首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The deoxyribonucleic acid (DNA) of Escherichia coli B is converted by colicin E2 to products soluble in cold trichloroacetic acid; we show that this DNA degradation (hereafter termed solubilization) is subject to inhibition by infection with bacteriophage T4. At least two modes of inhibition may be differentiated on the basis of their sensitivity to chloramphenicol. The following observations on the inhibition of E2 by phage T4 in the absence of chloramphenicol are described: (i) Simultaneous addition to E. coli B of E2 and a phage mutated in genes 42, 46, and 47 results in a virtually complete block of the DNA solubilization normally induced by E2; the mutation in gene 42 prevents phage DNA synthesis, and the mutations in genes 46 and 47 block a late stage of phage-induced solubilization of host DNA. (ii) This triple mutant inhibits equally well when added at any time during the E2-induced solubilization. (iii) Simultaneous addition to E. coli B of E2 and a phage mutated only in gene 42 results in extensive DNA solubilization, but the amount of residual acid-insoluble DNA (20 to 25%) is more characteristic of phage infection than of E2 addition (5% or less). (iv) denA mutants of phage T4 are blocked in an early stage (endonuclease II) of degradation of host DNA; when E2 and a phage mutated in both genes 42 and denA are added to E. coli B, extensive solubilization of DNA occurs with a pattern identical to that observed upon simultaneous addition of E2 and the gene 42 mutant. (v) However, delaying E2 addition for 10 min after infection by this double mutant allows the phage to develop considerable inhibition of E2. (vi) Adsorption of E2 to E. coli B is not impaired by infection with phage mutated in genes 42, 46, and 47. In the presence of chloramphenicol, the inhibition of E2 by the triple-mutant (genes 42, 46, and 47) still occurs, but to a lesser extent.  相似文献   

2.
T4 phage and T4 ghosts inhibit f2 phage replication by different mechanisms   总被引:5,自引:0,他引:5  
Both T4 phage and DNA-free ghosts inhibit replication of RNA phage f2. Most but not all of the effects by T4 upon f2 growth can be blocked by the addition of rifampicin prior to T4 superinfection; by contrast, the inhibition of f2 synthesis by T4 ghosts cannot be blocked by rifampicin. This indicates that inhibition by intact T4 requires gene function, while inhibition by ghosts does not. There is a small, multiplicity-dependent inhibition by viable T4 on f2 growth in the presence of rifampicin which may be similar to the gene function-independent inhibition by T4 ghosts. With one viable T4 per cell, there appears to be no effect by viable T4 upon f2 growth which does not require T4 gene action. Moreover, increasing multiplicities of viable T4 appear to inhibit T4 replication as well.In the absence of rifampicin, pre-existing f2 single and double-stranded RNA are degraded after superinfection by viable T4, but remain stable after superinfection by ghosts. However, no new f2 RNA is synthesized after superinfection with either. In the presence of rifampicin, f2-specific protein synthesis is largely unaffected by viable T4, but is completely inhibited by ghosts. Both Escherichia coli, as well as f2-speciflc polysomes disappear in the presence of ghosts.We conclude that, at low multiplicities, T4 phage and T4 ghosts inhibit replication of f2 phage, and presumably host syntheses, by different mechanisms.  相似文献   

3.
Effects of UV-irridiated and unirradiated T4 phage infection on the beta-galactoside accumulation ability in Eschericia coli have been examined by the use of 14C-labeled thiomethyl-beta-galactoside (TMG). Under conditions where a synchronous adsorption of phage takes place, the cellular ability for TMG accumulation is found to be largely inhibited immediately after phage adsorption, but it recovers with time to a new level, which is dependent on the multiplicity of infection. When cells are infected with UV-irradiated T4 at the same multiplicity as that of unirradiated phage, the cellular accumulation ability is more severely inhibited and there is no recovery from the inhibition. The recovery process in T4-infected cells is mostly sensitive to puromycin. These results suggest that the initial inhibition of the TMG accumulation ability is probably caused by the adsorption of phage coats, and the subsequent restoration occurs through the action of a phage-directed protein(s). In the recovery process, no new transport system appears to be involved. The restored ability of TMG accumulation is resistant to the action of superinfecting UV phage. However, different mechanisms appear to be operating in T4-infected cells for the establishment of resistance to ghosts and for the recovery from the phage coat-induced inhibition.  相似文献   

4.
The nucleoids of Escherichia coli S/6/5 cells are rapidly unfolded at about 3 min after infection with wild-type T4 bacteriophage or with nuclear disruption deficient, host DNA degradation-deficient multiple mutants of phage T4. Unfolding does not occur after infection with T4 phage ghosts. Experiments using chloramphenicol to inhibit protein synthesis indicate that the T4-induced unfolding of the E. coli chromosomes is dependent on the presence of one or more protein synthesized between 2 and 3 min after infection. A mutant of phage T4 has been isolated which fails to induce this early unfolding of the host nucleoids. This mutant has been termed "unfoldase deficient" (unf-) despite the fact that the function of the gene product defective in this strain is not yet known. Mapping experiments indicate that the unf- mutation is located near gene 63 between genes 31 and 63. The folded genomes of E. coli S/6/5 cells remain essentially intact (2,000-3,000S) at 5 min after infection with unfoldase-, nuclear disruption-, and host DNA degradation-deficient T4 phage. Nuclear disruption occurs normally after infection with unfoldase- and host DNA degradation-deficient but nuclear disruption-proficient (ndd+), T4 phage. The host chromosomes remain partially folded (1,200-1,800S) at 5 min after infection with the unfoldase single mutant unf39 x 5 or an unfoldase- and host DNA degradation-deficient, but nuclear disruption-proficient, T4 strain. The presence of the unfoldase mutation causes a slight delay in host DNA degradation in the presence of nuclear disruption but has no effect on the rate of host DNA degradation in the absence of nuclear disruption. Its presence in nuclear disruption- and host DNA degradation-deficient multiple mutants does not alter the shutoff to host DNA or protein synthesis.  相似文献   

5.
The release of free fatty acids from the phospholipids of Escherichia coli is initiated immediately after the attachment of T4 ghosts. A similar accumulation of free fatty acids is observed if the cells are infected with T4 phage in the presence of chloramphenicol or puromycin. An early accumulation of free fatty acids, however, is not observed in T4 infections in which chloramphenicol or puromycin are not present, nor does it occur if the E. coli are infected with T4 phage before ghost infection, suggesting that phage products can prevent the phospholipid deacylation. If E. coli is infected with T4 ghosts before T4 phage infection, the accumulation of free fatty acids is not suppressed. When phospholipase-deficient E, coli are infected with T4 ghosts the appearance of free fatty acids is not observed, suggesting that T4 ghost attachment can activate the phospholipase of wild-type E. coli. Although the formation of free fatty acid apparently is a consequence of activation of the detergent-resistant phospholipase of the outer membrane, it is not observed in mutants deficient in the detergent-sensitive phospholipase.  相似文献   

6.
Deoxyribonucleic acid (DNA)-less T2 "ghosts" were prepared by osmotic shock and purified by KBr density gradient centrifugation. Escherichia coli B was treated with these ghosts in inorganic salts-glycerol medium to see which features of phage infection could be elicited by ghosts. At a multiplicity that was just sufficient to block induction of beta-galactosidase (EC 3.2.1.23), 89% of the bacteria were killed and the rates of ribonucleic acid (RNA) and DNA synthesis were about 10 to 15% of normal. However, protein synthesis was almost completely blocked but resumed after 30 min. During this period, it was possible to induce messenger RNA (mRNA) from the lactose operon, although this mRNA could not be translated into active beta-galactosidase. These results suggest to us that the viable cells surviving ghost infection synthesize nucleic acids at close to a normal rate but are temporarily blocked in protein synthesis. The continued formation of untranslated host mRNA mimics the pattern of bacterial synthesis just after whole-phage infection, and is consistent with the interpretation that the immediate block in the initiation of host translation by these viruses is due to their attachment.  相似文献   

7.
The hypothesis of a channel-mediated transport of phage DNA into Escherichia coli cytoplasmic membrane has been formulated for a long time. In this paper, we present experimental evidence in favor of this proposal. We have analyzed the kinetics of the K+ efflux induced by T4 phage and ghosts (phage depleted of DNA) using a potassium selective electrode. We show that the K+ efflux is not catalyzed by the K+ transport systems. The Km of K+ efflux is the same for phage and ghosts. The rate of K+ efflux is linearly related to the multiplicity of infection. This suggests that phage and ghosts induce the formation of similar channels and that one channel is induced by one virion. The K+ efflux is associated with an influx of H+ and Na+ or Li+ which compete for entry through the channel. These ion fluxes may be responsible for the cell depolarization. The phage-induced channels allow the passage of DNA. They are only transiently opened, and their closing leads to cellular repolarization. The ghost-induced channels remain open. The insertion and conformation of the channels in the membrane depend on the temperature and their confirmation is voltage-dependent. We give an estimate of their size.  相似文献   

8.
Effect of Prophage W on the Propagation of Bacteriophages T2 and T4   总被引:10,自引:7,他引:3       下载免费PDF全文
Studies have been undertaken to determine whether the temperate phage ω present in Escherichia coli strain W is responsible for the inability of this strain to act as a host for T2 and T4. E. coli WS, cured of phage ω, was sensitive to T2 and T4. Lysogenation of E. coli C and WS with phage ω resulted in loss of ability to plate T2 and T4. However, E. coli K-12 lysogens still served as hosts for the T -even phage. Two of three WS lysogens studied resembled strain W at the biochemical level. They converted about 30% of infecting T2 deoxyribonucleic acid (DNA) to acid-soluble fragments and limited macromolecular synthesis to a few minutes after infection. The third lysogen did not degrade phage DNA, and nucleic acid and protein synthesis continued for some time, although no phage production occurred. It is concluded that phage ω plays a role in the restriction of virulent phage but that it is not the only factor involved. Since acid solubilization was not observed in all cases of phage ω-mediated restriction of T -even phage, a hypothesis for the restriction has been proposed which is based on an alteration in the cell envelope after lysogenation with phage ω.  相似文献   

9.
Nuclear disruption after infection of Escherichia coli with a bacteriophage T4 mutant deficient in the ability to induce endonuclease II indicates that either (i) the endonuclease II-catalyzed reaction is not the first step in host deoxyribonucleic acid (DNA) breakdown or (ii) nuclear disruption is independent of nucleolytic cleavage of the host chromosome. M-band analysis demonstrates that the host DNA remains membrane-bound after infection with either an endonuclease II-deficient mutant or T4 phage ghosts.  相似文献   

10.
T4+ exhibits increased ultraviolet sensitivity on derivatives of Escherichia coli K12 or B lacking deoxyribonucleic acid (DNA) polymerase I. However, the sensitivity of T4v is not affected by the absence of host DNA polymerase. T4x and T4y also show increased sensitivity on DNA polymerase-deficient strains, but to a lesser extent than observed with wild-type T4. When T4x or T4y, but not T4+, are plated on a double mutant lacking both DNA polymerase and the uvrA gene product, a partial suppression of the polymerase effect is observed. Host ligase appears to be able to suppress to some extent the T4y phenotype but has no effect on wild-type T4 or other T4 mutants. T4xv incubated in E. coli B or B(s-1) in the presence of chloramphenicol (50 mug/ml) shows increased resistance over directly plated irradiated phage. Increased survival under the same conditions was not observed with T4+ or other T4 mutants. The repair of X-ray-damaged T4 was investigated by examining survival curves of T4+, T4x, T4y, T4ts43, and T4ts30. The repair processes were further defined by observing the effects of plating irradiated phage on various hosts including strains lacking DNA polymerase I or polynucleotide ligase. Two classes of effects were observed. Firstly, the x and y gene products seem to be involved in a repair system utilizing host ligase. Secondly, in the absence of host DNA polymerase, phage sensitivity is increased in an unknown manner which is enhanced by the presence of host uvrA gene product.  相似文献   

11.
Plasmid pBR322 replication is inhibited after bacteriophage T4 infection. If no T4 DNA had been cloned into this plasmid vector, the kinetics of inhibition are similar to those observed for the inhibition of Escherichia coli chromosomal DNA. However, if T4 DNA has been cloned into pBR322, plasmid DNA synthesis is initially inhibited but then resumes approximately at the time that phage DNA replication begins. The T4 insert-dependent synthesis of pBR322 DNA is not observed if the infecting phage are deleted for the T4 DNA cloned in the plasmid. Thus, this T4 homology-dependent synthesis of plasmid DNA probably reflects recombination between plasmids and infecting phage genomes. However, this recombination-dependent synthesis of pBR322 DNA does not require the T4 gene 46 product, which is essential for T4 generalized recombination. The effect of T4 infection on the degradation of plasmid DNA is also examined. Plasmid DNA degradation, like E. coli chromosomal DNA degradation, occurs in wild-type and denB mutant infections. However, neither plasmid or chromosomal degradation can be detected in denA mutant infections by the method of DNA--DNA hybridization on nitrocellulose filters.  相似文献   

12.
Summary A cytosine-substitution type mutant of bacteriophage T4 (T4dC phage) has been shown to mediate the transfer of plasmid pBR322. The transduction frequency was around 10-2 per singly infected cell at low multiplicity of infection. The transductants contained either a monomer or multimers of pBR322. The transducing capacity of T4dC phage was resistant to methylmethanesulfonate treatment. The results of Southern blotting experiments have indicated that the pBR322 DNA exists as head-to-tail concatemers in the transducing particles. The mechanism of transfer of pBR322 mediated by T4dC phages is discussed  相似文献   

13.
This report describes a comparison of the efficiency of transduction of genes in E. coli by the generalized transducing bacteriophages T4GT7 and P1CM. Both phages are capable of transducing many genetic markers in E. coli although the frequency of transduction for particular genes varies over a wide range. The frequency of transduction for most genes depends on which transducing phage is used as well as on the donor and recipient bacterial strains. Analysis of T4GT7 phage lysates by cesium chloride density gradient centrifugation shows that transducing phage particles contain primarily bacterial DNA and carry little, if any, phage DNA. In this regard transducing phages P1CM and T4GT7 are similar; both phages package either bacterial or phage DNA but not both DNAs into the same particle.  相似文献   

14.
H Takahashi  H Saito 《Plasmid》1982,8(1):29-35
Transduction of plasmid pBR322 by cytosine-substituted T4 phages has been studied. Three T4 phage mutants which substitute cytosine for all of hydroxymethylcytosine residues in the DNA, were shown to transduce pBR322 at frequencies of 2 × 10?2 to 4 × 10?3 transductants per singly infected cell. Also, three T4 phage strains which partially substitute cytosine for hydroxymethylcytosine, transduced pBR322 at frequencies of 2 × 10?3 to 2 × 10?4. The transduction frequencies of pBR322 we attained are at least 10-fold higher than those reported by G. G. Wilson, K. Young, and G. J. Edlin (1979, Nature (London)280, 80–82). We found that multiplicity of infection in preparation of the transducing phage is the most important factor affecting the frequency of pBR322 transduction. When a lysate made at a multiplicity of infection ranging from 0.5 to 0.05 was used as the donor phage, transduction frequency of pBR322 was 10- to 40-fold higher than that of high-m.o.i. lysate. The transduction frequency was not affected by either restriction systems or amber suppressors of the recipient cells. However, no pBR322-containing transductant was obtained when either recA or polA mutants were used as the recipients. DNA from T4dC phage containing pBR322-transducing particles was analyzed on agarose gel electrophoresis after cleavage with restriction endonucleases. It was suggested that the pBR322 DNA in the T4dC phage particles exists as head-to-tail concatemers.  相似文献   

15.
Experiments reported in the preceding paper [4] had shown that host-cell reactivation (HCR) of UV-irradiated phage T1 in excision-repair proficient Escherichia coli cells is inhibited by superinfection with phage T5. Theoretical considerations have led to predictions concerning the dependence of repair inhibition on the multiplicity of superinfecting T5 phage and on the UV fluence to which they were exposed. These predictions have been supported by experimental results described in this paper. The fluence dependence permitted calculation of the relative UV sensitivity of the gene function responsible for repair inhibition; it was found to be about 2.3% that of the plaque-forming ability of phage T5.The T5-inhibitable step in excision repair occurs early in the infective cycle of T1. Furthermore, experiments involving the presence of 400 μg/ml chloramphenicol showed that HCR inhibition of T1 is caused by a protein produced after the FST segment of T5 (i.e. the first 8% of the T5 genome) has entered the host cell. A previously described minor T1 recovery process, occuring in both excision-repair-proficient and -deficient host cells, is inhibited by T5 infection due to a different substance, which is most likely associated with the “second-step-transfer” region of T5 DNA (involving the remainder of the genome). Superinfection with T4ν1 phage resulted in HCR inhibition of T1, resembling that observed after T5 superinfection. The discussion of these results suggests that inhibition of the bacterial excision repair system by T5 or T4 infection occurs at the level of UV-endonucleolytic incision, and that lack of HCR both in T-even phages and in T5 can be explained in the same manner.  相似文献   

16.
Upon infection of Escherichia coli with bromodeoxyuridine-labeled t4 phage that had received 10 lethal hits of UV irradiation, a sizable amount of phage DNA was synthesized (approximately 36 phage equivalent units of DNA per infected bacterium), although very little multiplicity reactivation occurs. This progeny DNA was isolated and analyzed. This DNA was biased in its genetic representation, as shown by hybridization to cloned segments of the T4 genome immobilized on nitrocellulose filters. Preferentially amplified areas corresponded to regions containing origins of T4 DNA replication. The size of the progeny DNA increased with time after infection, possibly due to recombination between partial replicas and nonreplicated subunits or due to the gradual overcoming of the UV damage. As the size of the progeny DNA increased, all of the genes were more equally represented, resulting in a decrease in the genetic bias. Amplification of specific genetic areas was also observed upon infection with UV-irradiated, nonbromodeoxyuridine-substituted (light) phage. However, the genetic bias observed in this case was not as great as that observed with bromodeoxyuridine-substituted phage. This is most likely due to the higher efficiency of multiplicity reactivation of the light phage.  相似文献   

17.
A physicochemical study was made of the replication and transmission of UV-irradiated T4 genomes. The data presented in this paper justify the following conclusions. (i) For both low and high multiplicity of infection there was abundant replication from UV-irradiated parental templates. It exceeded by far the efficiency predicted by the hypothesis that a single lethal hit completely prevents replication of the killed phage DNA: i.e., some dead phage particles must replicate parts of thier DNA. (ii) Replication of the UV-irradiated DNA was repetitive as shown by density reversal experiments. (iii) Newly synthesized progeny DNA originating from UV-irradiated templates appeared as significantly shorter segments of the genomes than progeny DNA produced from non-UV-irradiated templates. A good correlation existed between the number of UV hits and the number of random cuts that would be needed to reduce replication fragments to the length observed. (iv) The contribution of UV-irradiated parental DNA among progeny phage in multiplicity reactivation was disposed in shorter subunits than was the DNA from unirradiated parental phage. It is important to emphasize that it was mainly in the form of replicative hybrid. These conclusions appear to justify excluding interparental recombination as a prerequisite for multiplicity reactivation. They lead directly to some form of partial replica hypothesis for multiplicity reactivation.  相似文献   

18.
Interparental recombination between injected T4 DNA molecules is indetectable for incomplete petite phages (carrying a terminally deficient genome and therefore unable to circularize) as well as for genetically complete phages. The nonvialbe petite phages can individually replicate their DNA repeatedly, and they aso undergo multiplicity reconstitution, producing complete phages, provided that a host bacterium is infected by several petite particles that carry genetically complementary segments of DNA. The formation of complete phages in multiplicity reconstitution must be due to recombination among incomplete progeny fragments, i.e., partial replicas of the T4 genomes. It evidently does not result from interparental recombination. To test for interparental recombination, light bacteria (containing no bromouracil) were simultaneously infected in light medium with light radioactive phage in minority (usually less than one per cell) and heavy (bromouracil-labeled) phage in majority (usually about nine per cell). Any interparental recombination should, under these circumstances of infection, head to movement of the radioactive label of the minority light phage DNA to a position of higher density. That possibility was not observed.  相似文献   

19.
Wild-type bacteriophage T4 was enriched for mutants which fail to degrade Escherichia coli deoxyribonucleic acid (DNA) by the following method. E. coli B was labeled in DNA at high specific activity with tritiated thymidine ((3)H-dT) and infected at low multiplicity with unmutagenized T4D. At 25 min after infection, the culture was lysed and stored. Wild-type T4 degrades the host DNA and incorporates the (3)H-dT into the DNA of progeny phage; mutants which fail to degrade the host DNA make unlabeled progeny phage. Wild-type progeny are eventually inactivated by tritium decay; mutants survive. Such mutants were found at a frequency of about 1% in the survivors. Eight mutants are in a single complementation group called denA located near gene 63. Four of these mutants which were examined in detail leave the bulk of the host DNA in large fragments. All eight mutants exhibit much less than normal T4 endonuclease II activity. The mutants produce somewhat fewer phage and less DNA than does wild-type T4.  相似文献   

20.
Endonuclease II-deficient, ligase-deficient double mutants of phage T4 induce considerably more deoxyribonucleic acid (DNA) synthesis after infection of Escherichia coli B than does the ligase-deficient single mutant. Furthermore, the double mutant can replicate 10 to 15% as well as wild-type T4, whereas the single mutant fails to replicate. When the E. coli host is also deficient in ligase, the double mutant resembles the single mutant. The results indicate that host ligase can substitute for phage ligase when the host DNA is not attacked by the phage-induced endonuclease II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号