首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species (ROS) stimulate cytoplasmic [Ca2+] ([Ca2+]c) signaling, but the exact role of the IP3 receptors (IP3R) in this process remains unclear. IP3Rs serve as a potential target of ROS produced by both ER and mitochondrial enzymes, which might locally expose IP3Rs at the ER-mitochondrial associations. Also, IP3Rs contain multiple reactive thiols, common molecular targets of ROS. Therefore, we have examined the effect of superoxide anion (O2) on IP3R-mediated Ca2+ signaling. In human HepG2, rat RBL-2H3, and chicken DT40 cells, we observed [Ca2+]c spikes and frequency-modulated oscillations evoked by a O2 donor, xanthine (X) + xanthine oxidase (XO), dose-dependently. The [Ca2+]c signal was mediated by ER Ca2+ mobilization. X+XO added to permeabilized cells promoted the [Ca2+]c rise evoked by submaximal doses of IP3, indicating that O2 directly sensitizes IP3R-mediated Ca2+ release. In response to X+XO, DT40 cells lacking two of three IP3R isoforms (DKO) expressing either type 1 (DKO1) or type 2 IP3Rs (DKO2) showed a [Ca2+]c signal, whereas DKO expressing type 3 IP3R (DKO3) did not. By contrast, IgM that stimulates IP3 formation, elicited a [Ca2+]c signal in every DKO. X+XO also facilitated the Ca2+ release evoked by submaximal IP3 in permeabilized DKO1 and DKO2 but was ineffective in DKO3 or in DT40 lacking every IP3R (TKO). However, X+XO could also facilitate the effect of suboptimal IP3 in TKO transfected with rat IP3R3. Although in silico studies failed to identify a thiol missing in the chicken IP3R3, an X+XO-induced redox change was documented only in the rat IP3R3. Thus, ROS seem to specifically sensitize IP3Rs through a thiol group(s) within the IP3R, which is probably inaccessible in the chicken IP3R3.  相似文献   

2.
Liberation of Ca2+ from the endoplasmic reticulum (ER) through inositol trisphosphate receptors (IP3R) is modulated by the ER Ca2+ content, and overexpression of SERCA2b to accelerate Ca2+ sequestration into the ER has been shown to potentiate the frequency and amplitude of IP3-evoked Ca2+ waves in Xenopus oocytes. Here, we examined the effects of SERCA overexpression on the elementary IP3-evoked puffs to elucidate whether ER [Ca2+] may modulate IP3R function via luminal regulatory sites in addition to simply determining the size of the available store and electrochemical driving force for Ca2+ release. SERCA2b and Ca2+ permeable nicotinic plasmalemmal channels were expressed in oocytes, and hyperpolarizing pulses were delivered to induce Ca2+ influx and thereby load ER stores. Puffs evoked by photoreleased IP3 were significantly potentiated in terms of numbers of responding sites, frequency and amplitude following transient Ca2+ influx in SERCA-overexpressing cells, whereas little change was evident with SERCA overexpression alone or following Ca2+ influx in control cells not overexpressing SERCA. Intriguingly, we observed the appearance of a new population of puffs that arose after long latencies and had prolonged durations supporting the notion of luminal regulation of IP3R gating kinetics.  相似文献   

3.
Inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitous intracellular calcium (Ca2+) channel which has a major role in controlling Ca2+ levels in neurons. A variety of computational models have been developed to describe the kinetic function of IP3R under different conditions. In the field of computational neuroscience, it is of great interest to apply the existing models of IP3R when modeling local Ca2+ transients in dendrites or overall Ca2+ dynamics in large neuronal models. The goal of this study was to evaluate existing IP3R models, based on electrophysiological data. This was done in order to be able to suggest suitable models for neuronal modeling. Altogether four models (Othmer and Tang, 1993; Dawson et al., 2003; Fraiman and Dawson, 2004; Doi et al., 2005) were selected for a more detailed comparison. The selection was based on the computational efficiency of the models and the type of experimental data that was used in developing the model. The kinetics of all four models were simulated by stochastic means, using the simulation software STEPS, which implements the Gillespie stochastic simulation algorithm. The results show major differences in the statistical properties of model functionality. Of the four compared models, the one by Fraiman and Dawson (2004) proved most satisfactory in producing the specific features of experimental findings reported in literature. To our knowledge, the present study is the first detailed evaluation of IP3R models using stochastic simulation methods, thus providing an important setting for constructing a new, realistic model of IP3R channel kinetics for compartmental modeling of neuronal functions. We conclude that the kinetics of IP3R with different concentrations of Ca2+ and IP3 should be more carefully addressed when new models for IP3R are developed.  相似文献   

4.
Anti-apoptotic Bcl-2-family members not only act at mitochondria but also at the endoplasmic reticulum, where they impact Ca2+ dynamics by controlling IP3 receptor (IP3R) function. Current models propose distinct roles for Bcl-2 vs. Bcl-xL, with Bcl-2 inhibiting IP3Rs and preventing pro-apoptotic Ca2+ release and Bcl-xL sensitizing IP3Rs to low [IP3] and promoting pro-survival Ca2+ oscillations. We here demonstrate that Bcl-xL too inhibits IP3R-mediated Ca2+ release by interacting with the same IP3R regions as Bcl-2. Via in silico superposition, we previously found that the residue K87 of Bcl-xL spatially resembled K17 of Bcl-2, a residue critical for Bcl-2’s IP3R-inhibitory properties. Mutagenesis of K87 in Bcl-xL impaired its binding to IP3R and abrogated Bcl-xL’s inhibitory effect on IP3Rs. Single-channel recordings demonstrate that purified Bcl-xL, but not Bcl-xLK87D, suppressed IP3R single-channel openings stimulated by sub-maximal and threshold [IP3]. Moreover, we demonstrate that Bcl-xL-mediated inhibition of IP3Rs contributes to its anti-apoptotic properties against Ca2+-driven apoptosis. Staurosporine (STS) elicits long-lasting Ca2+ elevations in wild-type but not in IP3R-knockout HeLa cells, sensitizing the former to STS treatment. Overexpression of Bcl-xL in wild-type HeLa cells suppressed STS-induced Ca2+ signals and cell death, while Bcl-xLK87D was much less effective in doing so. In the absence of IP3Rs, Bcl-xL and Bcl-xLK87D were equally effective in suppressing STS-induced cell death. Finally, we demonstrate that endogenous Bcl-xL also suppress IP3R activity in MDA-MB-231 breast cancer cells, whereby Bcl-xL knockdown augmented IP3R-mediated Ca2+ release and increased the sensitivity towards STS, without altering the ER Ca2+ content. Hence, this study challenges the current paradigm of divergent functions for Bcl-2 and Bcl-xL in Ca2+-signaling modulation and reveals that, similarly to Bcl-2, Bcl-xL inhibits IP3R-mediated Ca2+ release and IP3R-driven cell death. Our work further underpins that IP3R inhibition is an integral part of Bcl-xL’s anti-apoptotic function.Subject terms: Cancer, Cell biology, Molecular biology  相似文献   

5.
Ca2+ signaling governs a diverse range of cellular processes and, as such, is subject to tight regulation. A main component of the complex intracellular Ca2+-signaling network is the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R), a tetrameric channel that mediates Ca2+ release from the endoplasmic reticulum (ER) in response to IP3. IP3R function is controlled by a myriad of factors, such as Ca2+, ATP, kinases and phosphatases and a plethora of accessory and regulatory proteins. Further complexity in IP3R-mediated Ca2+ signaling is the result of the existence of three main isoforms (IP3R1, IP3R2 and IP3R3) that display distinct functional characteristics and properties. Despite their abundant and overlapping expression profiles, IP3R1 is highly expressed in neurons, IP3R2 in cardiomyocytes and hepatocytes and IP3R3 in rapidly proliferating cells as e.g. epithelial cells. As a consequence, dysfunction and/or dysregulation of IP3R isoforms will have distinct pathophysiological outcomes, ranging from neurological disorders for IP3R1 to dysfunctional exocrine tissues and autoimmune diseases for IP3R2 and -3. Over the past years, several IP3R mutations have surfaced in the sequence analysis of patient-derived samples. Here, we aimed to provide an integrative overview of the clinically most relevant mutations for each IP3R isoform and the subsequent molecular mechanisms underlying the etiology of the disease.  相似文献   

6.
HL-1 cells are the adult cardiac cell lines available that continuously divide while maintaining an atrial phenotype. Here we examined the expression and localization of inositol 1,4,5-trisphosphate receptor (IP3R) subtypes, and investigated how pattern of IP3-induced subcellular local Ca2+ signaling is encoded by multiple IP3R subtypes in HL-1 cells. The type 1 IP3R (IP3R1) was expressed in the perinucleus with a diffuse pattern and the type 2 IP3R (IP3R2) was expressed in the cytosol with a punctate distribution. Extracellular ATP (1 mM) elicited transient intracellular Ca2+ releases accompanied by a Ca2+ oscillation, which was eliminated by the blocker of IP3Rs, 2-APB, and attenuated by ryanodine. Direct introduction of IP3 into the permeabilized cells induced Ca2+ transients with Ca2+ oscillations at ⩾ 20 μM of IP3, which was removed by the inhibition of IP3Rs using 2-APB and heparin. IP3-induced local Ca2+ transients contained two distinct time courses: a rapid oscillation and a monophasic Ca2+ transient. The magnitude of Ca2+ oscillation was significantly larger in the cytosol than in the nucleus, while the monophasic Ca2+ transient was more pronounced in the nucleus. These results provide evidence for the molecular and functional expression of IP3R1 and IP3R2 in HL-1 cells, and suggest that such distinct local Ca2+ signaling may be correlated with the punctate distribution of IP3R2s in the cytosol and the diffuse localization of IP3R1 in the peri-nucleus.  相似文献   

7.
Plasma membrane large-conductance Ca2+-activated K+ (BKCa) channels and sarcoplasmic reticulum inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are expressed in a wide variety of cell types, including arterial smooth muscle cells. Here, we studied BKCa channel regulation by IP3 and IP3Rs in rat and mouse cerebral artery smooth muscle cells. IP3 activated BKCa channels both in intact cells and in excised inside-out membrane patches. IP3 caused concentration-dependent BKCa channel activation with an apparent dissociation constant (Kd) of ∼4 µM at physiological voltage (−40 mV) and intracellular Ca2+ concentration ([Ca2+]i; 10 µM). IP3 also caused a leftward-shift in BKCa channel apparent Ca2+ sensitivity and reduced the Kd for free [Ca2+]i from ∼20 to 12 µM, but did not alter the slope or maximal Po. BAPTA, a fast Ca2+ buffer, or an elevation in extracellular Ca2+ concentration did not alter IP3-induced BKCa channel activation. Heparin, an IP3R inhibitor, and a monoclonal type 1 IP3R (IP3R1) antibody blocked IP3-induced BKCa channel activation. Adenophostin A, an IP3R agonist, also activated BKCa channels. IP3 activated BKCa channels in inside-out patches from wild-type (IP3R1+/+) mouse arterial smooth muscle cells, but had no effect on BKCa channels of IP3R1-deficient (IP3R1−/−) mice. Immunofluorescence resonance energy transfer microscopy indicated that IP3R1 is located in close spatial proximity to BKCa α subunits. The IP3R1 monoclonal antibody coimmunoprecipitated IP3R1 and BKCa channel α and β1 subunits from cerebral arteries. In summary, data indicate that IP3R1 activation elevates BKCa channel apparent Ca2+ sensitivity through local molecular coupling in arterial smooth muscle cells.  相似文献   

8.
9.
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels. Their regulation by both IP3 and Ca2+ allows interactions between IP3Rs to generate a hierarchy of intracellular Ca2+ release events. These can progress from openings of single IP3R, through near-synchronous opening of a few IP3Rs within a cluster to much larger signals that give rise to regenerative Ca2+ waves that can invade the entire cell. We have used patch-clamp recording from excised nuclear membranes of DT40 cells expressing only IP3R3 and shown that low concentrations of IP3 rapidly and reversibly cause IP3Rs to assemble into small clusters. In addition to bringing IP3Rs close enough to allow Ca2+ released by one IP3R to regulate the activity of its neighbors, clustering also retunes the regulation of IP3Rs by IP3 and Ca2+. At resting cytosolic [Ca2+], lone IP3R are more sensitive to IP3 and the mean channel open time (~10ms) is twice as long as for clustered IP3R. When the cytosolic free [Ca2+] is increased to 1µM, to mimic the conditions that might prevail when an IP3R within a cluster opens, clustered IP3R are no longer inhibited and their gating becomes coupled. IP3, by dynamically regulating IP3R clustering, both positions IP3R for optimal interactions between them and it serves to exaggerate the effects of Ca2+ within a cluster. During the course of these studies, we have observed that nuclear IP3R stably express one of two single channel K + conductances (γK ~120 or 200pS). Here we demonstrate that for both states of the IP3R, the effects of IP3 on clustering are indistinguishable. These observations reinforce our conclusion that IP3 dynamically regulates assembly of IP3Rs into clusters that underlie the hierarchical recruitment of elementary Ca2+ release events.  相似文献   

10.
《Gene》1997,190(1):151-156
Receptor-stimulated phosphoinositide (PI) hydrolysis is an important and ubiquitous mechanism of intracellular signaling. Inositol 1,4,5-trisphosphate (IP3), generated by phosphoinositide (PI) hydrolysis, binds to and gates an intracellular Ca2+ channel, the IP3 receptor (IP3R), which is therefore a central component of this signaling cascade. Here we describe the development of a baculovirus (BV)/Sf(S. frugiperda) cell system that can be used to look at IP3R function. Agonist-evoked changes in intracellular Ca2+ levels [Ca2+]i were measured (using Fura2) in Sf cells expressing the gene encoding the muscarinic acetylcholine receptor (vmlAchR). Furthermore, we have constructed a recombinant BV (vlP3R), with the core of the IP3R ligand-binding domain from the Drosophila IP3R, under the polyhedrin promoter. The recombinant protein from such a virus was expected to act as a large ligand sink for IP3, generated by stimulation of vmlAchR. Cells coinfected with recombinant BV carrying the potential dominant-negative vIP3R construct and vmlAchR have been used to assay the modulation of IP3R-mediated Ca2+ release, by the ligand sink.  相似文献   

11.
The ability of cells to maintain low levels of Ca2+ under resting conditions and to create rapid and transient increases in Ca2+ upon stimulation is a fundamental property of cellular Ca2+ signaling mechanism. An increase of cytosolic Ca2+ level in response to diverse stimuli is largely accounted for by the inositol 1,4,5-trisphosphate receptor (IP3R) present in the endoplasmic reticulum membranes of virtually all eukaryotic cells. Extensive information is currently available on the function of IP3Rs and their interaction with modulators. Very little, however, is known about their molecular architecture and therefore most critical issues surrounding gating of IP3R channels are still ambiguous, including the central question of how opening of the IP3R pore is initiated by IP3 and Ca2+. Membrane proteins such as IP3R channels have proven to be exceptionally difficult targets for structural analysis due to their large size, their location in the membrane environment, and their dynamic nature. To date, a 3D structure of complete IP3R channel is determined by single-particle cryo-EM at intermediate resolution, and the best crystal structures of IP3R are limited to a soluble portion of the cytoplasmic region representing ∼15% of the entire channel protein. Together these efforts provide the important structural information for this class of ion channels and serve as the basis for further studies aiming at understanding of the IP3R function.  相似文献   

12.
Recently, a functional IP3R ortholog (CO.IP3R-A) capable of IP3-induced Ca2+ release has been discovered in Capsaspora owczarzaki, a close unicellular relative to Metazoa. In contrast to mammalian IP3Rs, CO.IP3R-A is not modulated by Ca2+, ATP or PKA. Protein-sequence analysis revealed that CO.IP3R-A contained a putative binding site for anti-apoptotic Bcl-2, although Bcl-2 was not detected in Capsaspora owczarzaki and only appeared in Metazoa. Here, we examined whether human Bcl-2 could form a complex with CO.IP3R-A channels and modulate their Ca2+-flux properties using ectopic expression approaches in a HEK293 cell model in which all three IP3R isoforms were knocked out. We demonstrate that human Bcl-2 via its BH4 domain could functionally interact with CO.IP3R-A, thereby suppressing Ca2+ flux through CO.IP3R-A channels. The BH4 domain of Bcl-2 was sufficient for interaction with CO.IP3R-A channels. Moreover, mutating the Lys17 of Bcl-2's BH4 domain, the residue critical for Bcl-2-dependent modulation of mammalian IP3Rs, abrogated Bcl-2's ability to bind and inhibit CO.IP3R-A channels. Hence, this raises the possibility that a unicellular ancestor of animals already had an IP3R that harbored a Bcl-2-binding site. Bcl-2 proteins may have evolved as controllers of IP3R function by exploiting this pre-existing site, thereby counteracting Ca2+-dependent apoptosis.  相似文献   

13.
Familial Alzheimer’s disease (FAD)-causing mutant presenilins (PS) interact with inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) Ca2+ release channels resulting in enhanced IP3R channel gating in an amyloid beta (Aβ) production-independent manner. This gain-of-function enhancement of IP3R activity is considered to be the main reason behind the upregulation of intracellular Ca2+ signaling in the presence of optimal and suboptimal stimuli and spontaneous Ca2+ signals observed in cells expressing mutant PS. In this paper, we employed computational modeling of single IP3R channel activity records obtained under optimal Ca2+ and multiple IP3 concentrations to gain deeper insights into the enhancement of IP3R function. We found that in addition to the high occupancy of the high-activity (H) mode and the low occupancy of the low-activity (L) mode, IP3R in FAD-causing mutant PS-expressing cells exhibits significantly longer mean life-time for the H mode and shorter life-time for the L mode, leading to shorter mean close-time and hence high open probability of the channel in comparison to IP3R in cells expressing wild-type PS. The model is then used to extrapolate the behavior of the channel to a wide range of IP3 and Ca2+ concentrations and quantify the sensitivity of IP3R to its two ligands. We show that the gain-of-function enhancement is sensitive to both IP3 and Ca2+ and that very small amount of IP3 is required to stimulate IP3R channels in the presence of FAD-causing mutant PS to the same level of activity as channels in control cells stimulated by significantly higher IP3 concentrations. We further demonstrate with simulations that the relatively longer time spent by IP3R in the H mode leads to the observed higher frequency of local Ca2+ signals, which can account for the more frequent global Ca2+ signals observed, while the enhanced activity of the channel at extremely low ligand concentrations will lead to spontaneous Ca2+ signals in cells expressing FAD-causing mutant PS.  相似文献   

14.
Background information. The IP3R (inositol 1,4,5‐trisphosphate receptor) is a tetrameric channel that accounts for a large part of the intracellular Ca2+ release in virtually all cell types. We have previously demonstrated that caspase‐3‐mediated cleavage of IP3R1 during cell death generates a C‐terminal fragment of 95 kDa comprising the complete channel domain. Expression of this truncated IP3R increases the cellular sensitivity to apoptotic stimuli, and it was postulated to be a constitutively active channel. Results. In the present study, we demonstrate that expression of the caspase‐3‐cleaved C‐terminus of IP3R1 increased the rate of thapsigargin‐mediated Ca2+ leak and decreased the rate of Ca2+ uptake into the ER (endoplasmic reticulum), although it was not sufficient by itself to deplete intracellular Ca2+ stores. We detected the truncated IP3R1 in different cell types after a challenge with apoptotic stimuli, as well as in aged mouse oocytes. Injection of mRNA corresponding to the truncated IP3R1 blocked sperm factor‐induced Ca2+ oscillations and induced an apoptotic phenotype. Conclusions. In the present study, we show that caspase‐3‐mediated truncation of IP3R1 enhanced the Ca2+ leak from the ER. We suggest a model in which, in normal conditions, the increased Ca2+ leak is largely compensated by enhanced Ca2+‐uptake activity, whereas in situations where the cellular metabolism is compromised, as occurring in aging oocytes, the Ca2+ leak acts as a feed‐forward mechanism to divert the cell into apoptosis.  相似文献   

15.
Inositol 1,4,5-trisphosphate receptor (IP3R) plays a crucial role in generating Ca2+ signaling and three subtypes of IP3R have been identified. In spite of a high degree of similarity among these subtypes, their effects on spatio-temporal Ca2+ patterns are specific and diverse; therefore the physiological significance of the differential expression levels of IP3R subtypes in various tissues remains unknown. Here, we examined the relative contribution of the specific subtype of IP3Rs to the agonist-induced Ca2+ signaling and contraction in IP3R-deficient vascular smooth muscle cells and found that IP3R1 deficient cells exclusively showed less sensitivity to the agonist, compared to those from the other genotypes. We also found that IP3R1 dominantly expressed in vascular aortae on a consistent basis, and that phenylephrine (PE)-induced aortic muscle contraction was reduced specifically in IP3R1-deficient aortae. Taken together, we concluded that IP3R1 plays a predominant role in the function of the vascular smooth muscle in vivo.  相似文献   

16.
In this study, we numerically analyzed the nonlinear Ca2+-dependent gating dynamics of a single, nonconducting inositol 1,4,5-trisphosphate receptor (IP3R) channel, using an exact and fully stochastic simulation algorithm that includes channel gating, Ca2+ buffering, and Ca2+ diffusion. The IP3R is a ubiquitous intracellular Ca2+ release channel that plays an important role in the formation of complex spatiotemporal Ca2+ signals such as waves and oscillations. Dynamic subfemtoliter Ca2+ microdomains reveal low copy numbers of Ca2+ ions, buffer molecules, and IP3Rs, and stochastic fluctuations arising from molecular interactions and diffusion do not average out. In contrast to models treating calcium dynamics deterministically, the stochastic approach accounts for this molecular noise. We varied Ca2+ diffusion coefficients and buffer reaction rates to tune the autocorrelation properties of Ca2+ noise and found a distinct relation between the autocorrelation time τac, the mean channel open and close times, and the resulting IP3R open probability PO. We observed an increased PO for shorter noise autocorrelation times, caused by increasing channel open times and decreasing close times. In a pure diffusion model the effects become apparent at elevated calcium concentrations, e.g., at [Ca2+] = 25 μM, τac = 0.082 ms, the IP3R open probability increased by ≈20% and mean open times increased by ≈4 ms, compared to a zero noise model. We identified the inactivating Ca2+ binding site of IP3R subunits as the primarily noise-susceptible element of the De Young and Keizer model. Short Ca2+ noise autocorrelation times decrease the probability of Ca2+ association and consequently increase IP3R activity. These results suggest a functional role of local calcium noise properties on calcium-regulated target molecules such as the ubiquitous IP3R. This finding may stimulate novel experimental approaches analyzing the role of calcium noise properties on microdomain behavior.  相似文献   

17.
Mitochondria modulate cellular Ca2+ signals by accumulating the ion via a uniporter and releasing it via Na+- or H+-exchange. In smooth muscle, inhibition of mitochondrial Ca2+ uptake inhibits Ca2+ release from the sarcoplasmic reticulum (SR) via inositol-1,4,5-trisphosphate-sensitive receptors (IP3R). At least two mechanisms may explain this effect. First, localised uptake of Ca2+ by mitochondria may prevent negative feedback by cytosolic Ca2+ on IP3R activity, or secondly localised provision of Ca2+ by mitochondrial efflux may maintain IP3R function or SR Ca2+ content. To distinguish between these possibilities the role of mitochondrial Ca2+ efflux on IP3R function was examined. IP3 was liberated in freshly isolated single colonic smooth muscle cells and mitochondrial Na+–Ca2+ exchanger inhibited with CGP-37157 (10 μM). Mitochondria accumulated Ca2+ during IP3-evoked [Ca2+]c rises and released the ion back to the cytosol (within 15 s) when mitochondrial Ca2+ efflux was active. When mitochondrial Ca2+ efflux was inhibited by CGP-37157, an extensive and sustained loading of mitochondria with Ca2+ occurred after IP3-evoked Ca2+ release. IP3-evoked [Ca2+]c rises were initially unaffected, then only slowly inhibited by CGP-37157. IP3R activity was required for inhibition to occur; incubation with CGP-37157 for the same duration without IP3 release did not inhibit IP3R. CGP-37157 directly inhibited voltage-gated Ca2+ channel activity, however SR Ca2+ content was unaltered by the drug. Thus, the gradual decline of IP3R function that followed mitochondrial Na+–Ca2+ exchanger inhibition resulted from a gradual overload of mitochondria with Ca2+, leading to a reduced capacity for Ca2+ uptake. Localised uptake of Ca2+ by mitochondria, rather than mitochondrial Ca2+ efflux, appears critical for maintaining IP3R activity.  相似文献   

18.
There is a body of evidence suggesting that Ca2+ handling proteins assemble into signaling complexes required for a fine regulation of Ca2+ signals, events that regulate a variety of critical cellular processes. Canonical transient receptor potential (TRPC) and Orai proteins have both been proposed to form Ca2+-permeable channels mediating Ca2+ entry upon agonist stimulation. A number of studies have demonstrated that inositol 1,4,5-trisphosphate receptors (IP3Rs) interact with plasma membrane TRPC channels; however, at present there is no evidence supporting the interaction between Orai proteins and IP3Rs. Here we report that treatment with thapsigargin or cellular agonists results in association of Orai1 with types I and II IP3Rs. In addition, we have found that TRPC3, RACK1 (receptor for activated protein kinase C-1), and STIM1 (stromal interaction molecule 1) interact with Orai1 upon stimulation with agonists. TRPC3 expression silencing prevented both the interaction of Orai1 with TRPC3 and, more interestingly, the association of Orai1 with the type I IP3R, but not with the type II IP3R, thus suggesting that TRPC3 selectively mediates interaction between Orai1 and type I IP3R. In addition, TRPC3 expression silencing attenuated ATP- and CCh-stimulated interaction between RACK1 and the type I IP3R, as well as Ca2+ release and entry. In conclusion, our results indicate that agonist stimulation results in the formation of an Orai1-STIM1-TRPC3-RACK1-type I IP3R complex, where TRPC3 plays a central role. This Ca2+ signaling complex might be important for both agonist-induced Ca2+ release and entry.  相似文献   

19.
Egg activation and further embryo development require a sperm-induced intracellular Ca2+ signal at the time of fertilization. Prior to fertilization, the egg's Ca2+ machinery is therefore optimized. To this end, during oocyte maturation, the sensitivity, i.e. the Ca2+ releasing ability, of the inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), which is responsible for most of this Ca2+ release, markedly increases. In this study, the recently discovered specific Polo-like kinase (Plk) inhibitor BI2536 was used to investigate the role of Plk1 in this process. BI2536 inactivates Plk1 in oocytes at the early stages of maturation and significantly decreases IP3R1 phosphorylation at an MPM-2 epitope at this stage. Moreover, this decrease in Plk1-dependent MPM-2 phosphorylation significantly lowers IP3R1 sensitivity. Finally, using in vitro phosphorylation techniques we identified T2656 as a major Plk1 site on IP3R1. We therefore propose that the initial increase in IP3R1 sensitivity during oocyte maturation is underpinned by IP3R1 phosphorylation at an MPM-2 epitope(s).  相似文献   

20.
Inositol 1,4,5-trisphosphate (IP3) is an important second messenger produced via G-protein-coupled receptor- or receptor tyrosine kinase-mediated pathways. IP3 levels induce Ca2+ release from the endoplasmic reticulum (ER) via IP3 receptor (IP3R) located in the ER membrane. The resultant spatiotemporal pattern of Ca2+ signals regulates diverse cellular functions, including fertilization, gene expression, synaptic plasticity, and cell death. Therefore, monitoring and manipulating IP3 levels is important to elucidate not only the functions of IP3-mediated pathways but also the encoding mechanism of IP3R as a converter of intracellular signals from IP3 to Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号