首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ubiquitin-mediated protein degradation pathway has been emphasized for the regulation of numerous cellular mechanisms and the significance of deubiquitination, mediated by deubiquitinating (DUB) enzymes, has been emerging as an essential regulatory step to control these cellular mechanisms. Previously, we demonstrated a human DUB enzyme, HeLa DUB-1, expressed in human ovarian cancer cells. Here, we report human USP36, which has the extension of the C-terminal region of HeLa DUB-1 and has conserved amino acid domains as previously shown in other DUBs. Human USP36, encoding a DUB enzyme, was isolated from ovarian cancer cells using RT-PCR and characterized. We identified DUB enzyme activity of USP36 by analyzing its capability to cleave the ubiquitin. Interestingly, structural and immunoprecipitation analyses revealed for the first time that USP36 contains the PEST motif and is polyubiquitinated.  相似文献   

2.
Nrdp1 is a RING finger-containing E3 ubiquitin ligase that physically interacts with and regulates steady-state cellular levels of the ErbB3 and ErbB4 receptor tyrosine kinases and has been implicated in the degradation of the inhibitor-of-apoptosis protein BRUCE. Here we demonstrate that the Nrdp1 protein undergoes efficient proteasome-dependent degradation and that mutations in its RING finger domain that disrupt ubiquitin ligase activity enhance stability. These observations suggest that Nrdp1 self-ubiquitination and stability could play an important role in regulating the activity of this protein. Using affinity chromatography, we identified the deubiquitinating enzyme USP8 (also called Ubpy) as a protein that physically interacts with Nrdp1. Nrdp1 and USP8 could be coimmunoprecipitated, and in transfected cells USP8 specifically bound to Nrdp1 but not cbl, a RING finger E3 ligase involved in ligand-stimulated epidermal growth factor receptor down-regulation. The USP8 rhodanese and catalytic domains mediated Nrdp1 binding. USP8 markedly enhanced the stability of Nrdp1, and a point mutant that disrupts USP8 catalytic activity destabilized endogenous Nrdp1. Our results indicate that Nrdp1 is a specific target for the USP8 deubiquitinating enzyme and are consistent with a model where USP8 augments Nrdp1 activity by mediating its stabilization.  相似文献   

3.
Mdm2 is an E3 ubiquitin ligase that promotes its own ubiquitination and also ubiquitination of the p53 tumour suppressor. In a bacterial two-hybrid screen, using Mdm2 as bait, we identified an Mdm2-interacting peptide that bears sequence similarity to the deubiquitinating enzyme USP2a. We have established that full-length USP2a associates with Mdm2 in cells where it can deubiquitinate Mdm2 while demonstrating no deubiquitinating activity towards p53. Ectopic expression of USP2a causes accumulation of Mdm2 in a dose-dependent manner and consequently promotes Mdm2-mediated p53 degradation. This differs from the behaviour of HAUSP, which deubiquitinates p53 in addition to Mdm2 and thus protects p53 from Mdm2-mediated degradation. We further demonstrate that suppression of endogenous USP2a destabilises Mdm2 and causes accumulation of p53 protein and activation of p53. Our data identify the deubiquitinating enzyme USP2a as a novel regulator of the p53 pathway that acts through its ability to selectively target Mdm2.  相似文献   

4.
5.
6.
USP7 (HAUSP) is a deubiquitinating enzyme, which plays a crucial role in regulating the levels of the p53 tumour suppressor protein, through its ability to prevent the proteasomal degradation of the Ubiquitin ligase for p53, Hdm2. Supporting evidence suggests that an inhibitor of USP7 would act to abrogate the action of Hdm2, and thereby elevate levels of the p53 protein, with associated therapeutic benefits in cancer and potentially other diseases. In this article, we describe the characterisation of differential enzyme activity of both the full length and putative catalytic domain of human USP7 expressed in both bacterial and insect cell expression systems. We also demonstrate the way in which variations in the reducing environment surrounding the enzyme can dramatically affect both the stability of the enzyme and the range of small molecules able to inhibit the catalytic activity of the enzyme. Furthermore, we describe the validation and use of this assay for a high-throughput screening approach, again highlighting the critical nature of the enzyme's environment. Taken together, these findings not only increase our understanding of the enzymatic activity of deubiquitinating enzymes, but also highlight several key considerations of importance in the development of therapeutic agents against this novel class of therapeutic targets.  相似文献   

7.
RNA-binding protein LIN28A is often highly expressed in human malignant tumors and is involved in tumor metastasis and poor prognosis. Knowledge about post-translational regulatory mechanisms governing LIN28A protein stability and function is scarce. Here, we investigated the role of ubiquitination and deubiquitination on LIN28A protein stability and report that LIN28A protein undergoes ubiquitination. Ubiquitin-specific protease 28 (USP28), a deubiquitinating enzyme, interacts with and stabilizes LIN28A protein to extend its half-life. USP28, through its deubiquitinating activity, antagonizes LIN28A protein turnover by reversing its proteasomal degradation. Our study describes the consequential impacts of USP28-mediated stabilization of LIN28A protein on enhancing cancer cell viability, migration and ultimately augmenting LIN28A-mediated tumor progression. Overall, our data suggest that a synergistic, combinatorial approach of targeting LIN28A with USP28 would contribute to effective cancer therapeutics.  相似文献   

8.
Deubiquitinases (DUBs) have important biological functions, but their roles in breast cancer metastasis are not completely clear. In this study, through screening a series of DUBs related to breast cancer distant metastasis-free survival (DMFS) in the Kaplan-Meier Plotter database, we identified ubiquitin-specific protease 12 (USP12) as a key deubiquitinating enzyme for breast cancer metastasis. We confirmed this via an orthotopic mouse lung metastasis model. We revealed that the DMFS of breast cancer patients with high USP12 was worse than that of others. Knockdown of USP12 decreased the lung metastasis ability of 4T1 cells, while USP12 overexpression increased the lung metastasis ability of these cells in vivo. Furthermore, our results showed that the supernatant from USP12-overexpressing breast cancer cells could promote angiogenesis according to human umbilical vein endothelial cell (HUVEC) migration and tube formation assays. Subsequently, we identified midkine (MDK) as one of its substrates. USP12 could directly interact with MDK, decrease its polyubiquitination and increase its protein stability in cells. Overexpression of MDK rescued the loss of angiogenesis ability mediated by knockdown of USP12 in breast cancer cells in vitro and in vivo. There was a strong positive relationship between USP12 and MDK protein expression in clinical breast cancer samples. Consistent with the pattern for USP12, high MDK expression predicted lower DMFS and overall survival (OS) in breast cancer. Collectively, our study identified that USP12 is responsible for deubiquitinating and stabilizing MDK and leads to metastasis by promoting angiogenesis. Therefore, the USP12–MDK axis could serve as a potential target for the therapeutic treatment of breast cancer metastasis.Subject terms: Breast cancer, Breast cancer  相似文献   

9.
USP28 (ubiquitin-specific protease 28) is a deubiquitinating enzyme that has been implicated in the DNA damage response, the regulation of Myc signaling, and cancer progression. The half-life stability of major regulators of critical cellular pathways depends on the activities of specific ubiquitin E3 ligases that target them for proteosomal degradation and deubiquitinating enzymes that promote their stabilization. One function of the post-translational small ubiquitin modifier (SUMO) is the regulation of enzymatic activity of protein targets. In this work, we demonstrate that the SUMO modification of the N-terminal domain of USP28 negatively regulates its deubiquitinating activity, revealing a role for the N-terminal region as a regulatory module in the control of USP28 activity. Despite the presence of ubiquitin-binding domains in the N-terminal domain, its truncation does not impair deubiquitinating activity on diubiquitin or polyubiquitin chain substrates. In contrast to other characterized USP deubiquitinases, our results indicate that USP28 has a chain preference activity for Lys11, Lys48, and Lys63 diubiquitin linkages.  相似文献   

10.
USP33/VDU1 is a deubiquitinating enzyme that binds to the von Hippel-Lindau tumor suppressor protein. It also regulates thyroid hormone activation by deubiquitinating type 2 iodothyronine deiodinase. USP33/VDU1 contains a ZF UBP domain, a protein module found in many proteins in the ubiquitin-proteasome system. Several ZF UBP domains have been shown to bind ubiquitin, and a structure of a complex of the ZF UBP domain of isoT/USP5 and ubiquitin is available. In the present work, the solution structure of the ZF UBP domain of USP33/VDU1 has been determined by NMR spectroscopy. The structure differs from that of the USP5 domain, which contains only one of the three Zn ions present in the USP33/VDU1 structure. The USP33/VDU1 ZnF UBP domain does not bind to ubiquitin.  相似文献   

11.
Zhang W  Tian QB  Li QK  Wang JM  Wang CN  Liu T  Liu DW  Wang MW 《PloS one》2011,6(10):e26297
Deubiquitinating enzymes (DUBs) regulate diverse cellular functions by their activity of cleaving ubiquitin from specific protein substrates. Ubiquitin-Specific Protease 46 (USP46) has recently been identified as a quantitative trait gene responsible for immobility in the tail suspension test and forced swimming test in mice. Mice with a lysine codon (Lys 92) deletion in USP46 exhibited loss of 'behavioral despair' under inescapable stresses in addition to abnormalities in circadian behavioral rhythms and the GABAergic system. However, whether this deletion affects enzyme activity is unknown. Here we show that USP46 has deubiquitinating enzyme activity detected by USP cleavage assay using GST-Ub52 as a model substrate. Interestingly, compared to wild type, the Lys 92 deletion mutant resulted in a decreased deubiquitinating enzyme activity of 27.04%. We also determined the relative expression levels of Usp46 in rat tissues using real-time RT-PCR. Usp46 mRNA was expressed in various tissues examined including brain, with the highest expression in spleen. In addition, like rat USP46, both human and mouse USP46 are active toward to the model substrate, indicating the USP cleavage assay is a simple method for testing the deubiquitinating enzyme activity of USP46. These results suggest that the Lys 92 deletion of USP46 could influence enzyme activity and thereby provide a molecular clue how the enzyme regulating the pathogenesis of mental illnesses.  相似文献   

12.
Liao TL  Wu CY  Su WC  Jeng KS  Lai MM 《The EMBO journal》2010,29(22):3879-3890
Influenza A virus RNA replication requires an intricate regulatory network involving viral and cellular proteins. In this study, we examined the roles of cellular ubiquitinating/deubiquitinating enzymes (DUBs). We observed that downregulation of a cellular deubiquitinating enzyme USP11 resulted in enhanced virus production, suggesting that USP11 could inhibit influenza virus replication. Conversely, overexpression of USP11 specifically inhibited viral genomic RNA replication, and this inhibition required the deubiquitinase activity. Furthermore, we showed that USP11 interacted with PB2, PA, and NP of viral RNA replication complex, and that NP is a monoubiquitinated protein and can be deubiquitinated by USP11 in vivo. Finally, we identified K184 as the ubiquitination site on NP and this residue is crucial for virus RNA replication. We propose that ubiquitination/deubiquitination of NP can be manipulated for antiviral therapeutic purposes.  相似文献   

13.
SUMOylation plays a crucial role in regulating diverse cellular processes including ribosome biogenesis. Proteomic analyses and experimental evidence showed that a number of nucleolar proteins involved in ribosome biogenesis are modified by SUMO. However, how these proteins are SUMOylated in cells is less understood. Here, we report that USP36, a nucleolar deubiquitinating enzyme (DUB), promotes nucleolar SUMOylation. Overexpression of USP36 enhances nucleolar SUMOylation, whereas its knockdown or genetic deletion reduces the levels of SUMOylation. USP36 interacts with SUMO2 and Ubc9 and directly mediates SUMOylation in cells and in vitro. We show that USP36 promotes the SUMOylation of the small nucleolar ribonucleoprotein (snoRNP) components Nop58 and Nhp2 in cells and in vitro and their binding to snoRNAs. It also promotes the SUMOylation of snoRNP components Nop56 and DKC1. Functionally, we show that knockdown of USP36 markedly impairs rRNA processing and translation. Thus, USP36 promotes snoRNP group SUMOylation and is critical for ribosome biogenesis and protein translation.  相似文献   

14.
Damage-specific DNA-binding protein 2 (DDB2) was first isolated as a subunit of the UV-DDB heterodimeric complex that is involved in DNA damage recognition in the nucleotide excision repair pathway (NER). DDB2 is required for efficient repair of CPDs in chromatin and is a component of the CRL4DDB2 E3 ligase that targets XPC, histones and DDB2 itself for ubiquitination. In this study, a yeast two-hybrid screening of a human cDNA library was performed to identify potential DDB2 cellular partners. We identified a deubiquitinating enzyme, USP24, as a likely DDB2-interacting partner. Interaction between DDB2 and USP24 was confirmed by co-precipitation. Importantly, knockdown of USP24 in two human cell lines decreased the steady-state levels of DDB2, indicating that USP24-mediated DDB2 deubiquitination prevents DDB2 degradation. In addition, we demonstrated that USP24 can cleave an ubiquitinated form of DDB2 in vitro. Taken together, our results suggest that the ubiquitin-specific protease USP24 is a novel regulator of DDB2 stability.  相似文献   

15.
Damage-specific DNA-binding protein 2 (DDB2) was first isolated as a subunit of the UV-DDB heterodimeric complex that is involved in DNA damage recognition in the nucleotide excision repair pathway (NER). DDB2 is required for efficient repair of CPDs in chromatin and is a component of the CRL4DDB2 E3 ligase that targets XPC, histones and DDB2 itself for ubiquitination. In this study, a yeast two-hybrid screening of a human cDNA library was performed to identify potential DDB2 cellular partners. We identified a deubiquitinating enzyme, USP24, as a likely DDB2-interacting partner. Interaction between DDB2 and USP24 was confirmed by co-precipitation. Importantly, knockdown of USP24 in two human cell lines decreased the steady-state levels of DDB2, indicating that USP24-mediated DDB2 deubiquitination prevents DDB2 degradation. In addition, we demonstrated that USP24 can cleave an ubiquitinated form of DDB2 in vitro. Taken together, our results suggest that the ubiquitin-specific protease USP24 is a novel regulator of DDB2 stability.  相似文献   

16.
17.
The mammalian circadian clock coordinates various physiological activities with environmental cues to achieve optimal adaptation. The clock manifests oscillations of key clock proteins, which are under dynamic control at multiple post-translational levels. As a major post-translational regulator, the ubiquitination-dependent proteasome degradation system is counterbalanced by a large group of deubiquitin proteases with distinct substrate preference. Until now, whether deubiquitination by ubiquitin-specific proteases can regulate the clock protein stability and circadian pathways remains largely unclear. The mammalian clock protein, cryptochrome 1 (CRY1), is degraded via the FBXL3-mediated ubiquitination pathway, suggesting that it is also likely to be targeted by the deubiquitination pathway. Here, we identified that USP2a, a circadian-controlled deubiquitinating enzyme, interacts with CRY1 and enhances its protein stability via deubiquitination upon serum shock. Depletion of Usp2a by shRNA greatly enhances the ubiquitination of CRY1 and dampens the oscillation amplitude of the CRY1 protein during a circadian cycle. By stabilizing the CRY1 protein, USP2a represses the Per2 promoter activity as well as the endogenous Per2 gene expression. We also demonstrated that USP2a-dependent deubiquitination and stabilization of the CRY1 protein occur in the mouse liver. Interestingly, the pro-inflammatory cytokine, TNF-α, increases the CRY1 protein level and inhibits circadian gene expression in a USP2a-dependent fashion. Therefore, USP2a potentially mediates circadian disruption by suppressing the CRY1 degradation during inflammation.  相似文献   

18.
Herpes simplex virus-1 immediate-early protein ICP0 activates viral genes during early stages of infection, affects cellular levels of multiple host proteins and is crucial for effective lytic infection. Being a RING-type E3 ligase prone to auto-ubiquitination, ICP0 relies on human deubiquitinating enzyme USP7 for protection against 26S proteasomal mediated degradation. USP7 is involved in apoptosis, epigenetics, cell proliferation and is targeted by several herpesviruses. Several USP7 partners, including ICP0, GMPS, and UHRF1, interact through its C-terminal domain (CTD), which contains five ubiquitin-like (Ubl) structures. Despite the fact that USP7 has emerged as a drug target for cancer therapy, structural details of USP7 regulation and the molecular mechanism of interaction at its CTD have remained elusive. Here, we mapped the binding site between an ICP0 peptide and USP7 and determined the crystal structure of the first three Ubl domains bound to the ICP0 peptide, which showed that ICP0 binds to a loop on Ubl2. Sequences similar to the USP7-binding site in ICP0 were identified in GMPS and UHRF1 and shown to bind USP7-CTD through Ubl2. In addition, co-immunoprecipitation assays in human cells comparing binding to USP7 with and without a Ubl2 mutation, confirmed the importance of the Ubl2 binding pocket for binding ICP0, GMPS and UHRF1. Therefore we have identified a novel mechanism of USP7 recognition that is used by both viral and cellular proteins. Our structural information was used to generate a model of near full-length USP7, showing the relative position of the ICP0/GMPS/UHRF1 binding pocket and the structural basis by which it could regulate enzymatic activity.  相似文献   

19.
20.
CLASPIN is an essential mediator in the DNA replication checkpoint, responsible for ATR (ataxia telangiectasia and Rad3-related protein)-dependent activation of CHK1 (checkpoint kinase 1). Here we found a dynamic signaling pathway that regulates CLASPIN turn over. Under unperturbed conditions, the E3 ubiquitin ligase HERC2 regulates the stability of the deubiquitinating enzyme USP20 by promoting ubiquitination-mediated proteasomal degradation. Under replication stress, ATR-mediated phosphorylation of USP20 results in the disassociation of HERC2 from USP20. USP20 in turn deubiquitinates K48-linked-polyubiquitinated CLASPIN, stabilizing CLASPIN and ultimately promoting CHK1 phosphorylation and CHK1-directed checkpoint activation. Inhibition of USP20 expression promotes chromosome instability and xenograft tumor growth. Taken together, our findings demonstrated a novel function of HERC2/USP20 in coordinating CHK1 activation by modulating CLASPIN stability, which ultimately promotes genome stability and suppresses tumor growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号