首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SecA, an essential component of the Sec machinery, exists in a soluble and a membrane form in Escherichia coli. Previous studies have shown that the soluble SecA transforms into pore structures when it interacts with liposomes, and integrates into membranes containing SecYEG in two forms: SecAS and SecAM; the latter exemplified by two tryptic membrane-specific domains, an N-terminal domain (N39) and a middle M48 domain (M48). The formation of these lipid-specific domains was further investigated. The N39 and M48 domains are induced only when SecA interacts with anionic liposomes. Additionally, the N-terminus, not the C-terminus of SecA is required for inducing such conformational changes. Proteolytic treatment and sequence analyses showed that liposome-embedded SecA yields the same M48 and N39 domains as does the membrane-embedded SecA. Studies with chemical extraction and resistance to trypsin have also shown that these proteoliposome-embedded SecA fragments exhibit the same stability and characteristics as their membrane-embedded SecA equivalents. Furthermore, the cloned lipid-specific domains N39 and M48, but not N68 or C34, are able to form partial, but imperfect ring-like structures when they interact with phospholipids. These ring-like structures are characteristic of a SecA pore-structure, suggesting that these domains contribute part of the SecA-dependent protein-conducting channel. We, therefore, propose a model in which SecA alone is capable of forming a lipid-specific, asymmetric dimer that is able to function as a viable protein-conducting channel in the membrane, without any requirement for SecYEG.  相似文献   

2.
SecA initiates protein translocation by interacting with ATP, preprotein, and the SecYEG membrane components. Under such conditions, it undergoes a conformational change characterized as membrane insertion, which is then followed by hydrolysis of ATP, enabling the release of the preprotein and deinsertion of SecA itself for the next cycle of reactions. Without ongoing translocation, the ATPase activity of SecA is kept very low. Previously, it was shown that the C-terminal 34-kDa domain of SecA interacts with the N-terminal 68-kDa ATPase domain to down-regulate the ATPase. Here, we show, using a deregulated SecA mutant, that the intrinsic ATPase activity is subject to dual inhibitory mechanisms. Thus, the proposed second ATP-binding domain down-regulates the ATPase activity executed by the primary ATPase domain. This regulation, within the N-terminal ATPase domain, operates independently of the C-terminal domain-mediated regulation. The absence of both the mechanisms resulted in a 50-fold elevation of translocation-uncoupled ATP hydrolysis.  相似文献   

3.
The soluble cytoplasmic ATPase motor protein SecA powers protein transport across the Escherichia coli inner membrane via the SecYEG translocon. Although dimeric in solution, SecA associates monomerically with SecYEG during secretion according to several crystallographic and cryo-EM structural studies. The steps SecA follows from its dimeric cytoplasmic state to its active SecYEG monomeric state are largely unknown. We have previously shown that dimeric SecA in solution dissociates into monomers upon electrostatic binding to negatively charged lipid vesicles formed from E. coli lipids. Here we address the question of the disposition of SecA on the membrane prior to binding to membrane embedded SecYEG. We mutated to cysteine, one at a time, 25 surface-exposed residues of a Cys-free SecA. To each of these we covalently linked the polarity-sensitive fluorophore NBD whose intensity and fluorescence wavelength-shift change upon vesicle binding report on the the local membrane polarity. We established from these measurements the disposition of SecA bound to the membrane in the absence of SecYEG. Our results confirmed that SecA is anchored in the membrane interface primarily by the positive charges of the N terminus domain. But we found that a region of the nucleotide binding domain II is also important for binding. Both domains are rich in positively charged residues, consistent with electrostatic interactions playing the major role in membrane binding. Selective replacement of positively charged residues in these domains with alanine resulted in weaker binding to the membrane, which allowed us to quantitate the relative importance of the domains in stabilizing SecA on membranes. Fluorescence quenchers inside the vesicles had little effect on NBD fluorescence, indicating that SecA does not penetrate significantly across the membrane. Overall, the topology of SecA on the membrane is consistent with the conformation of SecA observed in crystallographic and cryo-EM structures of SecA-SecYEG complexes, suggesting that SecA can switch between the membrane-associated and the translocon-associated states without significant changes in conformation.  相似文献   

4.
SecA is the precursor protein binding subunit of the bacterial precursor protein translocase, which consists of the SecY/E protein as integral membrane domain. SecA is an ATPase, and couples the hydrolysis of ATP to the release of bound precursor proteins to allow their proton-motive-force-driven translocation across the cytoplasmic membrane. A putative ATP-binding motif can be predicted from the amino acid sequence of SecA with homology to the consensus Walker A-type motif. The role of this domain is not known. A lysine residue at position 106 at the end of the glycine-rich loop in the A motif of the Bacillus subtilis SecA was replaced by an asparagine through site-directed mutagenesis (K106N SecA). A similar replacement was introduced at an adjacent lysine residue at position 101 (K101N SecA). Wild-type and mutant SecA proteins were expressed to a high level and purified to homogeneity. The catalytic efficacy (kcat/km) of the K106N SecA for lipid-stimulated ATP hydrolysis was only 1% of that of the wild-type and K101N SecA. K106N SecA retained the ability to bind ATP, but its ATPase activity was not stimulated by precursor proteins. Mutant and wild-type SecA bind with similar affinity to Escherichia coli inner membrane vesicles and insert into a phospholipid mono-layer, in contrast to the wild type, membrane insertion of the K106N SecA was not prevented by ATP. K106N SecA blocks the ATP and proton-motive-force-dependent chase of a translocation intermediate to fully translocated proOmpA. It is concluded that the GKT motif in the amino-terminal domain of SecA is part of the catalytic ATP-binding site. This site may be involved in the ATP-driven protein recycling function of SecA which allows the release of SecA from its association with precursor proteins, and the phospholipid bilayer.  相似文献   

5.
SecA, a 204-kDa homodimeric protein, is a major component of the cellular machinery that mediates the translocation of proteins across the Escherichia coli plasma membrane. SecA promotes translocation by nucleotide-modulated insertion and deinsertion into the cytoplasmic membrane once bound to both the signal sequence and portions of the mature domain of the preprotein. SecA is proposed to undergo major conformational changes during translocation. These conformational changes are accompanied by major rearrangements of SecA structural domains. To understand the interdomain rearrangements, we have examined SecA by NMR and identified regions that display narrow resonances indicating high mobility. The mobile regions of SecA have been assigned to a sequence from the second of two domains with nucleotide-binding folds (NBF-II; residues 564-579) and to the extreme C-terminal segment of SecA (residues 864-901), both of which are essential for preprotein translocation activity. Interactions with ligands suggest that the mobile regions are involved in functionally critical regulatory steps in SecA.  相似文献   

6.
SecA is an essential multifunctional protein for the translocation of proteins across bacterial membranes. Though SecA is known to function in the membrane, the detailed mechanism for this process remains unclear. In this study we constructed a series of SecA N-terminal deletions and identified two specific domains crucial for initial SecA/membrane interactions. The first small helix, the linker and part of the second helix (Δ2-22) were found to be dispensable for SecA activity in complementing the growth of a SecA ts mutant. However, deletions of N-terminal aminoacyl residues 23–25 resulted in severe progressive retardation of growth. Moreover, a decrease of SecA activity caused by N-terminal deletions correlated to the loss of SecA membrane binding, formation of lipid-specific domains and channel activity. All together, the results indicate that the N-terminal aminoacyl residues 23–25 play a critical role for SecA binding to membranes and that the N-terminal limit of SecA for activity is at the 25th amino acid.  相似文献   

7.
SecA is a motor protein that drives protein translocation at the Escherichia coli translocon. SecA membrane binding has been shown to occur with high affinity at SecYE and low affinity at anionic phospholipids. To dissect SecA-membrane interaction with reference to SecA structure, the membrane binding properties of N- and C-terminal SecA domains, denoted SecA-N664 and SecA-619C, respectively, were characterized. Remarkably, only SecA-N664 bound to the membrane with high affinity, whereas SecA-619C bound with low affinity in a nonsaturable manner through partitioning with phospholipids. Moreover, SecA-N664 and SecA-619C associated with each other to reconstitute wild type binding affinity. Corroborative results were also obtained from membrane binding competition and subcellular fractionation studies along with binding studies to membranes prepared from strains overproducing SecYE protein. Together, these findings indicate that the specific interaction of SecA with SecYE occurs through its N-terminal domain and that the C-terminal domain, although important in SecA membrane cycling at a later stage of translocation, appears to initially assist SecA membrane binding by interaction with phospholipids. These results provide the first evidence for distinct membrane binding characteristics of the two SecA primary domains and their importance for optimal binding activity, and they are significant for understanding SecA dynamics at the translocon.  相似文献   

8.
SecA is an integral component of the prokaryotic Sec preprotein secretory translocase system. We report here the solution NMR structure of a fragment corresponding to the C-terminal domain of Escherichia coli SecA. In the presence of Zn2+, the fragment adopts a shortened version of the classic betabetaalpha zinc finger fold. The isolated C-terminal domain shows substantial differences from the X-ray structure of a homologous SecA domain bound to the chaperone-like cofactor SecB. The differences between the structures of the free and bound forms suggest that binding to SecB causes a perturbation of the C-terminal domain's intrinsically favored betabetaalpha fold.  相似文献   

9.
In bacteria, the Sec-protein transport complex facilitates the passage of most secretory and membrane proteins across and into the plasma membrane. The core complex SecYEG forms the protein channel and engages either ribosomes or the ATPase SecA, which drive translocation of unfolded polypeptide chains through the complex and into the periplasmic space. Escherichia coli SecYEG forms dimers in membranes, but in detergent solution the population of these dimers is low. However, we find that stable dimers can be assembled by the addition of a monoclonal antibody. Normally, a stable SecYEG-SecA complex can only form on isolated membranes or on reconstituted proteo-liposomes. The antibody-stabilised SecYEG dimer binds one SecA molecule in detergent solution. In the presence of AMPPNP, a non-hydrolysable analogue of ATP, a complex forms containing one antibody and two each of SecYEG and SecA. SecYEG monomers or tetramers do not associate to a significant degree with SecA. The observed variability in the stoichiometry of SecYEG and SecA association and its nucleotide modulation may be important and necessary for the protein translocation reaction.  相似文献   

10.
Or E  Navon A  Rapoport T 《The EMBO journal》2002,21(17):4470-4479
The ATPase SecA mediates post-translational translocation of precursor proteins through the SecYEG channel of the bacterial inner membrane. We show that SecA, up to now considered to be a stable dimer, is actually in equilibrium with a small fraction of monomers. In the presence of membranes containing acidic phospholipids or in certain detergents, SecA completely dissociates into monomers. A synthetic signal peptide also affects dissociation into monomers. In addition, conversion into the monomeric state can be achieved by mutating a small number of residues in a dimeric and fully functional SecA fragment. This monomeric SecA fragment still maintains strong binding to SecYEG in the membrane as well as significant in vitro translocation activity. Together, the data suggest that the SecA dimer dissociates during protein translocation. Since SecA contains all characteristic motifs of a certain class of monomeric helicases, and since mutations in residues shared with the helicases abolish its translocation activity, SecA may function in a similar manner.  相似文献   

11.
The Sec-dependent protein translocation pathway promotes the transport of proteins into or across the bacterial plasma membrane. SecA ATPase has been shown to be a nanomotor that associates with its protein cargo as well as the SecYEG channel complex and to undergo ATP-driven cycles of membrane insertion and retraction that promote stepwise protein translocation. Previous studies have shown that both the 65-kDa N-domain and 30-kDa C-domain of SecA appear to undergo such membrane cycling. In the present study we performed in vivo sulfhydryl labeling of an extensive collection of monocysteine secA mutants under topologically specific conditions to identify regions of SecA that are accessible to the trans side of the membrane in its membrane-integrated state. Our results show that distinct regions of five of six SecA domains were labeled under these conditions, and such labeling clusters to a single face of the SecA structure. Our results demarcate an extensive face of SecA that interacts with SecYEG and is in fluid contact with the protein-conducting channel. The observed domain-specific labeling patterns should also provide important constraints on model building efforts in this dynamic system.  相似文献   

12.
The SecA ATPase forms a functional complex with the protein-conducting SecY channel to translocate polypeptides across the bacterial cell membrane. SecA recognizes the translocation substrate and catalyzes its unidirectional movement through the SecY channel. The recent crystal structure of the Thermotoga maritima SecA-SecYEG complex shows the ATPase in a conformation where the nucleotide-binding domains (NBDs) have closed around a bound ADP-BeFx complex and SecA's polypeptide-binding clamp is shut. Here, we present the crystal structure of T. maritima SecA in isolation, determined in its ADP-bound form at 3.1 Å resolution. SecA alone has a drastically different conformation in which the nucleotide-binding pocket between NBD1 and NBD2 is open and the preprotein cross-linking domain has rotated away from both NBDs, thereby opening the polypeptide-binding clamp. To investigate how this clamp binds polypeptide substrates, we also determined a structure of Bacillus subtilis SecA in complex with a peptide at 2.5 Å resolution. This structure shows that the peptide augments the highly conserved β-sheet at the back of the clamp. Taken together, these structures suggest a mechanism by which ATP hydrolysis can lead to polypeptide translocation.  相似文献   

13.
During localization to the periplasmic space or to the outer membrane of Escherichia coli some proteins are dependent on binding to the cytosolic chaperone SecB, which in turn is targeted to the membrane by specific interaction with SecA, a peripheral component of the translocase. Five variant forms of SecB, previously demonstrated to be defective in mediating export in vivo (Gannon, P. M., and Kumamoto, C. A. (1993) J. Biol. Chem. 268, 1590-1595; Kimsey, H. K., Dagarag, M. D., and Kumamoto, C. A. (1995) J. Biol. Chem. 270, 22831-22835) were investigated with respect to their ability to bind SecA both in solution and at the membrane translocase. We present evidence that at least two regions of SecA are involved in the formation of active complexes with SecB. The variant forms of SecB were all capable of interacting with SecA in solution to form complexes with stability similar to that of complexes between SecA and wild-type SecB. However, the variant forms were defective in interaction with a separate region of SecA, which was shown to trigger a change that was correlated to activation of the complex. The region of SecA involved in activation of the complexes was defined as the extreme carboxyl-terminal 21 aminoacyl residues.  相似文献   

14.
The export of many E. coli proteins such as proOmpA requires the cytosolic chaperone SecB and the membrane-bound preprotein translocase. Translocase is a multisubunit enzyme with the SecA protein as its peripheral membrane domain and the SecY/E protein as its integral domain. SecB, by binding to proOmpA in the cytosol, prevents its aggregation or association with membranes at nonproductive sites. The SecA receptor binds the proOmpA-SecB complex (Kd approximately 6 x 10(-8) M) through direct recognition of both the SecB (Kd approximately 2 x 10(-7) M) as well as the leader and mature domains of the precursor protein. SecB has a dual function in stabilizing the precursor and in passing it on to membrane-bound SecA, the next step in the pathway. SecA itself is bound to the membrane by its affinity (Kd approximately 4 x 10(-8) M) for SecY/E and for acidic lipids. The functions of SecB and SecA as a two-stage receptor system are linked by their affinity for each other.  相似文献   

15.
A major pathway for bacterial preprotein translocation is provided by the Sec-dependent preprotein translocation pathway. Proteins destined for Sec-dependent translocation are synthesized as preproteins with an N-terminal signal peptide, which targets them to the SecYEG translocase channel. The driving force for the translocation reaction is provided by the peripheral membrane ATPase SecA, which couples the hydrolysis of ATP to the stepwise transport of unfolded preproteins across the bacterial membrane. Since SecA is essential, highly conserved among bacterial species, and has no close human homologues, it represents a promising target for antibacterial chemotherapy. However, high-throughput screening (HTS) campaigns to identify SecA inhibitors are hampered by the low intrinsic ATPase activity of SecA and the requirement of hydrophobic membranes for measuring the membrane or translocation ATPase activity of SecA. To address this issue, we have developed a colorimetric high-throughput screening assay in a 384-well format, employing an Escherichia coli (E. coli) SecA mutant with elevated intrinsic ATPase activity. The assay was applied for screening of a chemical library consisting of ∼27,000 compounds and proved to be highly reliable (average Z′ factor of 0.89). In conclusion, a robust HTS assay has been established that will facilitate the search for novel SecA inhibitors.  相似文献   

16.
SecA ATPase is a critical member of the Sec family, which is important in the translocation of membrane and secreted polypeptides/proteins in bacteria. Small molecule inhibitors can be very useful research tools as well as leads for future antimicrobial agent development. Based on previous virtual screening work, we optimized the structures of two hit compounds and obtained SecA ATPase inhibitors with IC50 in the single digit micromolar range. These represent the first low micromolar synthetic inhibitors of bacterial SecA and will be very useful for mechanistic studies.  相似文献   

17.
Transport of many proteins to extracytoplasmic locations occurs via the general secretion (Sec) pathway. In Escherichia coli, this pathway is composed of the SecYEG protein-conducting channel and the SecA ATPase. SecA plays a central role in binding the signal peptide region of preproteins, directing preproteins to membrane-bound SecYEG and promoting translocation coupled with ATP hydrolysis. Although it is well established that SecA is crucial for preprotein transport and thus cell viability, its oligomeric state during different stages of transport remains ill defined. We have characterized the energetics of SecA dimerization as a function of salt concentration and temperature and defined the linkage of SecA dimerization and signal peptide binding using analytical ultracentrifugation. The use of a new fluorescence detector permitted an analysis of SecA dimerization down to concentrations as low as 50 nM. The dimer dissociation constants are strongly dependent on salt. Linkage analysis indicates that SecA dimerization is coupled to the release of about five ions, demonstrating that electrostatic interactions play an important role in stabilizing the SecA dimer interface. Binding of signal peptide reduces SecA dimerization affinity, such that Kd increases about 9-fold from 0.28 μM in the absence of peptide to 2.68 μM in the presence of peptide. The weakening of the SecA dimer that accompanies signal peptide binding may poise the SecA dimer to dissociate upon binding to SecYEG.  相似文献   

18.
SecA, the ATPase of Sec translocase, mediates the post-translational translocation of preprotein through the protein-conducting channel SecYEG in the bacterial inner membrane. Here we report the structures of Escherichia coli Sec intermediates during preprotein translocation as visualized by electron microscopy to probe the oligomeric states of SecA during this process. We found that the translocase holoenzyme is symmetrically assembled by SecA and SecYEG on proteoliposomes, whereas the translocation intermediate 31 (I31) becomes asymmetric because of the presence of preprotein. Moreover, SecA is a dimer in these two translocation complexes. This work also shows surface topological changes in the components of translocation intermediates by immunogold labeling. The channel entry for preprotein translocation was found at the center of the I31 structures. Our results indicate that the presence of preprotein introduces asymmetry into translocation intermediates, while SecA remains dimeric during the translocation process.  相似文献   

19.
In bacteria, most secreted proteins are exported through the SecYEG translocon by the SecA ATPase motor via the general secretion or “Sec” pathway. The identification of an additional SecA protein, particularly in Gram-positive pathogens, has raised important questions about the role of SecA2 in both protein export and establishment of virulence. We previously showed in Mycobacterium tuberculosis, the causative agent of tuberculosis, the accessory SecA2 protein possesses ATPase activity that is required for bacterial survival in host macrophages, highlighting its importance in virulence. Here, we show that SecA2 binds ADP with much higher affinity than SecA1 and releases the nucleotide more slowly. Nucleotide binding also regulates movement of the precursor-binding domain in SecA2, unlike in SecA1 or conventional SecA proteins. This conformational change involving closure of the clamp in SecA2 may provide a mechanism for the cell to direct protein export through the conventional SecA1 pathway under normal growth conditions while preventing ordinary precursor proteins from interacting with the specialized SecA2 ATPase.  相似文献   

20.
The subcellular localization of SecA, a protein essential for the catalysis of general protein export, was studied to better understand its state(s) and function(s) within Escherichia coli cells. In a wild-type strain approximately half of the cellular SecA content was found to be associated with the inner membrane, while the remainder was soluble. Association of SecA protein with the inner membrane required the presence of anionic phospholipids and was modulated by ATP. A fraction of the membrane-bound SecA was found to be integrally associated with the membrane. In the secA51(Ts) mutant 75-95% of SecA protein was found to be membrane associated, independent of the protein export status of the cell, implying that the partitioning of this protein between the cell membrane and cytoplasm may play an important role in its function. secA-lacZ fusions were used to map a membrane association determinant to the amino-terminal quarter of SecA protein sequence. When this portion of SecA protein was expressed within cells, it was found solely in membrane fractions and complemented the growth and protein secretion defect of the secA51(Ts) mutant. This indicates that the membrane is the site of the limiting defect in this mutant and suggests that either SecA functions can be divided into at least two separable activities or that productive interaction between SecA and the amino-terminal fragment can occur in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号