首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mechanism of mRNA recognition by proteins interacting with the mRNA cap structure was investigated by photochemical cross-linking of proteins with 32P-labelled reoviral RNAs. Using ribosomal washes as a source of eukaryotic protein synthesis initiation factors, we identified the well-known cap binding proteins eIF-4B and -4E, but eIF-2 and eIF-3 as well. The interplay of purified eIF-4A, -4B, and -4F was studied in relation to ATP dependence and cap analogue sensitivity of cap binding. Next to their well-known roles in the initiation process, eIF-2 and eIF-3 also cross-linked to the 5' cap. eIF-2 stimulated eIF-4B and -4E cross-linking, an observation that has been previously described more extensively. The interaction of eIF-2 with the 5' end of mRNA was extremely sensitive to K(+)-ions and was resistant to a high concentration of Mg(2+)-ions; this influence of mono- and divalent ions was in contrast with the cross-linking of eIF-4B and -4E. Optimal interaction of these factors was obtained at moderate K+ concentration and low Mg(2+)-ion concentrations. eIF-2 cross-linking was sensitive to high protein to mRNA ratios indicating a weak affinity as compared to eIF-4E and -4B. The interaction of eIF-3 with the cap of mRNA is also weak as it was counteracted by all other cap binding proteins, leading to an inability to detect the cross-linking of this protein in crude eIF preparations. Time kinetics of formation of complexes suggested eIF-2 to be one of the first factors to interact with mRNA. Preformed RNA-protein complexes were dissociated after cap analogue addition, suggesting reversible interactions between RNA and proteins.  相似文献   

3.
In Xenopus oocytes, progesterone stimulates the cytoplasmic polyadenylation and resulting translational activation of c-mos mRNA, which is necessary for the induction of oocyte maturation. Although details of the biochemistry of polyadenylation are beginning to emerge, the mechanism by which 3' poly(A) addition stimulates translation initiation is enigmatic. A previous report showed that polyadenylation induced cap-specific 2'-O-methylation, and suggested that this 5' end modification was important for translational activation. Here, we demonstrate that injected c-mos RNA undergoes polyadenylation and cap ribose methylation. Inhibition of this methylation by S-isobutylthioadenosine (SIBA), a methyltransferase inhibitor, has little effect on progesterone-induced c-mos mRNA polyadenylation or general protein synthesis, but prevents the synthesis of Mos protein as well as oocyte maturation. Maturation can be rescued, however, by the injection of factors that act downstream of Mos, such as cyclin A and B mRNAs. Most importantly, we show that the translational efficiency of injected mRNAs containing cap-specific 2'-O-methylation (cap I) is significantly enhanced compared to RNAs that do not contain the methylated ribose (cap 0). These results suggest that cap ribose methylation of c-mos mRNA is important for translational recruitment and for the progression of oocytes through meiosis.  相似文献   

4.
At 100 microM 5'-S-isobutyladenosine (SIBA) inhibits polyoma virus production in infected mouse embryo fibroblasts and in mouse kidney cells, as measured by plaque formation and by haemagglutination assays. SIBA has no significant effect on the synthesis of T and V antigens as well as on viral DNA synthesized in infected cells. Analysis of virus production on CsCl gradients on CsCl gradients showed that in the presence of SIBA reduced amount of heavy viral particles is produced and that part of these particles are pseudovirions containing low density DNA instead of supercoiled viral DNA.  相似文献   

5.
We report the analysis of a photosystem I-deficient mutant of Chlamydomonas reinhardtii, F15, that contains a mutation at the TAB1 (for translation of psaB mRNA) nuclear locus. Pulse labeling of chloroplast proteins revealed that the synthesis of the two photosystem I reaction center polypeptides PSAA and PSAB was undetectable in this mutant. The mRNA levels of these proteins were only moderately reduced, suggesting that the primary defect occurs at a step during or after translation. We constructed chimeric genes consisting of the psaA and psaB 5' untranslated region (5' UTR) fused to the aminoglycoside adenyltransferase (aadA) coding sequence, which confers spectinomycin resistance. Insertion of these genes into the chloroplast genome through biolistic transformation and analysis of their expression in the TAB1 mutant nuclear background revealed that the psaB (but not the psaA) 5' UTR is the target of the wild-type TAB1 function. This suggests that TAB1 is required for the initiation of psaB mRNA translation. The dependence of PSAA synthesis or accumulation on PSAB synthesis is strongly suggested by the identification of a suppressor mutation within the psaB 5' UTR. The suppressor specifically restores the synthesis of both proteins in the presence of the tab1-F15 mutation. The location of the suppressor mutation within a putative base-paired region near the psaB initiation codon suggests a role for TAB1 in the activation of translation of the psaB mRNA.  相似文献   

6.
Translational regulation of protein synthesis accompanies sclerotization in Physarum polycephalum. Plasmodial and sclerotial poly(A)+ RNA were translated in a message-dependent wheat germ lysate in the presence of the cap analogue 7-methylguanosine-triphosphate to determine whether 5' structural alterations in mRNA accompany translational repression. The translation of plasmodial and sclerotial poly(A)+ RNA was reduced to identical levels suggesting that both RNA populations are capped. The 5'-termini of plasmodial and sclerotial poly(A)+ RNA were identified as m7G5'ppp5'Cm. Alterations in the 5'-cap of mRNA during sclerotization do not appear to be responsible for translational dormancy.  相似文献   

7.
5'-Deoxy-5'-S-isobutylthioadenosine (SIBA), a synthetic analogue of S-adenosylhomocysteine, has been reported by others to inhibit a number of biological processes and these effects of SIBA have been attributed generally to inhibition of methyltransferases. However, the present studies with mouse lymphocytes show that SIBA also acts as a competitive inhibitor (Ki = 130 μM) of the high-affinity cyclic AMP phosphodiesterase and potentiates the cyclic AMP response of intact cells to several activators of adenylate cyclase. Moreover, SIBA has been found to inhibit lymphocyte-mediated cytolysis, a cellular function known to be sensitive to elevated lymphocyte levels of cyclic AMP, at concentrations (IC50 = 250 μM) similar to those which inhibit cyclic AMP phosphodiesterase. These results indicate the need for caution in attributing biological effects of SIBA singularly to inhibition of methyltransferases and suggest the possible agency of cyclic AMP in the mechanism of SIBA action.  相似文献   

8.
9.
Unlike known cytostatics, 5'-deoxy-5'-S-isobutyladenosine (SIBA) does not inhibit proliferative activity of hemopoietic stem cells of intact bone marrow. On the contrary, it raises CFUs number of 15-28% in vitro and in vivo. SIBA inhibits by 40% the 3',5'-cAMP-induced increase in CFUs proliferation.  相似文献   

10.
Bacteriophage T4-induced shut-off of host-specific translation.   总被引:2,自引:1,他引:1       下载免费PDF全文
To study the mechanism by which bacteriophage T4 inhibits the synthesis of inducible host enzymes we measured the formation of beta-galactosidase from preformed lac mRNA. Beta-Galactosidase was induced with isopropyl-beta-D-thiogalactopyranoside in the presence of 7-azatryptophan, a tryptophan analogue that is incorporated into proteins and renders the beta-galactosidase formed inactive. The accumulated las mRNA was measured by capacity to form active beta-galactosidase after a chase of the analogue with excess tryptophan. After T4 infection the ability to form beta-galactosidase from the preformed lac mRNA was rapidly lost even when T4 infection took place in the presence of rifampin. This restriction was dependent on the multiplicity of infection. At a multiplicity of infection of 8.6, 90% of the ability to express preformed lac mRNA was lost within 30 s. The kinetics of cessation of beta-galactosidase synthesis after T4 infection indicate that infection blocks initiation of lac mRNA translation.  相似文献   

11.
12.
13.
A unique set of diguanosine cap analogues containing a 5'-5' tetraphosphate linkage instead of the normal triphosphate was synthesized by chemical methylation of G5'pppp5'G. Both 7-methylguanosine products, m7G5'pppp5'G and m7G5'pppp5'm7G, acted as potent inhibitors of capped brome mosaic virus (BMV) RNA translation in the homologous wheat germ protein synthesis system. Inhibition of in vitro protein synthesis required the presence of the 7-methyl group on guanosine and was specific for capped mRNA. In comparison with the partial cap analogue, m7GTP, the methylated diguanosine tetraphosphate structures were 25-50 fold more potent inhibitors of in vitro protein synthesis. Analysis of the in vitro translation products of the four species of BMV RNA showed a differential sensitivity to inhibition by m7G5'pppp5'm7G.  相似文献   

14.
The addition of 5',5',5'-trifluoroleucine (fluoroleucine) to leucine auxotrophs of Salmonella typhimurium permitted protein but not ribonucleic acid (RNA) synthesis to continue after leucine depletion. The uncoupling of the formation of these macromolecules by fluoroleucine was apparent if RNA and protein synthesis was measured either by the uptake of radioactive precursors or by direct chemical determinations. The analogue did not appear to be an inhibitor of RNA formation, since it was as effective as leucine in permitting RNA synthesis in a leucine auxotroph upon the addition of small amounts of chloramphenicol. In contrast to these data, fluoroleucine allowed continued protein and RNA formation in a leucine auxotroph of Escherichia coli strain W. In addition, contrary to the results obtained with S. typhimurium, the analogue replaced leucine for repression of the leucine bio-synthetic enzymes as well as the isoleucine-valine enzymes. We propose that these ambivalent effects of fluoroleucine on repression and RNA and protein synthesis in the two strains are due to differences in the ability of the analogue to attach to the various species of leucine transfer RNA.  相似文献   

15.
16.
Poly(rC) binding proteins mediate poliovirus mRNA stability   总被引:2,自引:2,他引:0       下载免费PDF全文
The 5'-terminal 88 nt of poliovirus RNA fold into a cloverleaf RNA structure and form ribonucleoprotein complexes with poly(rC) binding proteins (PCBPs; AV Gamarnik, R Andino, RNA, 1997, 3:882-892; TB Parsley, JS Towner, LB Blyn, E Ehrenfeld, BL Semler, RNA, 1997, 3:1124-1134). To determine the functional role of these ribonucleoprotein complexes in poliovirus replication, HeLa S10 translation-replication reactions were used to quantitatively assay poliovirus mRNA stability, poliovirus mRNA translation, and poliovirus negative-strand RNA synthesis. Ribohomopoly(C) RNA competitor rendered wild-type poliovirus mRNA unstable in these reactions. A 5'-terminal 7-methylguanosine cap prevented the degradation of wild-type poliovirus mRNA in the presence of ribohomopoly(C) competitor. Ribohomopoly(A), -(G), and -(U) did not adversely affect poliovirus mRNA stability. Ribohomopoly(C) competitor RNA inhibited the translation of poliovirus mRNA but did not inhibit poliovirus negative-strand RNA synthesis when poliovirus replication proteins were provided in trans using a chimeric helper mRNA possessing the hepatitis C virus IRES. A C24A mutation prevented UV crosslinking of PCBPs to 5' cloverleaf RNA and rendered poliovirus mRNA unstable. A 5'-terminal 7-methylguanosine cap blocked the degradation of C24A mutant poliovirus mRNA. The C24A mutation did not inhibit the translation of poliovirus mRNA nor diminish viral negative-strand RNA synthesis relative to wild-type RNA. These data support the conclusion that poly(rC) binding protein(s) mediate the stability of poliovirus mRNA by binding to the 5'-terminal cloverleaf structure of poliovirus mRNA. Because of the general conservation of 5' cloverleaf RNA sequences among picornaviruses, including C24 in loop b of the cloverleaf, we suggest that viral mRNA stability of polioviruses, coxsackieviruses, echoviruses, and rhinoviruses is mediated by interactions between PCBPs and 5' cloverleaf RNA.  相似文献   

17.
Inhibition of host protein synthesis after poliovirus infection has been suggested to be a consequence of the proteolytic degradation of a p220 polypeptide necessary to translate capped mRNAs. However, the synthesis of several adenovirus late proteins on capped mRNAs was resistant to poliovirus inhibition. Thus, the hexon protein was still made 8 h after poliovirus superinfection. The synthesis of other adenovirus proteins such as the fiber was much more sensitive to poliovirus-induced inhibition than the hexon, either in the absence or in the presence of guanidine. Detailed densitometric analyses clearly showed the differential behavior of several adenovirus late mRNAs to poliovirus shut-off of translation. This is striking in view of the fact that a common leader sequence in the 5' termini is present in the adenovirus late mRNAs. The use of 3-methyl quercetin, an inhibitor of poliovirus RNA synthesis (Castrillo, J. L., Vanden Berghe, D., and Carrasco, L. (1986) Virology 152, 219-227), showed that translation of several capped adenovirus mRNAs took place in poliovirus-infected cells after the synthesis of host proteins had ceased. The poliovirus mRNA and the adenovirus mRNA coding for the hexon protein are very efficient mRNAs and have a leader sequence of more than 740 and 250 nucleotides, respectively, with very rich secondary structures making it difficult to predict how the scanning model will operate on these two mRNAs.  相似文献   

18.
Abstract

A novel synthesis of the nucleoside analog, 5′-deoxy-5′-(cyclopropylmethylthio)adenosine (CPMTA, 1) has been developed. CPMTA is a closely related structural analog of 5′-deoxy-5′-(isobutylthio)-adenosine (SIBA, 2), which has been widely studied and shown to exert a multitude of biological effects. The in vitro and in vivo antitumor (L1210 leukemia) activity of CPMTA has been found to be comparable to that of SIBA, whereas its in vitro antiviral (HSV and VSV) activity is diminished. These agents are being developed as inhibitors of methylation and/or polyamine synthesis.  相似文献   

19.
A Danon  S P Mayfield 《The EMBO journal》1991,10(13):3993-4001
Genetic analysis has revealed a set of nuclear-encoded factors that regulate chloroplast mRNA translation by interacting with the 5' leaders of chloroplastic mRNAs. We have identified and isolated proteins that bind specifically to the 5' leader of the chloroplastic psbA mRNA, encoding the photosystem II reaction center protein D1. Binding of these proteins protects a 36 base RNA fragment containing a stem-loop located upstream of the ribosome binding site. Binding of these proteins to the psbA mRNA correlates with the level of translation of psbA mRNA observed in light- and dark-grown wild type cells and in a mutant that lacks D1 synthesis in the dark. The accumulation of at least one of these psbA mRNA-binding proteins is dependent upon chloroplast development, while its mRNA-binding activity appears to be light modulated in developed chloroplasts. These nuclear encoded proteins are prime candidates for regulators of chloroplast protein synthesis and may play an important role in coordinating nuclear-chloroplast gene expression as well as provide a mechanism for regulating chloroplast gene expression during development in higher plants.  相似文献   

20.
We tested the effects of a series of synthetic oligonucleotides (hybridons) complementary to the 5' noncoding and coding regions of rabbit beta-globin mRNA on endogenous protein synthesis in a rabbit reticulocyte cell-free translation system. With highly purified hybridons inhibition was completely specific for beta-globin. The sites most sensitive to inhibition are the beginning of the 5' noncoding region and a sequence including the initiation codon and several upstream bases. The region between these was relatively insensitive to inhibition. The sites of maximum sensitivity coincide with known protein binding sites, suggesting that hybridons exert their effects in part by blocking the binding of proteins required for translation. Their effectiveness seems related to the ease with which they are displaced by ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号