首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Increase in DNA replication sites in cells held at the beginning of S phase   总被引:2,自引:5,他引:2  
CHO cells were pulse labeled with 3H-thymidine after synchronization and blockage at the beginning of S phase for various intervals. The distribution of initiation sites for DNA replication and rates of chain growth were measured in autoradiographs prepared from these cells. Origins used for replication are widely distributed at or near the beginning of S phase, but usable origins increase continuously for many hours when FdU is used to block the synthesis of thymidylate. Potential origins are located about four microns apart, but in normal replication in these fibroblasts only one in 15 to 20 potential origins are used for initiation. On the other hand, when cells are held at the beginning of S phase for 12–14 h, about one-half of the potential origins are activated in part of the DNA and utilized when the cell is released from the block by supplying 3H-thymidine (10–6M). Chain growth during a short pulse decreases with time of the blockage at what appears to be a linear rate. However, cells can replicate long continuous stretches of their DNA with only 2×10–8M thymidine available in the medium for several hours when synthesis is blocked by FdU. The total amount of DNA replicated is, however, much less than when a concentration of 10–6 M thymidine is supplied for the same period. The origins which are finally used under any experimental condition appear to be a random sample of the total potential origins which are distributed in a regular repeating sequence along the DNA at about 12 kilobase intervals.  相似文献   

2.
Cloned cultures of the dinoflagellate Gonyaulax polyedra grown in a 12-h light-12-h dark cycle (LD 12:12) were synchronized to the beginning of G1 by a two sequential filtration technique. After the second filtration, with the cultures growing in LD 12:12, not many cells had divided after 1 day, but approximately half underwent cell division after 2 days. Flow cytometric measurements of the cells revealed that there is one unique S phase starting about 12 h prior to cell division and lasting for less than 4 h. A majority of cells in cultures synchronized in the same way but maintained in continuous light (LL) after filtration also divided synchronously after 2 days. Just as for the cultures in LD 12:12, those in LL have a similar discrete DNA synthesis phase prior to division. It is concluded that the circadian control of cell division acts before the S phase, giving rise to a discontinuous DNA synthesis phased by the circadian clock.  相似文献   

3.
Cloned cultures of the dinoflagellate Gonyaulax polyedra grown in a 12-h light-12-h dark cycle (LD 12:12) were synchronized to the beginning of G1 by a two sequential filtration technique. After the second filtration, with the cultures growing in LD 12:12, not many cells had divided after 1 day, but approximately half underwent cell division after 2 days. Flow cytometric measurements of the cells revealed that there is one unique S phase starting about 12 h prior to cell division and lasting for less than 4 h. A majority of cells in cultures synchronized in the same way but maintained in continuous light (LL) after filtration also divided synchronously after 2 days. Just as for the cultures in LD 12:12, those in LL have a similar discrete DNA synthesis phase prior to division. It is concluded that the circadian control of cell division acts before the S phase, giving rise to a discontinuous DNA synthesis phased by the circadian clock.  相似文献   

4.
Suspension cultures of Novikoff rat hepatoma cells were synchronized by a double hydroxyurea block. About 80% of the cells of the population doubled 5 to 8 h after the reversal of the second hydroxyurea block. At all stages of the cell cycle, thymidine was rapidly incorporated into the acid-soluble pool of the cells (mainly dTTP) and the rate of incorporation was limited by the rate of thymidine transport. The rate of thymidine transport per cell roughly doubled during the S or late S phase and decreased again to the base level during cell division. This was reflected by corresponding changes in Vmax for thymidine transport, whereas the apparent Km remained constant throughout the cell cycle.  相似文献   

5.
The relationship between replication of simian virus 40 (SV40) DNA and the various periods of the host-cell cycle was investigated in synchronized CV(1) cells. Cells synchronized through a double excess thymidine procedure were infected with SV40 at the beginning or the middle of S, or in G(2). The first viral progeny DNA molecules were in all instances detected approximately 20 h after release from the thymidine block, independent of the time of infection. The length of the early, prereplicative phase of the virus growth cycle therefore depended upon the period of the cell cycle at which the cells were infected. Infection with SV40 was also performed on cells obtained in early G(1) through selective detachment of cells in metaphase. As long as the cells were in G(1) at the time of infection, the first viral progeny DNA molecules were detected during the S period immediately following, whereas if infection took place once the cells had entered S, no progeny DNA molecule could be detected until the S period of the next cell cycle. These results suggest that the infected cell has to pass through a critical stage situated in late G(1) or early S before SV40 DNA replication can eventually be initiated.  相似文献   

6.
The kinetics of DNA replication were analyzed in the second S phase following UV irradiation of Chinese hamster ovary cells synchronized at the beginning of S phase. The cells were synchronized by treating cells selected in mitosis with hydroxyurea for 9 h. Following UV irradiation, the cells were allowed to progress until the next mitosis; at which time they were resynchronized at the beginning of the second S phase by the same procedure. The kinetics of DNA replication were determined by measuring the proportion of DNA which achieved hybrid buoyant density on CsCl density gradients as a function of the time of incubation in the presence of 5-bromodeoxyuridine.The results of these experiments showed that even though the rate of DNA replication is substantially depressed during the first S phase following UV irradiation with a fluence of 5 J/m2, the rate has recovered to the extent that it is indistinguishable from the unirradiated control by the time the cells have entered their second S phase. It was concluded from these observations that the lesions in DNA which caused the rate of DNA replication to be initially depressed during the first S phase have been either removed or modified such that they no longer are able to cause a reduction in the rate of DNA replication in the second S phase following UV irradiation.  相似文献   

7.
Chinese hamster ovary (CHO) cells were synchronized by a thymidine-hydroxyurea block. At different times after release from the block, cells were treated with trioxsalen and long-wavelength ultraviolet light to crosslink DNA in vivo and were labelled with [3H]thymidine for 30 min. This technique permits labelling of only the short nescent DNA fragments initiated between crosslinks. The amount of radioactivity incorporated in these fragments during the labelling period reflects the number of replicon initiation events and allows us to follow the replicon initiation pattern after removing the inhibitor. It was shown that the rate of initiation was high at the beginning of S phase and then steadily decreased.  相似文献   

8.
The metachromatic fluorochrome acridine orange was used to differentially stain DNA and RNA in Chinese hamster ovary (CHO) cells and in mitogen-stimulated human lymphocytes during their progression through the cell cycle. Green and red fluorescence of individual cells, representing cellular DNA and RNA, respectively, was measured by flow cytometry. CHO cells were synchronized by selective detachment at mitosis. Their rate of progression through G1 and subsequently through S phase correlated with the content of stainable RNA. The mean duration of the G1 phase was 5.2 hours for cells with high RNA content (highest 25 percentile population) and 8.1 hours for cells with low RNA (lowest 25 percentile). The duration of S phase was 5.9 and 7.5 hours for high- and low-RNA, 25 percentile subpopulations, respectively. Lymphocytes synchronized at the G1/S boundary by hydroxyurea or 5-fluorodeoxyuridine showed extremely high intercellular variation with respect to content of stainable RNA. After release from the block they traversed S phase at rates linearly proportional to the content of stainable RNA. The duration of S phase was five hours for cells with high RNA-, six to nine hours for cells with moderate RNA- and up to 27 hours for cells with minimal RNA-content. The data suggest that the rate of progression through the cell cycle of individual cells within a population may be correlated with the number of ribosomes per cell.  相似文献   

9.
The technique of flash photolysis was used to study cellular variations in the number of photoreactivating enzyme (PRE) molecules during the cell division cycle of the UV-sensitive E. coli strain BS?1. No variations in the number of PRE molecules per genome were observed throughout the cell division cycle when synchronized cells cultured in either glucose-minimal or succinate-minimal medium were used. This is interpreted to mean that PRE synthesis is continuous throughout the cell cycle for glucose-grown cells, but may stop at the time chromosome replication ceases prior to division, in succinate-grown cells. The effect of growth rate and stage of growth on cellular PRE content in asynchronous cultures was also determined. Variations in the number of PRE per genome were observed for both synchronous and asynchronous cells cultured in different media and occurred in a manner that suggested a dependence on growth rate. PRE per genome increased with generation time. Stationary phase cells from each culture medium (nutrient broth, glucose-minimal, succinate-minimal) had more PRE per genome than did respective log phase cells. It is suggested that PRE synthesis may be controlled by some aspect of chromosome replication.  相似文献   

10.
An asynchronous culture of mammalian cells responds acutely to ionizing radiation by inhibiting the overall rate of DNA replication by approximately 50% for a period of several hours, presumably to allow time to repair DNA damage. At low and moderate doses, this S phase damage-sensing (SDS) pathway appears to function primarily at the level of individual origins of replication, with only a modest inhibition of chain elongation per se. We have shown previously that the majority of the inhibition observed in an asynchronous culture can be accounted for by late G1cells that were within 2-3 h of entering the S period at the time of irradiation and which then fail to do so. A much smaller effect was observed on the overall rate of replication in cells that had already entered the S phase. This raised the question whether origins of replication that are activated within S phase per se are inhibited in response to ionizing radiation. Here we have used a two-dimensional gel replicon mapping strategy to show that cells with an intact SDS pathway completely down-regulate initiation in both early- and late-firing rDNA origins in human cells. We also show that initiation in mid- or late-firing rDNA origins is not inhibited in cells from patients with ataxia telangiectasia, confirming the suggestion that these individuals lack the SDS pathway.  相似文献   

11.
Slowly growing populations (TD = 70 to 80 min) of Streptococcus faecium (S. faecalis ATCC 9790) were synchronized by selection after sucrose gradient fractionation. The cell cycle was approximated by correlating the patterns of DNA accumulation and cell division. More specifically, the beginning of cell cycle was equated with the beginning of a rapid linear increase in DNA accumulation. The DNA content of the culture approximately doubled during the period of accumulation, which lasted about 51 min. The period of rapid DNA accumulation, was followed by a period of reduced accumulation that lasted about 24 min. During synchronized growth, cell numbers increased rapidly in coordination with the period of rapid DNA accumulation and exhibited a plateau during the period of reduced DNA accumulation. In contrast, RNA and protein appeared to accumulate exponentially throughout the cell cycle at the same rate as culture mass.  相似文献   

12.
The growth of Skeletonema costatum, under natural nutriment conditions, was studied using a bulk culture fiber dialyzing apparatus. The diatom displayed normal development of chain length (average cell number per chain) which coincided with the culture growth stages; that is, the cell number per colony increased during the active division period and decreased thereafter with the beginning of the prestationary phase. This morphological behaviour showed that the alga cells were not affected by such physical shocks as collision or tension occurring during repeated cell transfers from growth chambers to the dialyzing apparatus or at the time of their passage through the fiber fascicles. Measured at different growth stages, the cell contents in carbon, nitrogen, and chlorophyll confirmed the above results and showed for S. costatum a biological productivity comparable with that obtained in smaller dialyzing containers (dialyzing bags). Through a comparison between the dialyzing culture and a static culture grown in an enriched medium, certain characteristics were determined.  相似文献   

13.
Effect of Methyl Methanesulphonate on Synchronized Cultures of HEp-2 Cells   总被引:1,自引:0,他引:1  
ASYNCHRONOUS cultures of human cells treated with the mono-functional alkylating agent methyl methanesulphonate (MMS) seem to undergo a DNA repair process1 although the rate of cell proliferation is greatly reduced2. To learn more about the relation between DNA synthesis and cellular division in cells with damaged template DNA we have examined the effects of MMS on synchronized cultures of HEp-2 cells treated approximately half way through the G1 phase of the cell cycle. The use of synchronized cultures makes it possible to determine whether the observed reduction in cell proliferation results from inability of the cells to go through an S phase or from their inability to divide and enter a second S phase.  相似文献   

14.
In proliferating cells, DNA synthesis must be performed with extreme precision. We show that groups of replicons, labeled together as replicon clusters, form stable units of chromosome structure. HeLa cells were labeled with 5-bromodeoxyuridine (BrdU) at different times of S phase. At the onset of S phase, clusters of replicons were activated in each of ~750 replication sites. The majority of these replication “foci” were shown to be individual replicon clusters that remained together, as stable cohorts, throughout the following 15 cell cycles. In individual cells, the same replication foci were labeled with BrdU and 5-iododeoxyuridine at the beginning of different cell cycles. In DNA fibers, 95% of replicons in replicon clusters that were labeled at the beginning of one S phase were also labeled at the beginning of the next. This shows that a subset of origins are activated both reliably and efficiently in different cycles.

The majority of replication forks activated at the onset of S phase terminated 45–60 min later. During this interval, secondary replicon clusters became active. However, while the activation of early replicons is synchronized at the onset of S phase, different secondary clusters were activated at different times. Nevertheless, replication foci pulse labeled during any short interval of S phase were stable for many cell cycles. We propose that the coordinated replication of related groups of replicons, that form stable replicon clusters, contributes to the efficient activation and propagation of S phase in mammalian cells.

  相似文献   

15.
The effect of adriamycin on cell cycle phase progression of CHO cells synchronized into the various phases of the cell cycle by elutriation was investigated by high resolution pulse cytophotometry. Cells treated in all phases of the cell cycle showed delay in their subsequent progression. In addition to the wellknown block of cells in the G2-phase, a delay in passage of cells from G1 to S and a decreased rate of transit through the S-phase were observed. A broadening of the DNA distributions of the treated cells was observed after cell division indicating induction of chromosomal abnormalities.  相似文献   

16.
During the S phase of the cell cycle, the entire genome is replicated. There is a high level of orderliness to this process through the temporally and topologically coordinated activation of many replication origins situated along chromosomes. We investigated the program of replication from origins initiating in early S phase by labeling synchronized normal human fibroblasts (NHF1) with nucleotide analogs for various pulse times and measuring labeled tracks in combed DNA fibers. Our analysis showed that replication forks progress 9-35 kilobases from newly initiated origins, followed by a pause in synthesis before replication resumes. Pausing was not observed near origins that initiated in the middle of S phase. No evidence for pausing near origins was found at the beginning of the S phase in glioblastoma T98G cells. Treatment with the S phase checkpoint inhibitor caffeine abrogated pausing in NHF1 cells in early S phase. This suggests that pausing may comprise a novel aspect of the intra-S phase checkpoint pathway or a related new early S checkpoint. Further, it is possible that the loss of this regulatory process in cancer cells such as T98G could be a contributing factor in the genetic instability that typifies cancers.  相似文献   

17.
Monolayers of CV-1 cells were synchronized at the G1/S boundary of the cell cycle by a 24-h 2 mM thymidine blockade. Uptake of tritiated thymidine indicated that the peak DNA synthesis occurred 6-8 h after release from the block and that cell cycle time was 18-20 h. The fatty acid composition of phospholipids extracted from cells at 0, 7, and 18 h postblockade was measured by gas chromatography. The results indicate cyclic changes in membrane fatty acids with a significant increase in long-chain polyunsaturated fatty acids during the DNA synthesis phase (S phase) of the cell cycle.  相似文献   

18.
The impact of ciliary regeneration upon cell-cycle progression of the ciliate Tetrahymena was studied. It was found that cell division ceases during ciliary regeneration, and starts again about 4 h after deciliation. Deciliation of an asynchronously multiplying culture results in a rapid interruption of DNA synthesis, followed by resumption 1 h later. This was shown by pulse-labelling the cells with [3H]thymidine at various times after deciliation. Cytophotometric determinations of the macronuclear DNA content substantiated these observations, since the average DNA content per cell remained constant within the first hour of regeneration, confirming the labelling experiments, after which it rose. At its maximum, the average DNA content was more than doubled as compared with the beginning of the experiment. This indicates that a substantial proportion of the regenerating cells performed two rounds of DNA replication prior to cell division. The massive drop in the average DNA content during the fifth hour after deciliation indicates that the culture becomes partly synchronized for cell division by the deciliation procedure. The division synchrony results from a greater delay of the next cell division when G2 cells are deciliated than occurs in G1 cells. This was shown by deciliating cultures of Tetrahymena thermophila cells in the respective stages of the cell cycle, which had been partly synchronized by elutriator centrifugation. Thus, deciliation followed by ciliary regeneration causes a varying degree of retardation in progression through the cell cycle, being greatest for G2 cells and least for G1 cells.  相似文献   

19.
运用细胞周期原理,采用温度休克法,对尾草履虫进行分裂周期同步化的研究,实验中草履虫经过3-5h的处理后,就能观察到大量不同阶段的无性生殖横分裂状态,并获得了大量处于分裂阶段的草履虫。运用这种技术取材容易,获取率稳定,可达61%,可为细胞生理学等领域的研究提供大量的同步分裂个体。  相似文献   

20.
Light regulation of the cell cycle in Euglena gracilis bacillaris   总被引:1,自引:0,他引:1  
We have studied the light regulation of the cell division cycle in the photosynthetic alga Euglena gracilis bacillaris. Euglena grown under phototrophic conditions are easily synchronized to a 12 h light-12 h dark regime. By inoculating stationary phase, nondividing cells into fresh media and exposing the diluted cells to either light or darkness, we have determined that initiation of DNA synthesis for the cell division cycle is light dependent. By varying the length of time in light to which synchronized cells are exposed, we have shown that commitment to the cell cycle requires exposure to more than 6 h of light. We propose that this is to allow the accumulation, through photosynthetic electron transport, of an initiating factor that will enable DNA synthesis to begin. Flow cytometry analysis also shows that once cells are committed to the cell cycle, they complete the cycle in the dark, so mitosis is a light-independent step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号