首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A sensitive, specific RIA was validated and used for measurement of peripheral plasma immunoreactive inhibin (irinhibin) levels during the estrous cycle in Murrah buffalo. The RIA employed an 125-I iodinated inhibin as tracer and an antiserum against dimeric inhibin. The procedure had a sensitivity of 16 pg/tube, and the nonspecific effects of buffalo plasma were compensated for by including 200 ul bullock plasma in the standards. Separation of free and bound inhibin was affected by the use of a second antibody and precipitation with polyethylene glycol. Blood samples were collected once daily for 30 d from Murrah buffalo (n = 6) during the hot month of July. Cyclic activity and estrus were confirmed by plasma progesterone determination. Peripheral plasma concentrations of ir-inhibin fluctuated between 0.40 +/- 0.07 and 0.67 +/- 0.13 ng/ml during the estrous cycle in buffalo. During the same period, plasma progesterone levels increased from 0.21 +/- 0.01 ng/ml at Day 0 to a peak of 3.30 +/- 0.72 ng/ml on Day 13, declining sharply by Day -5. Ir-inhibin levels exhibited an increase during the follicular phase, with the maximum concentration of 0.65 +/- 0.01 ng/ml occuring on the day of estrus, a decline thereafter, and no pattern during the luteal phase. The differences, however, were not statistically significant throughout the estrous cycle.  相似文献   

2.
Prostaglandin F(2alpha) (PGF(2alpha)) plays a role in the regression of the corpus luteum (CL) in a number of placental mammals. However, the mechanism of luteal regression has not been extensively studied in marsupials. The objectives of this study were to characterize changes in concentrations of PGF(2alpha) within utero-ovarian (UO) tissue/venous plasma during the luteal phase of the estrous cycle in Virginia opossums, to correlate these changes with those of plasma progesterone (P(4)), and to characterize the peripheral pattern of 13,14-dihydro-15-keto-PGF(2alpha) (PGFM) in parturient opossums. Ovaries, uteri, UO venous plasma and peripheral plasma were collected on Days 5, 9 and 12 after induced ovulation (n = 3 to 4 opossums/group). In addition, concentrations of PGFM were measured in peripheral plasma collected from two opossums during late gestation (Days 7,9,11 and 12) and at parturition (Day 13). Concentrations of P(4), PGFM and PGF(2alpha) in tissue homogenates and plasma samples were estimated by radioimmunoassay. In nonpregnant opossums, peripheral P(4) levels were highest on Day 5 (38.8 +/- 11.1 ng/ml, x +/- SEM) declined on Day 9 (22.6 +/- 7.4 ng/ml), and were at basal levels by Day 12 (2.4 +/- 0.7 ng/ml). Endometrial concentrations of PGF(2alpha) increased (P = 0.056) from Day 5 (15.7 +/- 4.1 ng/g) to Day 9 (92.1 +/- 61.0 ng/g) and were maintained to Day 12 (97.2 +/- 25.7 ng/g). Prostaglandin F(2alpha) concentrations in UO plasma increased (P < 0.01) from Day 5 (143.1 +/- 32.7 pg/ml) to Day 12 (333.0 +/- 32.4 pg/ml). Prostaglandin F(2alpha) concentrations in ovarian tissue followed a similar pattern and were correlated with UO concentrations (r = 0.708, P < 0.05). In pregnant opossums, the highest levels of peripheral PGFM were recorded in the peripartum period, when luteal regression would also be expected to occur. The negative temporal relationship between peripheral concentrations of P(4) and concentrations of PGF(2alpha) in UO tissue/venous plasma observed in this preliminary study is consistent with the notion that PGF(2alpha) from the ovary and/or uterus may play a role in CL regression in the opossum.  相似文献   

3.
Whisnant CS  Burns PJ 《Theriogenology》2002,58(6):1229-1235
Two trials were designed to test whether a single treatment with a microsphere formulation of progesterone (P) could simulate the luteal phase of the estrous cycle and lead to estrus and subsequent luteal development. The first experiment was to characterize the pattern of serum P concentrations and estrus in cows treated with a microsphere formulation (P + E) that contained 625 mg P and 50 mg estradiol (E). Four cows with palpable corpora lutea were treated with 25 mg prostaglandin F2 m. Each cow was given P + E (i.m.) 12 h later. Tail vein blood samples were taken on Days 1 and 2 following P + E treatment and then three times weekly for 24 days. Serum P increased from 0.8 +/- 0.1 ng/ml at P + E treatment to 4.7 +/- 0.6 ng/ml on Day 1, declined gradually to 4.1 +/- 0.3 ng/ml on Day 7 and then declined more rapidly to 0.6 +/- 0.1 ng/ml on Day 13. Treated cows showed estrus 16.25 +/- 0.7 days after P + E treatment. Thereafter, serum P increased beginning on Day 20 after P + E treatment, as expected following estrus. In Experiment 2, Angus and Simmental heifers (10.5-11.5 months of age) were administered i.m. either the vehicle (controls), E (50 mg), P (625 mg) or P + E (n = 13 per group). While treatment with E resulted in behavioral estrus (1-2 days after treatment) in each treated heifer, it did not (P > 0.5) initiate estrous cycles as indicated by subsequent increased serum P. In contrast, the P and P + E treatments increased (P < 0.05) the proportion (11/13) of heifers that showed estrus by 21 days after treatment followed by elevated serum P. We conclude that the microsphere formulation of P simulated the pattern of serum P concentrations during the luteal phase of the estrous cycle and initiated estrous cycles in peripubertal heifers with or without E.  相似文献   

4.
Circadian variations of plasma melatonin and prolactin concentrations were determined during breeding as well as non-breeding seasons in yak. Blood samples (5 ml) were collected during different phases of estrous cycle, viz. early (0-6 days), mid (7-12 days) and late luteal (13-19 days) at 2 h interval for 24 h from eight yaks during one breeding month (November); the same yaks were bled at 2 h interval during one non-breeding month (February) for 24 h. Plasma melatonin concentrations rose sharply (P < 0.01) after sunset to record peak concentrations between midnight and 2 a.m. declining sharply thereafter in both breeding as well as non-breeding seasons. Basal melatonin concentrations were recorded between 0600 and 1600 h. Stage of luteal phase did not influence the diurnal hormone change (P < 0.01). In the breeding season, mean plasma prolactin concentrations displayed circadian variations with maximum value at 0400 h (41.22+ /- 1.5 ng/ml) and minimum at 1400 h (12.0 +/- 4.02 ng/ml). In the non-breeding season plasma prolactin concentrations showed circadian variation with maximum value at 0000 h (59.9 +/- 10.5 ng/ml) and minimum at 1200 h (32.13 +/- 3.2 ng/ml). A positive correlation in breeding (r = 0.75) and in non-breeding season (r = 0.65) between circadian changes in mean plasma prolactin and melatonin concentrations were seen. Circadian changes of mean plasma melatonin concentrations during breeding and non-breeding seasons were not different (P > 0.05). However, mean plasma prolactin concentrations were found to be higher (P < 0.01) in the non-breeding season. Three conclusions were drawn from the study: (i) melatonin and prolactin concentrations followed a circadian pattern of secretion (ii) melatonin and prolactin secretion may be closely interrelated and (iii) higher prolactin concentrations during the non-breeding season could be due to nutritional and environmental stress and hence might be contributing to lack of cyclicity.  相似文献   

5.
Fourteen gilts that had displayed one or more estrous cycles of 18-22 days (onset of estrus = Day 0) and four ovariectomized (OVX) gilts were treated with naloxone (NAL), an opiate antagonist, at 1 mg/kg body weight in saline i.v. Intact gilts were treated during either the luteal phase (L, Day 10-11; n = 7), early follicular phase (EF, Day 15-17; n = 3), or late follicular phase (LF, Day 18-19; n = 4) of the estrous cycle. Blood was collected at 15-min intervals for 2 h before and 4 h after NAL treatment. Serum luteinizing hormone (LH) concentrations for L gilts averaged 0.65 +/- 0.04 ng/ml during the pretreatment period and increased to an average of 1.3 +/- 0.1 ng/ml (p less than 0.05) during the first 60 min after NAL treatment. Serum prolactin (PRL) concentrations for L gilts averaged 4.8 +/- 0.2 ng/ml during the pretreatment period and increased to an average of 6.3 +/- 0.3 ng/ml (p less than 0.05) during the first 60 min after NAL treatment. Serum PRL concentrations averaged 8.6 +/- 0.7 ng/ml and 7.6 +/- 0.6 ng/ml in EF and LF gilts, respectively, prior to NAL treatment, and decreased (p less than 0.05) to an average of 4.1 +/- 0.2 ng/ml and 5.6 +/- 0.4 ng/ml in EF and LF gilts, respectively, during the fourth h after NAL. Naloxone treatment failed to alter serum LH concentrations in EF, LF, or OVX gilts and PRL concentrations in OVX gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Patterns of ovarian follicle development were monitored daily in Holstein-Friesian cows that had two (n = 4) or three (n = 4) waves of ovarian follicle development during a single estrous cycle. The plasma from daily blood samples was used in assays for inhibin A, FSH, progesterone, and estradiol-17beta. Mean cycle lengths for cows with two and three waves were 21.8 and 25.3 days, respectively (P < 0.02). Although the average number of follicles >3-mm diameter on each pair of ovaries was similar for two- and three-wave cows on Days 2, 3, and 4 (Day 0 = day of ovulation; 8.6 vs. 9.6 follicles), there were more follicles >6-mm diameter on the ovaries of cows with two waves on Days 3 and 4. This difference was associated with a shorter interval from wave emergence to peak concentrations of inhibin A during the first wave in two-wave cows (2.0 vs. 3.8 days; P = 0.03) and with higher peak concentrations (474 vs. 332 pg/ml; P = 0.03). Differences in peak FSH concentrations were not significant (1.7 vs. 1.3 ng/ml; P = 0.10) and were inversely related to inhibin A concentrations. The peak concentrations of inhibin A and FSH in the second nonovulatory wave in the three-wave cows were similar to the low concentrations measured in the first wave (292 vs. 332 pg/ml of inhibin A, 1.3 vs. 1.3 ng/ml of FSH; P > 0.20). Average peak concentrations of inhibin A and FSH were similar during the ovulatory wave for cows with either two or three waves in a cycle (432 vs. 464 pg/ml of inhibin A, 2.3 vs. 2.1 ng/ml of FSH; P > 0.3). The lower concentrations of FSH during the emergence of the first follicular wave in cows with three-wave cycles may have reduced the rate of development of some of the follicles and reduced the concentrations of inhibin A. This pattern of lower concentrations of FSH and inhibin A was repeated in the second nonovulatory wave but not in the ovulatory wave. Subtle differences in the concentrations of these two hormones may underlie the mechanism that influences the number of waves of ovarian follicle development that occur during the bovine estrous cycle.  相似文献   

7.
The goals of this study were to develop and validate a radioimmunoassay (RIA) for measurement of unconjugated progesterone (P) concentrations in the urine of red howler monkeys (Alouatta seniculus) and to use urinary P profiles to characterize the reproductive cycle of this species. Analysis of P profiles from two females provided a preliminary estimate of the length of the estrous cycle (mean days +/- S.E.M. = 29.5 +/- 1.5; n = 2), and indicated that one female red howler copulated throughout two apparent estrous cycles. Urinary P concentrations during two confirmed pregnancies (211.8 +/- 29.7 ng P/ml) were higher (P < 0.05) than during the luteal phase (77.4 +/- 10.6 ng P/ml; n = 4) of the cycle.  相似文献   

8.
Overall, significantly more antral follicles greater than or equal to 1 mm diameter were present in Romney ewes during anoestrus than in the breeding season (anoestrus, 35 +/- 3 (mean +/- s.e.m.) follicles per ewe, 23 sheep; Day 9-10 of oestrous cycle, 24 +/- 1 follicles per ewe, 22 sheep; P less than 0.01), although the mean numbers of preovulatory-sized follicles (greater than or equal to 5 mm diam.) were similar (anoestrus, 1.3 +/- 0.2 per ewe; oestrous cycle, 1.0 +/- 0.1 per ewe). The ability of ovarian follicles to synthesize oestradiol did not differ between anoestrus and the breeding season as assessed from the levels of extant aromatase enzyme activity in granulosa cells and steroid concentrations in follicular fluid. Although the mean plasma concentration of LH did not differ between anoestrus and the luteal phase of the breeding season, the pattern of LH secretion differed markedly; on Day 9-10 of the oestrous cycle there were significantly more (P less than 0.001) high-amplitude LH peaks (i.e. greater than or equal to 1 ng/ml) in plasma and significantly fewer (P less than 0.001) low amplitude peaks (less than 1 ng/ml) than in anoestrous ewes. Moreover, the mean concentrations of FSH and prolactin were significantly lower during the luteal phase of the cycle than during anoestrus (FSH, P less than 0.05, prolactin, P less than 0.001). It is concluded that, in Romney ewes, the levels of antral follicular activity change throughout the year in synchrony with the circannual patterns of prolactin and day-length. Also, these data support the notion that anovulation during seasonal anoestrus is due to a reduced frequency of high-amplitude LH discharges from the pituitary gland.  相似文献   

9.
Two experiments were conducted to study the in vitro effects of prostaglandins F2 alpha (PGF2 alpha), E2 (PGE2), and luteinizing hormone (LH) on oxytocin (OT) release from bovine luteal tissue. Luteal concentration of OT at different stages of the estrous cycle was also determined. In Experiment 1, sixteen beef heifers were assigned randomly in equal numbers (N = 4) to be killed on Days 4, 8, 12, and 16 of the estrous cycle (Day 0 = day of estrus). Corpora lutea were collected, an aliquot of each was removed for determination of initial OT concentration, and the remainder was sliced and incubated with vehicle (control) or with PGF2 alpha (10 ng/ml), PGE2 (10 ng/ml), or LH (5 ng/ml). Luteal tissue from heifers on Day 4 was sufficient only for determination of initial OT levels. Luteal OT concentrations (ng/g) increased from 414 +/- 84 on Day 4 to 2019 +/- 330 on Day 8 and then declined to 589 +/- 101 on Day 12 and 81 +/- 5 on Day 16. Prostaglandin F2 alpha induced a significant in vitro release of luteal OT (ng.g-1.2h-1) on Day 8 (2257 +/- 167 vs. control 1702 +/- 126) but not on Days 12 or 16 of the cycle. Prostaglandin E2 and LH did not affect OT release at any stage of the cycle studied. In Experiment 2, six heifers were used to investigate the in vitro dose-response relationship of 10, 20, and 40 ng PGF2 alpha/ml of medium on OT release from Day 8 luteal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effects of fasting between Days 8 and 16 of the estrous cycle on plasma concentrations of luteinizing hormone (LH), progesterone, cortisol, glucose and insulin were determined in 4 fasted and 4 control heifers during an estrous cycle of fasting and in the subsequent cycle after fasting. Cortisol levels were unaffected by fasting. Concentrations of insulin and glucose, however, were decreased (p less than 0.05) by 12 and 36 h, respectively, after fasting was begun and did not return to control values until 12 h (insulin) and 4 to 7 days (glucose) after fasting ended. Concentrations of progesterone were greater (p less than 0.05) in fasted than in control heifers from Day 10 to 15 of the estrous cycle during fasting, while LH levels were lower (p less than 0.01) in fasted than in control heifers during the last 24 h of fasting. Concentrations of LH increased (p less than 0.01) abruptly in fasted heifers in the first 4 h after they were refed on Day 16 of the fasted cycle. Concentrations (means +/- SEM) of LH also were greater (p less than 0.05) in fasted (11.2 +/- 2.6 ng/ml) than in control (4.7 +/- 1.2 ng/ml) heifers during estrus of the cycle after fasting; this elevated LH was preceded by a rebound response in insulin levels in the fasted-refed heifers, with insulin increasing from 176 +/- 35 pg/ml to 1302 +/- 280 pg/ml between refeeding and estrus of the cycle after fasting. Concentrations of LH, glucose and insulin were similar in both groups after Day 2 of the postfasting cycle. Concentrations of progesterone in two fasted heifers and controls were similar during the cycle after fasting, whereas concentrations in the other fasted heifers were less than 1 ng/ml until Day 10, indicating delayed ovulation and (or) reduced luteal function. Thus, aberrant pituitary and luteal functions in fasted heifers were associated with concurrent fasting-induced changes in insulin and glucose metabolism.  相似文献   

11.
Although recent data for several species of primate, including human and marmoset, indicate that the corpus luteum secretes high levels of radioimmunoassayable inhibin, the nature of the immunoreactive (ir) inhibin detected has not been established. In this study, plasma ir-inhibin levels during the ovarian cycle of the marmoset (n = 12 animals) were measured by alpha-subunit-directed inhibin RIA, and values were compared with those estimated by a recently developed two-site immunoradiometric assay (IRMA) specific for inhibin alpha-beta dimer. Consistent with earlier data, plasma levels of ir-inhibin measured by RIA (overall mean value 133 +/- 7 ng/ml; n = 171) reached values 4-fold higher (p less than 0.001) during the luteal phase (222 +/- 20 ng/ml) than during the follicular phase (58 +/- 8 ng/ml), being directly correlated with plasma progesterone levels (r = 0.65; p less than 0.001). In contrast, plasma ir-inhibin levels estimated by IRMA were substantially lower than those measured by RIA (overall mean value 9.62 +/- 1.08 ng/ml; n = 171) and did not vary significantly during the cycle. Administration of a luteolytic dose of cloprostenol during the late luteal phase/early pregnancy led to an abrupt fall in plasma concentrations of progesterone (95%) and alpha-inhibin measured by RIA (82%), whereas dimeric inhibin levels remained unchanged. Analysis of marmoset luteal extracts (n = 5) by RIA, IRMA, and inhibin bioassay yielded inhibin estimates of 102.6 +/- 21.0, 0.632 +/- 0.103, and less than 2.0 ng/mg, respectively, thus confirming that only a very small proportion of the inhibin produced was dimeric (i.e., bioactive) in nature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Pulsatile secretion of progesterone has been observed during the late luteal phase of the menstrual cycle in the rhesus monkey and human. As the luteal phase progresses in each of these species, there is a pattern of decreased frequency and increased amplitude of progesterone pulses. The present study was designed to determine the pattern of progesterone secretion during the late luteal phase (Days 10-16) of the normal ovine estrous cycle. Five unanesthetized ewes, each bearing an indwelling cannula in the utero-ovarian vein, were bled every 15 min from 0800 h on Day 10 through 0800 h on Day 16 of the estrous cycle. With the computer program PULSAR, it was determined that progesterone secretion was episodic, with pulsations observed on all days. Analysis of variance was used to determine differences in frequency, amplitude, and interpeak interval (IPI) of progesterone pulses among ewes and days. The ewes averaged 8.0 +/- 0.63 pulses of progesterone per 24 h. Mean frequency of pulses was not different between days but showed differences between ewes. Mean amplitude of progesterone pulses was 7.0 +/- 0.27 ng/ml, with no differences observed either between days or between ewes. Mean IPI was 197 +/- 7.1 min, and, like frequency, the IPI was not different between days, but varied between ewes. No consistent temporal relationship was found between progesterone pulses and luteinizing hormone (LH), as determined by bioassay and radioimmunoassay, on Day 14 of the cycle in one ewe. The results indicate that progesterone secretion is episodic during the luteal phase of the ovine estrous cycle and is independent of LH pulses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Estrogen and progesterone concentrations in milk during the estrous cycle were estimated in 18 normally cycling Holstein dairy cows. The estrogen and progesterone concentrations in milk during the estrous cycle followed the pattern described for them in blood in the corresponding period. During most of the estrous cycle, estrogen concentration remained at approximately 200 pg/ml and reached a proestrous peak of 360 +/- 127 pg/ml on day 19. The progesterone concentration in milk during the estrous cycle increased to a peak on day 13 (45.5 +/- 6.6 ng/ml) and thereafter declined towards estrus. Estrus detection/prediction based on milk progesterone concentrations appears feasible in view of the significant differences in milk progesterone concentrations between the early luteal (post-ovulatory), luteal and rapid follicular growth periods of the estrous cycle.  相似文献   

14.
The induction of optimal synchrony of estrus in cows requires synchronization of luteolysis and of the waves of follicular growth (follicular waves). The aim of this study was to determine whether hormonal treatments aimed at synchronizing follicular waves improved the synchrony of prostaglandin (PG)-induced estrus. In Experiment 1, cows were treated on Day 5 of the estrous cycle with saline in Group 1 (n = 25; 16 ml, i.v., 12 h apart), with hCG in Group 2 (n = 27; 3000 IU, i.v.), or with hCG and bovine follicular fluid (bFF) in Group 3 (n = 21; 16 ml, i.v., 12 h apart). On Day 12, all cows were treated with prostaglandin (PG; 500 micrograms cloprostenol, i.m.). In Experiment 2, cows were treated on Day 5 of the estrous cycle with saline (3 ml, i.m.) in Group 1 (n = 22) or with hCG (3000 IU, i.v.) in Group 2 (n = 20) and Group 3 (n = 22). On Day 12, the cows were treated with PG (500 micrograms in Groups 1 and 2; 1000 micrograms in Group 3). Blood samples for progesterone (P4) determination were collected on Day 12 (Experiment 1) or on Days 12 and 14 (Experiment 2). Cows were fitted with heat mount detectors and observed twice a day for signs of estrus. Four cows in Experiment 1 (1 cow each from Groups 1 and 2; 2 cows from Group 3) had plasma P4 concentrations below 1 ng/ml on Day 12 and were excluded from the analyses. In Experiment 1, cows treated with hCG or hCG + bFF had a more variable (P = 0.0007, P = 0.0005) day of occurrence of and a longer interval to estrus (5.9 +/- 0.7 d, P = 0.003 and 6.2 +/- 0.8 d, P = 0.005) than saline-treated cows (3.4 +/- 0.4 d). The plasma P4 concentrations on Day 12 were higher (P < 0.0001) in hCG- and in hCG + bFF-treated cows than in saline-treated cows (9.4 +/- 0.75 and 8.5 +/- 0.75 vs 4.1 +/- 0.27 ng/ml), but there was no correlation (P > 0.05) between plasma P4 concentrations and the interval to estrus. In Experiment 2, cows treated with hCG/500PG and hCG/1000PG had a more variable (P = 0.0007, P = 0.002) day of occurrence of and a longer interval to estrus (4.2 +/- 0.4 d, P = 0.04; 4.1 +/- 0.4 d, P = 0.03) than saline/500PG-treated cows (3.2 +/- 0.1 d). The concentrations of plasma P4 on Days 12 and 14 of both hCG/500PG- and hCG/1000PG-treated cows were higher (P < 0.05) than in saline/500PG-treated cows (7.3 +/- 0.64, 0.7 +/- 0.08 and 7.7 +/- 0.49, 0.7 +/- 0.06 vs 5.3 +/- 0.37, 0.5 +/- 0.03 ng/ml). The concentrations of plasma P4 on Days 12 or 14 and the interval to estrus were not correlated (P > 0.05) in any treatment group. The concentrations of plasma P4 on Days 12 and 14 of hCG/500PG- or hCG/1000PG-treated cows were correlated (r = 0.65, P < 0.05; r = 0.50, P < 0.05). This study indicated that treatment of cows with hCG on Day 5 of the estrous cycle reduced the synchrony of PG-induced estrus and that this reduction was not due to the failure of luteal regression.  相似文献   

15.
Pituitary and ovarian responses to subcutaneous infusion of GnRH were investigated in acyclic, lactating Mule ewes during the breeding season. Thirty postpartum ewes were split into 3 equal groups; Group G received GnRH (250 ng/h) for 96 h; Group P + G was primed with progestagen for 10 d then received GnRH (250 ng/h) for 96 h; and Group P received progestagen priming and saline vehicle only. The infusions were delivered via osmotic minipumps inserted 26.6 +/- 0.45 d post partum (Day 0 of the study). Blood samples were collected for LH analysis every 15 min from 12 h before until 8 h after minipump insertion, then every 2 h for a further 112 h. Daily blood samples were collected for progesterone analysis on Days 1 to 10 following minipump insertion, then every third day for a further 25 d. In addition, the reproductive tract was examined by laparoscopy on Day -5 and Day +7 and estrous behavior was monitored between Day -4 and Day +7. Progestagen priming suppressed (P < 0.05) plasma LH levels (0.27 +/- 0.03 vs 0.46 +/- 0.06 ng/ml) during the preinfusion period, but the GnRH-induced LH release was similar for Group G and Group P + G. The LH surge began significantly (P < 0.05) earlier (32.0 +/- 3.0 vs 56.3 +/- 4.1 h) and was of greater magnitude (32.15 +/- 3.56 vs 18.84 +/- 4.13 ng/ml) in the unprimed than the primed ewes. None of the ewes infused with saline produced a preovulatory LH surge. The GnRH infusion induced ovulation in 10/10 unprimed and 7/9 progestagen-primed ewes, with no significant difference in ovulation rate (1.78 +/- 0.15 and 1.33 +/- 0.21, respectively). Ovulation was followed by normal luteal function in 4/10 Group-G ewes, while the remaining 6 ewes had short luteal phases. In contrast, each of the 7 Group-P + G ewes that ovulated secreted progesterone for at least 10 d, although elevated plasma progesterone levels were maintained in 3/7 unmated ewes for >35 d. Throughout the study only 2 ewes (both from Group P + G) displayed estrus. These data demonstrate that although a low dose, continuous infusion of GnRH can increase tonic LH concentrations sufficient to promote a preovulatory LH surge and induce ovulation, behavioral estrus and normal luteal function do not consistently follow ovulation in the progestagen-primed, postpartum ewe.  相似文献   

16.
Taneja M  Totey SM  Ali A 《Theriogenology》1995,43(2):451-464
The ovaries of 5 buffalo were examined daily by ultrasound beginning at Day 3 of the estrous cycle, followed by superovulation between Days 11 and 13 of the cycle in both the wet cool and dry hot seasons. Daily ultrasonographic observations of the ovaries were recorded on a videotape and were used to assess the progression of both the large (dominant) and the next to the large (sub-dominant) follicles as well as the numbers of follicles in the small (4 to 6 mm), medium (7 to 10 mm) and large (> 10 mm) size categories in the 2 seasons before and during the superovulation treatment. Greater numbers of small (P < 0.05) and medium size follicles (P < 0.01) were available before the start of the superovulatory treatment in the buffalo during the dry hot season. The turnover of follicles from medium to large size classes also occurred sooner (P < 0.01) and was of higher magnitude (P < 0.05) during the treatment in the dry hot season. However, the number of corpora lutea at palpation per rectum (2.8 +/- 0.7 vs 2.2 +/- 0.6), the serum progesterone concentration (1.6 +/- 0.3 vs 1.4 +/- 0.1 ng/ml), and the yield of embryos on Day 6 (0.2 +/- 0.2 vs 0.6 +/- 0.2) did not differ significantly between the dry hot and the wet cool season. None of the embryos recovered during the dry hot season were transferable, which remains unexplained.  相似文献   

17.
Development and demise of luteal structures were monitored using daily transrectal ultrasonography in 2 breeds of sheep differing in ovulation rates (nonprolific Western white-faced cross-bred, n = 12 and prolific pure-bred Finn sheep, n = 7), during 1 estrous cycle in the mid-breeding season. Jugular blood samples were collected once a day for radioimmunoassay (RIA) of progesterone. The mean diameter of ovulatory follicles was higher in Western white-faced than in Finn ewes (6.4 +/- 0.2 and 5.3 +/- 0.2 mm, respectively; P < 0.001). The mean volume of luteal structures was higher (P < 0.05) in Western white-faced compared with Finn sheep from Days 5 to 15 of the cycle (Day 0 = day of ovulation). This accounted for the higher (P < 0.05) total luteal volumes recorded in Western white-faced ewes on Day 7 and from Days 11 to 15, despite the higher ovulation rate in Finn ewes (2.7 +/- 0.3 and 1.7 +/- 0.2, respectively; P < 0.05). Mean serum progesterone concentrations were higher (P < 0.05) in Western white-faced than in Finn ewes from Days 4 to 14. Daily total luteal volumes were positively correlated with daily serum progesterone concentrations throughout the cycle in Finn sheep (r > or = 0.40, P < 0.02), and during luteal growth and regression (r > 0.60, P < or = 0.00001) but not during mid-cycle in white-faced ewes (r = 0.16; P = 0.22). During the growth of the corpora lutea (CL), luteal tissue volume increased faster (P < 0.05) than serum progesterone concentrations in both breeds of sheep. During luteolysis, the decrease in luteal volumes parallelled that in serum progesterone concentrations in Finn (P = 0.11) but not in Western white-faced ewes, where luteal volumes decreased more slowly (P = 0.02) in relation to progesterone secretion. Increased ovulation rate in prolific Finn ewes resulted in more but smaller CL, and lower serum progesterone levels compared with nonprolific Western white-faced ewes. We conclude that breed-specific mechanisms exist to control the formation of luteal tissue and progesterone secretion in cyclic ewes differing in prolificacy. The mechanisms may involve ovulation of Graafian follicles at different sizes and inhibitory paracrine effects of CL on co-existing CL.  相似文献   

18.
Daily plasma progesterone (P(4)) was determined during one estrous cycle of 19 cows and 18 heifers of four different breeds: Holstein (H), Brahman (B), Carora-type (C) and crossbred (CB) females. Estrus detection was made by visual observation and using a teaser bull with a chin-ball marker. The P(4) profiles showed no differences among groups. In Group 1 (H), P(4) levels ranged from 0.5 ng/ml plasma on the day of estrus (Day 0) to 5.1 ng/ml at the luteal phase peak (Day 13). In Group 2 (B), P(4) levels ranged from 0.5 ng/ml on Day 0 to 9.2 ng/ml on Day 13. In Groups 3 (C) and 4 (CB), P(4) levels ranged from 0.5 ng/ml, on Day 0, to 13.7 ng/ml on Day 12 and 8.8 ng/ml on Day 13. These last two groups were moved to the same location and then compared. It was found that P(4) concentrations were significantly higher (P < 0.025) in Group 3 between Days 7 and 14 of the estrous cycle. In all groups, P(4) levels were lower than 1 ng/ml one day before the next estrus, and levels of 0.4, 0.5, 0.4 and 0.4 ng/ml were obtained the day of estrus in Groups 1 to 4, respectively. Results indicated that the pattern of P(4) for each one of the groups was similar to those reported by other investigators.  相似文献   

19.
Bovine luteal cells from Days 4, 8, 14 and 18 of the estrous cycle were incubated for 2 h (1 x 10(5) cells/ml) in serum-free media with one or a combination of treatments [control (no hormone), prostaglandin F2 alpha (PGF), oxytocin (OT), estradiol-17 beta (E) or luteinizing hormone (LH)]. Luteal cell conditioned media were then assayed by RIA for progesterone (P), PGF, and OT. Basal secretion of PGF on Days 4, 8, 14 and 18 was 173.8 +/- 66.2, 111.1 +/- 37.8, 57.7 +/- 15.4 and 124.3 +/- 29.9 pg/ml, respectively. Basal release of OT and P was greater on Day 4 (P less than 0.01) than on Day 8, 14 and 18 (OT: 17.5 +/- 2.6 versus 5.6 +/- 0.7, 6.0 +/- 1.4 and 3.1 +/- 0.4 pg/ml; P: 138.9 +/- 19.5 versus 23.2 +/- 7.5, 35.4 +/- 6.5 and 43.6 +/- 8.1 ng/ml, respectively). Oxytocin increased (P less than 0.01) PGF release by luteal cells compared with control cultures irrespective of day of estrous cycle. Estradiol-17 beta stimulated (P less than 0.05) PGF secretion on Days 8, 14 and 18, and LH increased (P less than 0.01) PGF production only on Day 14. Prostaglandin F2 alpha, E and LH had no effect on OT release by luteal cells from any day. Luteinizing hormone alone or in combination with PGF, OT or E increased (P less than 0.01) P secretion by cells from Days 8, 14 and 18. However on Day 8, a combination of PGF + OT and PGF + E decreased (P less than 0.05) LH-stimulated P secretion. These data demonstrate that OT stimulates PGF secretion by bovine luteal cells in vitro. In addition, LH and E also stimulate PGF release but effects may vary with stage of estrous cycle.  相似文献   

20.
To determine whether luteinizing hormone (LH) secretion during the first estrous cycle postpartum is characterized by pulsatile release, circulating LH concentrations were measured in 8 postpartum mares, 4 of which had been treated with 150 mg progesterone and 10 mg estradiol daily for 20 days after foaling to delay ovulation. Blood samples were collected every 15 min for 8 h on 4 occasions: 3 times during the follicular phase (Days 2-4, 5-7, and 8-11 after either foaling or end of steroid treatment), and once during the luteal phase (Days 5-8 after ovulation). Ovulation occurred in 4 mares 13.2 +/- 0.6 days postpartum and in 3 of 4 mares 12.0 +/- 1.1 days post-treatment. Before ovulation, low-amplitude LH pulses (approximately 1 ng/ml) were observed in 3 mares; such LH pulses occurred irregularly (1-2/8 h) and were unrelated to mean circulating LH levels, which gradually increased from less than 1 ng/ml at foaling or end of steroid treatment to maximum levels (12.3 ng/ml) within 48 h after ovulation. In contrast, 1-3 high-amplitude LH pulses (3.7 +/- 0.7 ng/ml) were observed in 6 of 7 mares during an 8-h period of the luteal phase. The results suggest that in postpartum mares LH release is pulsatile during the luteal phase of the estrous cycle, whereas before ovulation LH pulses cannot be readily identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号