibited the following [Ca2+]i response to muscarine without affecting responses to nicotine and a depolarizing pulse. Muscarine evoked membrane depolarization following brief hyperpolarization in most cells tested. There was a significant positive correlation between the amplitude of the depolarization and the magnitude of the sustained rise in [Ca2+]i. Muscarine-induced sustained [Ca2+]i rise was much greater in the current-clamp mode than that in the voltage-clamp mode. The sustained phase of [Ca2+]i rise and Mn2+ influx in response to muscarine were suppressed by a voltage-dependent Ca2+ channel blocker, methoxyverapamil. These results suggest that stimulation of muscarinic receptors causes not only extracellular Ca2+ entry, but also Ca2+ mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Voltage-dependent Ca2+ channels may function as one of the Ca2+ entry pathways activated by muscarinic receptor in guinea pig adrenal chromaffin cells.  相似文献   

3.
Fast neuromodulatory effects of 17-β-estradiol (E2) on cytosolic calcium concentration ([Ca2+] i ) have been reported in many cell types, but little is known about its direct effects on vesicular neurotransmitter secretion (exocytosis). We examined the effects of E2 on depolarization-evoked [Ca2+] i in PC12 cells using fluorescence measurements. Imaging of [Ca2+] i with FURA-2 revealed that depolarization-evoked calcium entry is inhibited after exposure to 10 nM and 10 μM E2. Calcium entry after exposure to 50 μM E2 decreases slightly, but insignificantly. To relate E2-induced changes in [Ca2+] i to functional effects, we measured exocytosis using amperometry. It was observed that E2 in some cells elicits exocytosis upon exposure. In addition, E2 inhibits depolarization-evoked exocytosis with a complex concentration dependence, with inhibition at both physiological and pharmacological concentrations. This rapid inhibition amounts to 45% at a near physiological level (10 nM E2), and 50% at a possible pharmacological concentration of 50 μM. A small percentage (22%) of cells show exocytosis during E2 exposure (“Estrogen stimulated”), thus vesicle depletion could possibly account (at least partly) for the E2-induced inhibition of depolarization-evoked exocytosis. In cells that do not exhibit E2-stimulated release (“Estrogen quiet”), the E2-induced inhibition of exocytosis is abolished by a treatment that eliminates the contribution of N-type voltage-gated calcium channels (VGCCs) to exocytosis. Overall, the data suggest that E2 can act on N-type VGCCs to affect secretion of neurotransmitters. This provides an additional mechanism for the modulation of neuronal communication and plasticity by steroids.  相似文献   

4.
Glucose sensing mechanism has been intensively studied in pancreatic cells and neurons. Depolarization of membrane potential by closure of KATP , Kv and TASK channel, and subsequently Ca2+ entry via L-type voltage gated Ca2+ channel (VGCC) are implicated to mediate the signal transduction in these cells. However, the mechanism of non-excitable cells, which are lacking VGCC, for sensing glucose remains unclear. In this study, we utilized the calcium ratio measurement and patch clamping technique to study the effects of low glucose on [Ca2+]i and currents in the human embryonic kidney epithelial cells (HEK 293). We found low glucose evoked a significant reversible [Ca2+]i elevation in HEK 293 independent of the closure of Kv channels. This increase of [Ca2+]i was mediated by Ca2+ entry across plasma membrane and exhibited a dosage dependent behaviour to external glucose concentration. The low glucose-induced entry of Ca2+ was characterized as a voltage independent behaviour and had cation permeability to Na+ and Ca2+. The modulation of PLC, AMPK, tyrosine kinase and cADPribose failed to regulate this glucose-sensitive Ca2+ entry. In addition, the entry of Ca2+ was insensitive to nifedipine, 2APB, SKF, La3+, Gd3+, and KBR9743, suggesting a novel signal pathway in mediating glucose sensing.  相似文献   

5.
Summary We have previously shown that pertussis toxin (PTX) stimulates delayed-onset, [Ca2–] a -dependent catecholamine (CA) release from bovine chromaffin cells. We now show that this effect of PTX is inhibited in part (50%) by dihydropyridine Ca2–-channel antagonists niludipine and nifedipine, and is potentiated by the dihydropyridine Ca2+-channel agonist Bay K-8644. We and others have shown that pretreatment of chromaffin cells with PTX results in enhanced catecholamine secretion in response to high [K] a , nicotine and muscarine, and here we extend these observations by showing that toxin pretreatment also enhances the secretory response to [Ba2+] a . All these data are consistent with the concept that PTX may act on Ca2– channels. To examine the possibility of a direct action of the toxin on the voltage-gated L-type Ca2+ channel known to be present in these cells, we studied the effects of the toxin on whole cell Ca2+ currents. We found and report here that spontaneous electrical activity was considerably increased in PTX-treated cells. Our measurements of whole cell inward Ca2+ currents indicate that the underlying mechanism is a marked shift of the activation curve of the L-type Ca2+ current along the voltage axis towards more negative potentials. While treatment of the cells with PTX had no effect on L-type Ca2+-channel conductance (6 nS/cell at 2.6mm [Ca2+] a ). PTX evoked the activation of a new class of Ca2+-selective channels (5 pS in 25mm [Ca2+]pipet), which are rather insensitive to membrane potential. We have termed theseG-type calcium channels. These data suggest that treatment with PTX not only increases the probability of L-type Ca2+-channel activation at more negative potentials, but also increases the probability of opening of an entirely new, voltage-independent, Ca2+ channel. These actions of PTX should promote Ca2+ entry and might explain the stimulation by the toxin of CA secretion from medullary chromaffin cells in culture.  相似文献   

6.
Whether large conductance Ca2+-activated potassium (BK) channels are present in the substantia nigra pars reticulata (SNr) is a matter of debate. Using the patch-clamp technique, we examined the functional expression of BK channels in neurons of the SNr and showed that the channels were activated or inhibited by internal high-energy phosphates (IHEPs) at positive and negative membrane potentials, respectively. SNr neurons showed membrane potential hyperpolarization under glucose-deprivation conditions which was attenuated by paxilline, a specific BK channel blocker. In addition, Fluo-3 fluorescence recording detected an increase in the level of internal free calcium ([Ca2+]i) during ischemic hyperpolarization. These results confirm that BK channels are present in SNr neurons and indicate that their unique IHEP sensitivity is requisite in neuronal ischemic responses. Bearing in mind that the KATP channel blocker tolbutamide also attenuated the hyperpolarization, we suggest that BK channels may play a protective role in the basal ganglia by modulating the excitability of SNr neurons along with KATP channels under ischemic stresses.  相似文献   

7.
The rise in intracellular Ca2+ mediated by AMPA subtype of glutamate receptors has been implicated in the pathogenesis of motor neuron disease, but the exact route of Ca2+ entry into motor neurons is not clearly known. In the present study, we examined the role of voltage gated calcium channels (VGCCs) in AMPA induced Ca2+ influx and subsequent intracellular signaling events responsible for motor neuron degeneration. AMPA stimulation caused sodium influx in spinal neurons that would depolarize the plasma membrane. The AMPA induced [Ca2+]i rise in motor neurons as well as other spinal neurons was drastically reduced when extracellular sodium was replaced with NMDG, suggesting the involvement of voltage gated calcium channels. AMPA mediated rise in [Ca2+]i was significantly inhibited by L-type VGCC blocker nifedipine, whereas ω-agatoxin-IVA and ω-conotoxin-GVIA, specific blockers of P/Q type and N-type VGCC were not effective. 1-Napthyl-acetyl spermine (NAS), an antagonist of Ca2+ permeable AMPA receptors partially inhibited the AMPA induced [Ca2+]i rise but selectively in motor neurons. Measurement of AMPA induced currents in whole cell voltage clamp mode suggests that a moderate amount of Ca2+ influx occurs through Ca2+ permeable AMPA receptors in a subpopulation of motor neurons. The AMPA induced mitochondrial calcium loading [Ca2+]m, mitochondrial depolarization and neurotoxicity were also significantly reduced in presence of nifedipine. Activation of VGCCs by depolarizing concentration of KCl (30 mM) in extracellular medium increased the [Ca2+]i but no change was observed in mitochondrial Ca2+ and membrane potential. Our results demonstrate that a subpopulation of motor neurons express Ca2+ permeable AMPA receptors, however the larger part of Ca2+ influx occurs through L-type VGCCs subsequent to AMPA receptor activation and consequent mitochondrial dysfunction is the trigger for motor neuron degeneration. Nifedipine is an effective protective agent against AMPA induced mitochondrial stress and degeneration of motor neurons.  相似文献   

8.
Rat melanotrophs express several types of voltage-gated and ligand-gated calcium channels, although mechanisms involved in the maintenance of the resting intracellular Ca2+ concentration ([Ca2+]i) remain unknown. We analyzed mechanisms regulating resting [Ca2+]i in dissociated rat melanotrophs by Ca2+-imaging and patch-clamp techniques. Treatment with antagonists of L-type, but not N- or P/Q-type voltage-gated Ca2+ channels (VGCCs) as well as removal of extracellular Ca2+ resulted in a rapid and reversible decrease in [Ca2+]i, indicating constitutive Ca2+ influx through L-type VGCCs. Reduction of extracellular Na+ concentration (replacement with NMDG+) similarly decreased resting [Ca2+]i. When cells were champed at –80 mV, decrease in the extracellular Na+ resulted in a positive shift of the holding current. In cell-attached voltage-clamp and whole-cell current-clamp configurations, the reduction of extracellular Na+ caused hyperpolarisation. The holding current shifted in negative direction when extracellular K+ concentration was increased from 5 mM to 50 mM in the presence of K+ channel blockers, Ba2+ and TEA, indicating cation nature of persistent conductance. RT-PCR analyses of pars intermedia tissues detected mRNAs of TRPV1, TRPV4, TRPC6, and TRPM3-5. The TRPV channel blocker, ruthenium red, shifted the holding current in positive direction, and significantly decreased the resting [Ca2+]i. These results indicate operation of a constitutive cation conductance sensitive to ruthenium red, which regulates resting membrane potential and [Ca2+]i in rat melanotrophs.  相似文献   

9.
Abstract: We used cultured rat chromaffin cells to test the hypothesis that Ca2+ entry but not release from internal stores is utilized for exocytosis. Two protocols were used to identify internal versus external Ca2+ sources: (a) Ca2+ surrounding single cells was transiently displaced by applying agonist with or without Ca2+ from an ejection pipette. (b) Intracellular stores of Ca2+ were depleted by soaking cells in Ca2+-free plus 1 mM EGTA solution before transient exposure to agonist plus Ca2+. Exocytosis from individual cells was measured by microelectrochemical detection, and the intracellular Ca2+ concentration ([Ca2+]i) was measured by indo-1 fluorescence. KCl (35 mM) and nicotine (10 µM) caused an immediate increase in [Ca2+]i and secretion in cells with or without internal Ca2+ stores, but only when applied with Ca2+ in the ejection pipette. Caffeine (10 mM) and muscarine (30 µM) evoked exocytosis whether or not Ca2+ was included in the pipette, but neither produced responses in cells depleted of internal Ca2+ stores. Pretreatment with ryanodine (0.1 µM) inhibited caffeine- but not muscarine-stimulated responses. Elevated [Ca2+]i and exocytosis exhibited long latency to onset after stimulation by caffeine (2.9 ± 0.38 s) or muscarine (2.2 ± 0.25 s). However, the duration of caffeine-evoked exocytosis (7.1 ± 0.8 s) was significantly shorter than that evoked by muscarine (33.1 ± 3.5 s). The duration of caffeine-evoked exocytosis was not affected by changing the application period between 0.5 and 30 s. An ~20-s refractory period was found between repeated caffeine-evoked exocytotic bursts even though [Ca2+]i continued to be elevated. However, muscarine or nicotine could evoke exocytosis during the caffeine refractory period. We conclude that muscarine and caffeine mobilize different internal Ca2+ stores and that both are coupled to exocytosis in rat chromaffin cells. The nicotinic component of acetylcholine action depends primarily on influx of external Ca2+. These results and conclusions are consistent with our original observations in the perfused adrenal gland.  相似文献   

10.
Regulation of critical cellular functions, including Ca2+-dependent gene expression, is determined by the temporal and spatial aspects of agonist-induced Ca2+ signals. Stimulation of cells with physiological concentrations of agonists trigger increases [Ca2+]i due to intracellular Ca2+ release and Ca2+ influx. While Orai1-STIM1 channels account for agonist-stimulated [Ca2+]i increase as well as activation of NFAT in cells such as lymphocytes, RBL and mast cells, both Orai1-STIM1 and TRPC1-STIM1 channels contribute to [Ca2+]i increases in human submandibular gland (HSG) cells. However, only Orai1-mediated Ca2+ entry regulates the activation of NFAT in HSG cells. Since both TRPC1 and Orai1 are activated following internal Ca2+ store depletion in these cells, it is not clear how the cells decode individual Ca2+ signals generated by the two channels for the regulation of specific cellular functions. Here we have examined the contributions of Orai1 and TRPC1 to carbachol (CCh)-induced [Ca2+]i signals and activation of NFAT in single cells. We report that Orai1-mediated Ca2+ entry generates [Ca2+]i oscillations at different [CCh], ranging from very low to high. In contrast, TRPC1-mediated Ca2+ entry generates sustained [Ca2+]i elevation at high [CCh] and contributes to frequency of [Ca2+]i oscillations at lower [agonist]. More importantly, the two channels are coupled to activation of distinct Ca2+ dependent gene expression pathways, consistent with the different patterns of [Ca2+]i signals mediated by them. Nuclear translocation of NFAT and NFAT-dependent gene expression display “all-or-none” activation that is exclusively driven by local [Ca2+]i generated by Orai1, independent of global [Ca2+]i changes or TRPC1-mediated Ca2+ entry. In contrast, Ca2+ entry via TRPC1 primarily regulates NFκB-mediated gene expression. Together, these findings reveal that Orai1 and TRPC1 mediate distinct local and global Ca2+ signals following agonist stimulation of cells, which determine the functional specificity of the channels in activating different Ca2+-dependent gene expression pathways.  相似文献   

11.
Summary Calcium binding protein-1 (CaBP1) is a calmodulin like protein shown to modulate Ca2+ channel activities. Here, we explored the functions of long and short spliced CaBP1 variants (L- and S-CaBP1) in modulating stimulus-secretion coupling in primary cultured bovine chromaffin cells. L- and S-CaBP1 were cloned from rat brain and fused with yellow fluorescent protein at the C-terminal. When expressed in chromaffin cells, wild-type L- and S-CaBP1s could be found in the cytosol, plasma membrane and a perinuclear region; in contrast, the myristoylation-deficient mutants were not found in the membrane. More than 20 and 70% of Na+ and Ca2+ currents, respectively, were inhibited by wild-type isoforms but not myristoylation-deficient mutants. The [Ca2+] i response evoked by high K+ buffer and the exocytosis elicited by membrane depolarizations were inhibited only by wild-type isoforms. Neuronal Ca2+ sensor-1 and CaBP5, both are calmodulin-like proteins, did not affect Na+, Ca2+ currents, and exocytosis. When expressed in cultured cortical neurons, the [Ca2+] i responses elicited by high-K+ depolarization were inhibited by CaBP1 isoforms. In HEK293T cells cotransfected with N-type Ca2+ channel and L-CaBP1, the current was reduced and activation curve was shifted positively. These results demonstrate the importance of CaBP1s in modulating the stimulus-secretion coupling in excitable cells. M.-L. Chen and Y.-C. Chen contributed equally to this study  相似文献   

12.
Caffeine increases intracellular Ca2+ concentrations ([Ca2+]i) in a variety of cell types by triggering the mobilization of Ca2+ from intracellular Ca2+ stores. Caffeine also can change [Ca2+]i by affecting Ca2+ influx through voltage-operated Ca2+ channels (VOCCs). In the present study, we investigated the effects of caffeine on Ca2+ entry in GH4C1 pituitary cells. Pretreatment of the cells with caffeine attenuated the high K+-evoked influx of 45Ca2+ in a dose-dependent manner. This inhibition was not secondary to the caffeine-evoked elevation of [Ca2+]i because caffeine was able to inhibit VOCCs also in the presence of the intracellular Ca2+ chelator BAPTA. However, the inhibitory effect of caffeine on 45Ca2+ entry appeared to be dependent on the degree of depolarization of the plasma membrane. Only in cells depolarized with relatively high concentrations of K+ (20, 35, and 50 mM) was the caffeine-induced inhibition observed. A similar inhibitory effect of caffeine on the high K+-evoked calcium and barium entry was observed in experiments using Fura 2. Neither IBMX, forskolin nor dibutyryl cAMP reduced the enhanced [Ca2+]i induced by 50 mM K+, suggesting that the effect of caffeine was not due to increased intracellular cAMP. Furthermore, high doses of caffeine inhibited the plateau level of the TRH-induced increase in [Ca2+]i, which is caused partly by influx of Ca2+ through VOCCs. The inhibitory effect of caffeine was, in part, due to an hyperpolarization of the plasma membrane observed at high doses of caffeine. On the other hand, low doses of caffeine enhanced depolarization-evoked Ba2+ entry as well as the TRH-evoked plateau level of [Ca2+]i. We conclude that caffeine has a dual effect on Ca2+ entry through activated VOCCs in GH4C1 cells: at low concentrations caffeine enhances Ca2+ entry, whereas high concentrations of caffeine block Ca2+ entry. J. Cell. Physiol. 171:52–60, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
To investigate the effects of Coriaria Lactone (CL), an epileptogenic substance, on intracellular levels of calcium ([Ca2+]i) and physiological properties of voltage-gated calcium channels (VGCCs). Ratiometric calcium imaging using Fura Red and whole-cell voltage patch-clamp technique were explored on freshly isolated rat hippocampal neurons exposed to CL. Coriaria Lactone increased [Ca2+]i from 118 ± 21 to 440 ± 35 nM; VGCCs and calcium influx through NMDA receptor served as the main routes of entry. Coriaria Lactone could enhance both Low voltage activated (LVA) and High voltage activated calcium currents in a concentration-dependent way, and its effect on LVA current was more potent (about 60%). The increased calcium currents were accompanied by the shift of voltage-dependent steady-state inactivation to more positive potentials. These effects of CL, especially its impact on LVA current, could activate different calcium-dependent signaling pathways, and influence cellular excitable properties as well, which might play an important role in CL’s epileptogenic process. Q. Zhang and X. Lai contributed equally to this article.  相似文献   

14.
Somatostatin (SST) inhibits Ca2+ entry into pancreatic B-cells via voltage-operated Ca2+ channels (VOCCs) of L-type, leading to the suppression of insulin secretion. Activation of R-type channels increases insulin secretion. However, the role of R-type Ca2+ channels (CaV2.3) in mediating the effects of SST on insulin secretion has not been so far investigated. Here, we identify the SST-receptor subtypes (SSTR) expressed on insulin-producing INS-1 cells by RT-PCR and by functional assays. The role of R-type channels in regulating [Ca2+]i in response to SST-treatment was detected by cell fluorescence imaging and patch-clamp technique. INS-1 expressed SSTR2 and SSTR3 and agonists (ag.) selective for these receptors reduced 10 nM exendin-4/20 mM glucose-stimulated insulin secretion. Surprisingly, SST and SST2-ag. transiently increased [Ca2+]i. Subsequently, these agonists led to a decrease in [Ca2+]i below the basal levels. In contrast, SST3-ag. failed to induce a transient peak of [Ca2+]i. Instead, a persistent minor suppression of [Ca2+]i was detected from 25 min. R-type channel blocker SNX-482 altered [Ca2+]i in SST- and SST2-ag.-treated cells. Notably, the inhibition of insulin secretion by SST and SST2-ag., but not SST3-ag. was attenuated by SNX-482. Taken together, SST and SSTR2 regulate [Ca2+]i and insulin secretion in INS-1 cells via R-type channels. In contrast, the R-type calcium channel does not mediate the effects of SST3-ag. on insulin secretion. We conclude that R-type channels play a major role in the inhibition of insulin secretion by somatostatin in INS-1 cells.  相似文献   

15.
16.
The possible role of metalloendoproteinase in stimulus-secretion coupling in adrenal chromaffin cells was examined using the metalloendoproteinase inhibitors 1,10-phenanthroline and carbobenzoxy-Gly-Phe-NH2. Catecholamine release elicited by nicotine or by depolarisation with 55 mM K+ was almost completely abolished by 0.5 mM 1,10-phenanthroline. Carbobenzoxy-Gly-Phe-NH2 (2.5 mM) inhibited catecholamine release in response to nicotine but enhanced that due to 55 mM K+. The rise in intracellular free calcium, [Ca2+]i, in response to either nicotine or 55 mM was inhibited by about 50% by both inhibitors. One site of action of metalloendoproteinase inhibitors may, therefore, be at the level of the regulation of [Ca2+]i. Catecholamine release and the rise in [Ca2+]i elicited by the calcium ionophore ionomycin were not reduced by the inhibitors. These results show that metalloendoproteinase inhibitors have complex effects on chromaffin cells including effects on the regulation of [Ca2+]i but do not inhibit calcium-activated exocytosis itself.  相似文献   

17.
The sequence of ionic changes involved in initiation of acrosomal exocytosis in capacitated mouse spermatozoa was investigated. Earlier studies demonstrated that a large influx of Na+ is required for exocytosis, this Na+ apparently being associated with an increase in intracellular pH (pHi) via an Na+-H+ exchanger. This rise in pHi may in turn activate calcium channels and permit the influx of extracellular Ca2+ needed to trigger acrosomal exocytosis. In the present study, the dihydropyridine voltage-dependent calcium channel antagonist nifedipine was able to inhibit significantly exocytosis in sperm cells treated in various ways capable of stimulating acrosomal loss. The monovalent cation ionophore monensin can promote Na+ entry required for both capacitation and acrosomal exocytosis, as demonstrated by using chlortetracycline to monitor changes in sperm functional potential. In the presence of 10 nM nifedipine, monensin treatment accelerated capacitation but was unable to trigger exocytosis. The requirement for internalization of a high concentration of Na+ can be bypassed by the addition of 25 mM NH4CI to raise the pHi of cells capacitated in 25NH4CI to raise the pHi of cells capacitated in 25 mM Na+ (insufficient Na+ to support exocytosis under usual conditions). Again, introduction of nifedipine was able to inhibit exocytosis. In a third experimental approach, amiloridestimulated exocytosis in capacitated cells was significantly inhibited by nifedipine. In contrast to these treatments directed at specific mechanisms, the ability of the Ca2+ inophore A23187 to promote more general entry of Ca2+ and thereby to accelerate capacitation and exocytosis was not inhibited by nifedipine. Finally, monensin-treated cells exhibited a rise and then a fall in 45Ca2+ uptake, the time course of which paralleled stimulation of acrosomal exocytosis in similarly treated cells. Nifedipine significantly reduced this uptake. The fact that nifedipine can block exocytosis induced by a variety treatments strongly suggests that voltage-dependent calcium channels play a pivotal role in the response. These results are consistent with the following sequence of ionic changes in capacitated cells leading to acrosomal exocytosis: [Na+]i ↑ → [H]i↓ → pHi ↑ → activation of calcium channels → [Ca2+]i ↑ → exocytosis. Given that zona-induced exocytosis is reportedly an indirect response, mediated by voltage-dependent calcium channels, and that the Na+-H+ exchanger in somatic cells can be activated by receptor-mediated mechanisms, we suggest that sperm-zona inter action promotes an influx of Na+ by activating an Na+-H+ exchanger and thereby initiating the above sequence of changes. © 1993 Wiley-Liss, Inc.  相似文献   

18.
T-type Ca2+ channel family includes three subunits CaV3.1, CaV3.2 and CaV3.3 and have been shown to control burst firing and intracellular Ca2+ concentration ([Ca2+]i) in neurons. Here, we investigated whether CaV3.1 channels could generate a pacemaker current and contribute to cell excitability. CaV3.1 clones were over-expressed in the neuronal cell line NG108-15. CaV3.1 channel expression induced repetitive action potentials, generating spontaneous membrane potential oscillations (MPOs) and concomitant [Ca2+]i oscillations. These oscillations were inhibited by T-type channels antagonists and were present only if the membrane potential was around −61 mV. [Ca2+]i oscillations were critically dependent on Ca2+ influx through CaV3.1 channels and did not involve Ca2+ release from the endoplasmic reticulum. The waveform and frequency of the MPOs are constrained by electrophysiological properties of the CaV3.1 channels. The trigger of the oscillations was the CaV3.1 window current. This current induced continuous [Ca2+]i increase at −60 mV that depolarized the cells and triggered MPOs. Shifting the CaV3.1 window current potential range by increasing the external Ca2+ concentration resulted in a corresponding shift of the MPOs threshold. The hyperpolarization-activated cation current (Ih) was not required to induce MPOs, but when expressed together with CaV3.1 channels, it broadened the membrane potential range over which MPOs were observed. Overall, the data demonstrate that the CaV3.1 window current is critical in triggering intrinsic electrical and [Ca2+]i oscillations.  相似文献   

19.
Cytoplasmic calcium concentration ([Ca2+]i) and extracellular calcium (Ca2+o) influx has been studied in pollen tubes of Lilium longliflorum in which the processes of cell elongation and exocytosis have been uncoupled by use of Yariv phenylglycoside ((β-D-Glc)3). Growing pollen tubes were pressure injected with the ratio dye fura-2 dextran and imaged after application of (β-D-Glc)3, which binds arabinogalactan proteins (AGPs). Application of (β-D-Glc)3 inhibited growth but not secretion. Ratiometric imaging of [Ca2+]i revealed an initial spread in the locus of the apical [Ca2+]i gradient and substantial elevations in basal [Ca2+]i followed by the establishment of new regions of elevated [Ca2+]i on the flanks of the tip region. Areas of elevated [Ca2+]i corresponded to sites of pronounced exocytosis, as evidenced by the formation of wall ingrowths adjacent to the plasma membrane. Ca2+o influx at the tip of (β-D-Glc)3-treated pollen tubes was not significantly different to that of control tubes. Taken together these data indicate that regions of elevated [Ca2+]i, probably resulting from Ca2+o influx across the plasma membrane, stimulate exocytosis in pollen tubes independent of cell elongation.  相似文献   

20.
Trans-2-Pentenal (pentenal), an α,β-unsaturated aldehyde, induces increases in [Ca2+]i in cultured neonatal rat trigeminal ganglion (TG) neurons. Since all pentenal-sensitive neurons responded to a specific TRPA1 agonist, allyl isothiocyanate (AITC) and neurons from TRPA1 knockouts failed to respond to pentenal, TRPA1 appears to be sole initial transduction site for pentenal-evoked trigeminal response, as reported for the structurally related irritant, acrolein. Furthermore, because the neuronal sensitivity to pentenal is strictly dependent upon the presence of extracellular Na+/Ca2+, as we showed previously, we investigated which types of voltage-gated sodium/calcium channels (VGSCs/VGCCs) are involved in pentenal-induced [Ca2+]i increases as a downstream mechanisms. The application of tetrodotoxin (TTX) significantly suppressed the pentenal-induced increase in [Ca2+]i in a portion of TG neurons, suggesting that TTX-sensitive (TTXs) VGSCs contribute to the pentenal response in those neurons. Diltiazem and ω-agatoxin IVA, antagonists of L- and P/Q-type VGCCs, respectively, both caused significant reductions of the pentenal-induced responses. ω-Conotoxin GVIA, on the other hand, caused only a small decrease in the size of pentenal-induced [Ca2+]i rise. These indicate that both L- and P/Q-type VGCCs are involved in the increase in [Ca2+]i produced by pentenal, while N-type calcium channels play only a minor role. This study demonstrates that TTXs VGSCs, L- and P/Q-type VGCCs play a significant role in the pentenal-induced trigeminal neuronal responses as downstream mechanisms following TRPA1 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号