首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The dilution effect describes the negative association between host biodiversity and the risk of infectious disease. Tests designed to understand the relative roles of host species richness, host species identity, and rates of exposure within experimental host communities would help resolve ongoing contention regarding the importance and generality of dilution effects. We exposed fathead minnows to infective larvae of the trematode, Ornithodiplostomum ptychocheilus in minnow‐only containers and in mixed containers that held 1–3 other species of fish. Parasite infection was estimated as the number of encysted worms (i.e., brainworms) present in minnows following exposure. The results of exposure trials showed that nonminnow fish species were incompatible with O. ptychocheilus larvae. There was no reduction in mean brainworm counts in minnows in mixed containers with brook sticklebacks or longnose dace. In contrast, brainworm counts in minnows declined by 51% and 27% in mesocosms and aquaria, respectively, when they co‐occurred with emerald shiners. Dilution within minnow + shiner containers may arise from shiner‐induced alterations in minnow or parasite behaviors that reduced encounter rates between minnows and parasite larvae. Alternatively, shiners may act as parasite sinks for parasite larvae. These results highlight the role of host species identity in the dilution effect. Our results also emphasize the complex and idiosyncratic effects of host community composition on rates of parasite infection within contemporary host communities that contain combinations of introduced and native species.  相似文献   

2.
Groups of fathead minnows Pimephales promelas were tested to determine if they avoided areas of a test tank labelled with the faeces of a predator (northern pike, Esox lucius ) which had recently been fed minnows, brook sticklebacks Culaea inconstans , or swordtails Xiphophorus helleri. Minnows exhibited a fright reaction upon presentation of sponges labelled with faeces, when the pike had consumed minnows or sticklebacks, but not swordtails (which lack alarm pheromones). The fright reaction was characterized by increased shoal cohesiveness and increased dashing and freezing behaviour. Minnows avoided the area of the tank containing the faeces from pike on diets of minnows or sticklebacks, but not from pike fed a diet of swordtails. These data demonstrate that: (1) minnows actively avoid the faeces of pike fed minnows or brook sticklebacks, and (2) minnows exhibit a fright reaction to the faeces of a pike fed brook sticklebacks.  相似文献   

3.
In this study we test whether brook sticklebacks (Culaea inconstans) can acquire predator recognition through releaser-induced recognition learning, i.e. simultaneous exposure to aversive ('releasing') stimuli and neutral stimuli causing learned aversion to the neutral stimuli. We exposed wild-caught pike-naive brook sticklebacks (collected from a creek containing fathead minnows, Pimephales promelas, but not pike, Esox lucius) to chemical stimuli from pike that were mixed with brook stickleback skin extract, fathead minnow skin extract, or a control of distilled water. In subsequent tests 2 d later, when only pike stimuli were presented, sticklebacks conditioned with stickleback skin extract and fathead minnow skin extract exhibited antipredator behaviour (i.e. increased schooling and movement toward the substrate), while those conditioned with distilled water did not. Sticklebacks conditioned with stickleback skin extract responded to pike with a more intense response, in terms of movement toward the substrate, than those conditioned with fathead minnow skin extract, suggesting that conspecific skin extract may be a stronger stimulus than heterospecific skin extract for learning recognition of predators. To our knowledge this is the first study to demonstrate that an acanthopterygian fish can acquire predator recognition through the pairing of conspecific alarm pheromone with the cue of a predator. Furthermore, our results are the first to demonstrate that fish can acquire predator recognition through the pairing of a heterospecific alarm pheromone with the cue of a predator. These results suggest that brook sticklebacks will benefit by being in close proximity to fathead minnows. Acquired predator recognition has long-term consequences in mediating predator-prey interactions.  相似文献   

4.
A stocking program with rainbow trout (Salmo gairdneri) at High Rock Lake, Manitoba failed due to infections with large numbers of Contracaecum spp. larvae. Nematode larvae in the intestinal tract, body cavity and musculature made the fish unmarketable. A combination of experimental infections of rainbow trout and pelicans (Pelecanus erythrorhynchos), observations on the behavior of fish-eating birds, and numbers of larval Contracaecum spp. in minnow species led to the following conclusions. The introduction of rainbow trout attracted large numbers of fish-eating birds, particularly pelicans. Concurrent predation by rainbow trout on fathead minnows (Pimephales promelas), five-spined sticklebacks (Culaea inconstans), and nine-spined sticklebacks (Pungitius pungitius), concentrated the parasites. The combined increase in densities of the introduced fish host and fish-eating birds, and the short life cycle of the parasite, increased the numbers of parasites in rainbow trout over a season and in the indigenous minnow species between years. Numbers of larvae in the indigenous minnow species declined when stocking of rainbow trout was stopped and use of the lake by fish-eating birds, particularly pelicans, returned to normal levels.  相似文献   

5.
The costs and benefits associated with feeding in the vicinity of a predator should vary within and among species, depending on an individual's vulnerability to a predator. In this paper, we investigate how willingness to risk exposure to a predator in order to gain access to food is expressed within groups of fish. We provided groups of six individually marked brook sticklebacks ( Culea inconstans ) and fathead minnows ( Pimephales promelas ) with the opportunity to feed in safety, or in the presence of a single predator (walleye, Stizostedion vitreum ). Sticklebacks and fathead minnows are commonly found in the same locations at the same time, but sticklebacks also possess armour and spines that provide defence against some predators. Despite this morphological variation, patterns of individual behaviour were consistent between species. While feeding close to the predator, there was a positive relation between the size of the individual and the proportion of food consumed. No relation existed on the side farthest from the predator. These data suggest that fish may risk exposure to predators to exploit size-related differences in vulnerability to gain a competitive advantage for access to food.  相似文献   

6.
We examined the relationship between the numbers of brain-encysting trematodes (Ornithodiplostomum ptychocheilus) and the magnitude of altered behaviors in fathead minnows (Pimephales promelas). Because cysts develop within a brain region that integrates visual stimuli with motor response. we evaluated the standard optomotor response (OMR). Monitoring this task involved recording the time minnows spent following a spinning drum, on which alternating black and white stripes had been painted. Minnows were exposed to 0, 5, 20, 120, and 300 cercariae and then their OMR was evaluated at 2-wk postinfection. Surprisingly, only minnows that had high numbers of parasites (155 +/- 31 worms/fish) or low numbers of parasites (3 +/- 3 worms/ fish) differed significantly in their optomotor performance compared with controls. Reduced OMR of heavily infected minnows was positively correlated with reduction in minnow activity. In contrast, reduced OMR in lightly infected minnows was independent of host activity and was likely associated with the rapid development of parasite larvae within the optic tecta. The nonlinear relationship between parasite intensity and effect on host behavior was consistent with an earlier study, but the underlying mechanisms producing this pattern are unknown.  相似文献   

7.
A wide diversity of aquatic organisms release chemical alarm cues upon encountering or being attacked by a predator. These alarm cues can be used by nearby individuals to assess local predation risk. Receivers warned by chemical alarm cues gain a survival benefit when encountering predators. Animals that are in the same prey guild (i.e. that co‐occur and share the same predators) may learn to recognize each others’ chemical alarm cues. This ability may confer an adaptive advantage if the prey animals are vulnerable to the same predators. However, if the prey grow to different sizes and as a consequence are no longer vulnerable to the same suite of predators, then there should no longer be an advantage for the prey to respond to each others’ alarm cues. In this study, we exposed small and large fathead minnows (Pimephales promelas) to cues from syntopic injured damselfly larvae (Enallagma boreale), cues from injured mealworm larvae (Tenebrio molitor) and to distilled water. Small minnows exhibited antipredatory behaviour and increased shelter use in response to injured damselfly cues but not to the controls of injured mealworm or distilled water. On the contrary, large minnows exhibited no significant change in shelter use in response to any of the injured cues. These data demonstrate that fathead minnows exhibit an antipredator response to damselfly alarm cues, but only when minnows are small and members of the same prey guild as damselfly larvae. These results demonstrate the considerable flexibility in the responses to heterospecific alarm cues.  相似文献   

8.
Because "odd" individuals often suffer disproportionately highrates of predation, solitary individuals should join groupswhose members are most similar to themselves in appearance.We examined group-choice decisions by individuals in armoredand nonarmored species and predicted that either (1) the oddityeffect would result in preference for conspecific groups forsolitary individuals of both species, or (2) individuals inthe armored species would prefer to associate with groups containingindividuals of the more vulnerable species. Armored brook sticklebacks(Culaea inconstans) and nonarmored fathead minnows (Pimephalespromelas) have the same predators and often occur together instreams. In mixed-species shoals, yellow perch (Perca flavescens)attacked minnows earlier and more often than sticklebacks. Wetested whether solitary minnows and sticklebacks preferred toassociate with conspecific or heterospecific shoals under conditionsof both low and high predation risk. When predation risk washigh, minnows preferred to associate with conspecifics overheterospecifics, as predicted by the oddity effect. In contrast,sticklebacks preferentially associated with groups of minnowsover groups of conspecifics when predation risk was high. Whenpredation risk was low, solitary individuals of both speciespreferentially associated with conspecific over heterospecificshoals. Stickleback shoal choices under low-risk conditionsmay have been influenced by interspecific competition for food.In feeding experiments, minnows were more efficient foragersthan sticklebacks, so it should benefit sticklebacks to avoidminnows unless predation risk is high. Therefore, for armoredprey, the benefits of associating with more vulnerable preyappear to override the costs of both the oddity effect and foodcompetition when predation risk is high.  相似文献   

9.
Pike-naive fathead minnows (Pimephales promelas) were fed ad libitum or deprived of food for 12, 24, or 48 h and then exposed to either conspecific alarm pheromone or distilled water and the odour of a predatory northern pike (Esox lucius). Minnows fed ad libitum or deprived for 12 h showed a stereotypic alarm response to the alarm pheromone (increased time under cover objects and increased occurrence of dashing and freezing behaviour); those deprived of food for 24 h showed a significantly reduced alarm response, while those deprived of food for 48 h did not differ significantly from the minnows exposed to a distilled water control. Upon subsequent testing in an Opto-Varimex activity meter, all groups initially exposed to alarm pheromone and pike odour exhibited an alarm response when exposed to pike odour alone. Those initially conditioned with distilled water and pike odour did nor show an alarm response to pike odour alone. These results demonstrate that there exists a significant trade-off between hunger level and predator-avoidance behaviour in fathead minnows and that minnows can learn the chemical cues of a predatory northern pike through association with alarm pheromone even in the absence of an observable alarm response.  相似文献   

10.
Young-of-the-year, predator-naive fathead minnows, Pimephales promelas , from a pikesympatric population did not respond to chemical stimuli from northern pike, Esox Indus , while wild-caught fish of the same age and size did. These results suggest that chemical predator recognition is a result of previous experience and not genetic factors, Wild young-of-the-year minnows responded to pike odour with a response intensity that was similar to that of older fish, demonstrating that the ability to recognize predators is learned within the first year. The intensity of response of wild minnows which had been maintained in a predator free environment for 1 year was similar to that of recently caught minnows of the same age, suggesting that reinforcement was not required for predator recognition to be retained. Naive minnows that were exposed simultaneously to chemical stimuli from pike (a neutral stimulus) and minnow alarm substance exhibited a fright response upon subsequent exposure to the pike stimulus alone. Predator-naive minnows exposed simultaneously to chemical stimuli from pike and glass-distilled water did not exhibit a fright response to the pike stimulus alone. These results demonstrate that fathead minnows can acquire predator recognition through releaserinduced recognition learning, thus confirming a known mechanism through which alarm substance may benefit the receivers of an alarm signal.  相似文献   

11.
Understanding the effects of chemical toxicants on energetic processes is an important aspect of ecotoxicology. However, the influence of toxicant concentration and time of exposure on metabolism in aquatic organisms is still poorly understood. The purpose of this investigation was to determine the influence of increasing levels of three stressors (Cu, Cd, percent salinity) and exposure time (24 h and 96 h) on the metabolic rate of fathead minnows (Pimephales promelas). In all 24-h exposures, there existed a threshold concentration, above which metabolic rate decreased significantly compared to the control and lower concentrations. In contrast, the metabolic rate of fish exposed for 96 h increased significantly in all concentrations compared to fish from the control. We suggest fathead minnows exhibit a consistent pattern of metabolic response to stressors, regardless of the physiological mechanisms involved, and that this response differs as a function of time of exposure.  相似文献   

12.
Measurement of vitellogenin (VTG) concentrations in the fathead minnow (Pimephales promelas) is currently being considered and evaluated for screening of endocrine active substances. One of the proposed methods, an enzyme-linked immunosorbent assay (ELISA) based on VTG from carp (Cyprinus carpio), was recently evaluated in an inter-laboratory ring test using whole body homogenates from juvenile fathead minnows. The objective of the current study was to compare the performance of three different ELISAs for measuring fathead minnow VTG: (1) a heterologous carp VTG (cVTG) ELISA used in the ring test, (2) a homologous fathead minnow VTG (fVTG) ELISA, and (3) a hybrid ELISA with the antibody developed for cVTG, but using fVTG for coating the plates and preparing standard curves. VTG was measured in whole body homogenates from juvenile fathead minnows exposed to 17alpha-ethynylestradiol (EE(2); 10 ng/l) and whole body homogenates and plasma from adult fathead minnows exposed to 17beta-estradiol (E(2); 5 mg/kg; i.p.). The cVTG assay showed lower specificity for fathead minnow VTG in whole body homogenates and plasma from treated fish, compared to the fVTG assay. VTG concentrations in juvenile fathead minnow homogenates from the EE(2)-exposed group were approximately 50-fold higher when measured using the fVTG method compared to the cVTG method. Use of the homologous fVTG in the hybrid cVTG assay yielded VTG concentrations in the range of the fVTG assay but the low specificity persisted. The homologous fVTG assay is recommended to achieve accurate quantification of VTG levels in fathead minnows.  相似文献   

13.
We conducted a laboratory study to determine if male fathead minnows, Pimephales promelas, altered their territorial behaviour associated with reproduction in response to combinations of visual and chemical cues from northern pike, Esox lucius. We introduced the following stimuli to a territorial male: a brick (control), fathead minnow alarm pheromone, a pike fed brook stickleback, Culea inconstans, or a pike fed fathead minnow. The territorial behaviour of males did not change when the control was added. Male minnows experiencing threat from pike fed stickleback significantly reduced the frequency at which they performed three territorial behaviours, but, within 12 h, had returned to pre-exposure activity levels. Male minnows subjected to alarm pheromone alone and to pike fed fathead minnow significantly reduced their territorial behaviour, abandoned their nests, and did not return to pre-exposure levels of activity after 24 h. We suggest that because risk of predation triggers prolonged decreases in territorial defense, it may affect competition between nesting males and female mate choice. We conclude that fathead minnows can assess the severity of predatory threat and adjust their reproductive behaviour accordingly.  相似文献   

14.
Growth of fathead minnow yolk sac larvae was characterized from changes in dry weight and total content and concentrations of RNA, DNA and protein in fish exposed to a sublethal level of HCN (58 micrograms/l) and in age matched controls. Cyanide toxicosis occurred within 24 hr of exposure as evidenced by significant reductions in protein and RNA content and RNA/DNA ratio of larvae. After 96 hr exposure to HCN, larvae exhibited the same growth rate and protein synthetic rate (RNA/DNA) as control fish. HCN toxicosis and recovery is rapid and at least partial tolerance to HCN develops within 96 hr of exposure in larval fathead minnows.  相似文献   

15.
Opportunity for parasites to manipulate host behavioral phenotype may be influenced by several factors, including the host ecology and the presence of cohabiting parasites in the same host. Metacercariae of Ornithodiplostomum ptychocheilus and "black spot" Crassiphiala bulboglossa have similar life cycles. Each parasite uses a littoral snail as a first intermediate host, fathead minnows as a second intermediate host, and a piscivorous bird as a final host. Metacercariae of black spot encyst in the dermal and epidermal tissues, while metacercariae of O. ptychocheilus encyst on the brain over a region that coordinates optomotor responses. Because of site differences within the host, we predicted that O. ptychocheilus metacercariae might manipulate the behavioral phenotype of minnows to facilitate transmission to the final host, but metacercariae of black spot would not. In our study population, prevalence was 100% for O. ptychocheilus , with an overall median intensity of 105 metacercariae per minnow. Prevalence of black spot was 60%, with a median abundance and intensity of 12 and 20 metacercariae per minnow for the overall sample and for infected fish, respectively. Minnows accumulated both parasites over time, producing significant correlations between intensity and minnow body length and between intensities of the 2 parasites. Minnows infected with black spot had on average twice as many O. ptychocheilus metacercariae as similar-sized minnows without any black spot cercariae. We found no correlation between body condition of minnows and intensity for either parasite. We measured 2 aspects of anti-predator competence to test for effects linked to parasite intensity. We found no correlation between intensity of either species of parasite and latency to behavioral response to attack from a mechanical model heron, nor was there any effect of parasite intensity on a measure of shoaling affinity. The absence of any detectable effect of metacercariae on anti-predator competence in minnows may reflect selection against parasite pathology from predation by non-hosts of the parasites and overwinter mortality due to low dissolved oxygen.  相似文献   

16.
Metacercariae of the trematode Ornithodiplostomum ptychocheilus cause a conspicuous enlargement of the cranium of juvenile fathead minnows (Pimephales promelas). Minnows sampled from 2 naturally infected ponds in northern Alberta, Canada, had 12% higher and 7% wider craniums compared to fish from an adjacent, uninfected pond. We tested the prediction that cranial distortion was caused by encystment of metacercariae on the brains of slow-growing minnows in a factorial experiment. Juvenile fish were either exposed once to 120 cercariae or 3 times to 40 cercariae; they were then fed either a low- or high-quantity diet for 8 wk. Results showed that after controlling for host size, cranial heights were affected by infection regime and host diet but not by the infection x diet interaction. Cranial distortion was most prominent in minnows exposed once to cercariae, showing that the rapid, simultaneous growth of metacercariae interfered with the normal development of the cranium. Thus, the expression of the parasite-induced phenotype was context dependent, the result of factors associated with the dynamics of cercariae transmission and host growth rate.  相似文献   

17.
The schooling behaviour of unparasitized fathead minnows, Pimephales promelus Rafinesque, was compared to that of minnows infected with brain-dwelling metacercariae of the fluke, Ornithodiplostomum ptychocheilus (Faust). Laboratory results showed that schools of infected fish divided more frequently, were less compact, and occupied positions closer to the water surface than control schools. These results are discussed with reference to the possibility that this larval parasite manipulates minnow behaviour to increase host vulnerability to predation.  相似文献   

18.
Previous studies on the life history of the nematode eel specialist Paraquimperia tenerrima (Nematoda: Quimperiidae) have failed to determine whether an intermediate host is required in the life cycle. In the laboratory, eggs failed to hatch below 10 degrees C, hatching occurring only at temperatures between 11 and 30 degrees C. Survival of the free-living second stage larvae (L2) was also temperature dependent, with maximal survival between 10 and 20 degrees C. Total survival of the free-living stages (eggs and L2) is unlikely to exceed a month at normal summer water temperatures, confirming that parasite could not survive the 6 month gap between shedding of eggs in spring and infection of eels in early winter outside of a host. Eels could not be infected directly with L2, nor could a range of common freshwater invertebrate species. Third stage larvae (L3) resembling P. tenerrima were found frequently and abundantly in the swimbladder of minnows Phoxinus phoxinus from several localities throughout the year and were able to survive in this host in the laboratory for at least 6 months. Third stage larvae identical to these larvae were recovered from minnows experimentally fed L2 of P. tenerrima, and eels infected experimentally with naturally and experimentally infected minnows were found to harbour fourth stage larvae (L4) and juvenile P. tenerrima in their intestines. Finally, the whole life cycle from eggs to adult was completed in the laboratory, confirming that minnows are an obligate intermediate host for P. tenerrima.  相似文献   

19.
The antipredator responses of adult and larval fathead minnows Pimephales promelas to chemical alarm cues prepared throughout ontogeny were tested using various behavioural assays. Larval epidermis was also examined during ontogeny using standard haematoxylin and eosin staining techniques. Adults elicited an antipredator response to chemical alarm cue made from larvae as young as 8–17 days post‐hatch. Interestingly, larvae did not possess visible club cells until 28–37 days post‐hatch and did not respond to conspecific chemical alarm cue until 48–57 days post‐hatch. These results suggest that chemical alarm cue may not be contained within club cells and that the components of larval and adult chemical alarm cue may be similar throughout ontogeny.  相似文献   

20.
The aim of this study was to determine the suitability of water quality in the Roanoke River of North Carolina for supporting shortnose sturgeon Acipenser brevirostrum, an endangered species in the United States. Fathead minnows Pimephales promelas were also evaluated alongside the sturgeon as a comparative species to measure potential differences in fish survival, growth, contaminant accumulation, and histopathology in a 28‐day in situ toxicity test. Captively propagated juvenile shortnose sturgeon (total length 49 ± 8 mm, mean ± SD) and fathead minnows (total length 39 ± 3 mm, mean ± SD) were used in the test and their outcomes were compared to simultaneous measurements of water quality (temperature, dissolved oxygen, pH, conductivity, total ammonia nitrogen, hardness, alkalinity, turbidity) and contaminant chemistry (metals, polycyclic aromatic hydrocarbons, organochlorine pesticides, current use pesticides, polychlorinated biphenyls) in river water and sediment. In the in situ test, there were three non‐riverine control sites and eight riverine test sites with three replicate cages (25 × 15‐cm (OD) clear plexiglass with 200‐μm tear‐resistant Nitex® screen over each end) of 20 shortnose sturgeon per cage at each site. There was a single cage of fathead minnows also deployed at each site alongside the sturgeon cages. Survival of caged shortnose sturgeon among the riverine sites averaged 9% (range 1.7–25%) on day 22 of the 28‐day study, whereas sturgeon survival at the non‐riverine control sites averaged 64% (range 33–98%). In contrast to sturgeon, only one riverine deployed fathead minnow died (average 99.4% survival) over the 28‐day test period and none of the control fathead minnows died. Although chemical analyses revealed the presence of retene (7‐isopropyl‐1‐methylphenanthrene), a pulp and paper mill derived compound with known dioxin‐like toxicity to early life stages of fish, in significant quantities in the water (251–603 ng L?1) and sediment (up to 5000 ng g?1 dry weight) at several river sites, no correlation was detected of adverse water quality conditions or measured contaminant concentrations to the poor survival of sturgeon among riverine test sites. Histopathology analysis determined that the mortality of the river deployed shortnose sturgeon was likely due to liver and kidney lesions from an unknown agent(s). Given the poor survival of shortnose sturgeon (9%) and high survival of fathead minnows (99.4%) at the riverine test sites, our study indicates that conditions in the Roanoke River are incongruous with the needs of juvenile shortnose sturgeon and that fathead minnows, commonly used standard toxicity test organisms, do not adequately predict the sensitivity of shortnose sturgeon. Therefore, additional research is needed to help identify specific limiting factors and management actions for the enhancement and recovery of this imperiled fish species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号