首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of our work was to develop heuristics for visualizing and interpreting gene-environment interactions (GEIs) and to assess the dependence of candidate visualization metrics on biological and study-design factors. Two information-theoretic metrics, the k-way interaction information (KWII) and the total correlation information (TCI), were investigated. The effectiveness of the KWII and TCI to detect GEIs in a diverse range of simulated data sets and a Crohn disease data set was assessed. The sensitivity of the KWII and TCI spectra to biological and study-design variables was determined. Head-to-head comparisons with the relevance-chain, multifactor dimensionality reduction, and the pedigree disequilibrium test (PDT) methods were obtained. The KWII and TCI spectra, which are graphical summaries of the KWII and TCI for each subset of environmental and genotype variables, were found to detect each known GEI in the simulated data sets. The patterns in the KWII and TCI spectra were informative for factors such as case-control misassignment, locus heterogeneity, allele frequencies, and linkage disequilibrium. The KWII and TCI spectra were found to have excellent sensitivity for identifying the key disease-associated genetic variations in the Crohn disease data set. In head-to-head comparisons with the relevance-chain, multifactor dimensionality reduction, and PDT methods, the results from visual interpretation of the KWII and TCI spectra performed satisfactorily. The KWII and TCI are promising metrics for visualizing GEIs. They are capable of detecting interactions among numerous single-nucleotide polymorphisms and environmental variables for a diverse range of GEI models.  相似文献   

2.
We developed a computationally efficient algorithm AMBIENCE, for identifying the informative variables involved in gene-gene (GGI) and gene-environment interactions (GEI) that are associated with disease phenotypes. The AMBIENCE algorithm uses a novel information theoretic metric called phenotype-associated information (PAI) to search for combinations of genetic variants and environmental variables associated with the disease phenotype. The PAI-based AMBIENCE algorithm effectively and efficiently detected GEI in simulated data sets of varying size and complexity, including the 10K simulated rheumatoid arthritis data set from Genetic Analysis Workshop 15. The method was also successfully used to detect GGI in a Crohn's disease data set. The performance of the AMBIENCE algorithm was compared to the multifactor dimensionality reduction (MDR), generalized MDR (GMDR), and pedigree disequilibrium test (PDT) methods. Furthermore, we assessed the computational speed of AMBIENCE for detecting GGI and GEI for data sets varying in size from 100 to 10(5) variables. Our results demonstrate that the AMBIENCE information theoretic algorithm is useful for analyzing a diverse range of epidemiologic data sets containing evidence for GGI and GEI.  相似文献   

3.

Background

Multifactor dimensionality reduction (MDR) is widely used to analyze interactions of genes to determine the complex relationship between diseases and polymorphisms in humans. However, the astronomical number of high-order combinations makes MDR a highly time-consuming process which can be difficult to implement for multiple tests to identify more complex interactions between genes. This study proposes a new framework, named fast MDR (FMDR), which is a greedy search strategy based on the joint effect property.

Results

Six models with different minor allele frequencies (MAFs) and different sample sizes were used to generate the six simulation data sets. A real data set was obtained from the mitochondrial D-loop of chronic dialysis patients. Comparison of results from the simulation data and real data sets showed that FMDR identified significant gene–gene interaction with less computational complexity than the MDR in high-order interaction analysis.

Conclusion

FMDR improves the MDR difficulties associated with the computational loading of high-order SNPs and can be used to evaluate the relative effects of each individual SNP on disease susceptibility. FMDR is freely available at http://bioinfo.kmu.edu.tw/FMDR.rar.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1717-8) contains supplementary material, which is available to authorized users.  相似文献   

4.
There are over 700,000 putative G4-quadruplexes (G4Qs) in the human genome, found largely in promoter regions, telomeres, and other regions of high regulation. Growing evidence links their presence to functionality in various cellular processes, where cellular proteins interact with them, either stabilizing and/or anchoring upon them, or unwinding them to allow a process to proceed. Interest in understanding and manipulating the plethora of processes regulated by these G4Qs has spawned a new area of small-molecule binder development, with attempts to mimic and block the associated G4-binding protein (G4BP). Despite the growing interest and focus on these G4Qs, there is limited data (in particular, high-resolution structural information), on the nature of these G4Q-G4BP interactions and what makes a G4BP selective to certain G4Qs, if in fact they are at all. This review summarizes the current literature on G4BPs with regards to their interactions with G4Qs, providing groupings for binding mode, drawing conclusions around commonalities and highlighting information on specific interactions where available.  相似文献   

5.
de Andrade  Mariza  Warwick Daw  E.  Kraja  Aldi T.  Fisher  Virginia  Wang  Lan  Hu  Ke  Li  Jing  Romanescu  Razvan  Veenstra  Jenna  Sun  Rui  Weng  Haoyi  Zhou  Wenda 《BMC genetics》2018,19(1):119-125
Background

GAW20 working group 5 brought together researchers who contributed 7 papers with the aim of evaluating methods to detect genetic by epigenetic interactions. GAW20 distributed real data from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study, including single-nucleotide polymorphism (SNP) markers, methylation (cytosine-phosphate-guanine [CpG]) markers, and phenotype information on up to 995 individuals. In addition, a simulated data set based on the real data was provided.

Results

The 7 contributed papers analyzed these data sets with a number of different statistical methods, including generalized linear mixed models, mediation analysis, machine learning, W-test, and sparsity-inducing regularized regression. These methods generally appeared to perform well. Several papers confirmed a number of causative SNPs in either the large number of simulation sets or the real data on chromosome 11. Findings were also reported for different SNPs, CpG sites, and SNP–CpG site interaction pairs.

Conclusions

In the simulation (200 replications), power appeared generally good for large interaction effects, but smaller effects will require larger studies or consortium collaboration for realizing a sufficient power.

  相似文献   

6.
Mutation accumulation (MA) and antagonistic pleiotropy (AP) have each been hypothesized to explain the evolution of 'senescence' or deteriorating fitness in old age. These hypotheses make contrasting predictions concerning age dependence in inbreeding depression in traits that show senescence. Inbreeding depression is predicted to increase with age under MA but not under AP, suggesting one empirical means by which the two can be distinguished. We use pedigree and life-history data from free-living song sparrows (Melospiza melodia) to test for additive and interactive effects of age and individual inbreeding coefficient (f) on fitness components, and thereby assess the evidence for MA. Annual reproductive success (ARS) and survival (and therefore reproductive value) declined in old age in both sexes, indicating senescence in this short-lived bird. ARS declined with f in both sexes and survival declined with f in males, indicating inbreeding depression in fitness. We observed a significant agexf interaction for male ARS (reflecting increased inbreeding depression as males aged), but not for female ARS or survival in either sex. These analyses therefore provide mixed support for MA. We discuss the strengths and limitations of such analyses and therefore the value of natural pedigreed populations in testing evolutionary models of senescence.  相似文献   

7.
Benthic species and communities are linked to pelagic zooplankton through life‐stages encompassing both benthic and pelagic habitats and through a mutual dependency on primary producers as a food source. Many zooplankton taxa contribute to the sedimentary system as benthic eggs. Our main aim was to investigate the nature of the population level biotic interactions between and within these two seemingly independent communities, both dependent on the pelagic primary production, while simultaneously accounting for environmental drivers (salinity, temperature, and oxygen conditions). To this end, we applied multivariate autoregressive state‐space models to long (1966–2007) time series of annual abundance data, comparing models with and without interspecific interactions, and models with and without environmental variables included. We were not able to detect any direct coupling between sediment‐dwelling benthic taxa and pelagic copepods and cladocerans on the annual scale, but the most parsimonious model indicated that interactions within the benthic community are important. There were also positive residual correlations between the copepods and cladocerans potentially reflecting the availability of a shared resource or similar seasonal dependence, whereas both groups tended to correlate negatively with the zoobenthic taxa. The most notable single interaction within the benthic community was a tendency for a negative effect of Limecola balthica on the amphipods Monoporeia affinis and Pontoporeia femorata which can help explain the observed decrease in amphipods due to increased competitive interference.  相似文献   

8.

Background

GAW20 working group 5 brought together researchers who contributed 7 papers with the aim of evaluating methods to detect genetic by epigenetic interactions. GAW20 distributed real data from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study, including single-nucleotide polymorphism (SNP) markers, methylation (cytosine-phosphate-guanine [CpG]) markers, and phenotype information on up to 995 individuals. In addition, a simulated data set based on the real data was provided.

Results

The 7 contributed papers analyzed these data sets with a number of different statistical methods, including generalized linear mixed models, mediation analysis, machine learning, W-test, and sparsity-inducing regularized regression. These methods generally appeared to perform well. Several papers confirmed a number of causative SNPs in either the large number of simulation sets or the real data on chromosome 11. Findings were also reported for different SNPs, CpG sites, and SNP–CpG site interaction pairs.

Conclusions

In the simulation (200 replications), power appeared generally good for large interaction effects, but smaller effects will require larger studies or consortium collaboration for realizing a sufficient power.
  相似文献   

9.
Few association mapping studies have simultaneously accounted for population structure, genotype by environment interaction (GEI), and spatial variation. In this sugarcane association mapping study we tested models accounting for these factors and identified the impact that each model component had on the list of markers declared as being significantly associated with traits. About 480 genotypes were evaluated for cane yield and sugar content at three sites and scored with DArT markers. A mixed model was applied in analysis of the data to simultaneously account for the impacts of population structure, GEI, and spatial variation within a trial. Two forms of the DArT marker data were used in the analysis: the standard discrete data (0, 1) and a continuous DArT score, which is related to the marker dosage. A large number of markers were significantly associated with cane yield and sugar content. However, failure to account for population structure, GEI, and (or) spatial variation produced both type I and type II errors, which on the one hand substantially inflated the number of significant markers identified (especially true for failing to account for GEI) and on the other hand resulted in failure to detect markers that could be associated with cane yield or sugar content (especially when failing to account for population structure). We concluded that association mapping based on trials from one site or analysis that failed to account for GEI would produce many trial-specific associated markers that would have low value in breeding programs.  相似文献   

10.
Here, we propose a binding site prediction method based on the high frequency end of the spectrum in the native state of the protein structural dynamics. The spectrum is obtained using an elastic network model (GNM). High frequency vibrating (HFV) residues are determined from the fastest modes dynamics. HFV residue clusters and the associated surface patch residues are tested for their likelihood to locate at the binding interfaces using two different data sets, the Benchmark Set of mainly enzymes and antigen/antibodies and the Cluster Set of more diverse structures. The binding interface is identified to be within 7.5 A of the HFV residue clusters in the Benchmark Set and Cluster Set, for 77% and 70% of the structures, respectively. The success rate increases to 88% and 84%, respectively, by using the surface patches. The results suggest that concave binding interfaces, typically those of enzyme-binding sites, are enriched by the HFV residues. Thus, we expect that the association of HFV residues with the interfaces is mostly for enzymes. If, however, a binding region has invaginations and cavities, as in some of the antigen/antibodies and in cases in the Cluster data set, we expect it would be detected there too. This implies that binding sites possess several (inter-related) properties such as cavities, high packing density, conservation, and disposition for hotspots at binding surfaces. It further suggests that the high frequency vibrating residue-based approach is a potential tool for identification of regions likely to serve as protein-binding sites. The software is available at http://www.prc.boun.edu.tr/PRC/software.html.  相似文献   

11.
Eps15 homology (EH) domain-containing proteins play a key regulatory role in intracellular membrane trafficking and cell signalling. EH domains serve as interaction platforms for short peptide motifs comprising the residues NPF within natively unstructured regions of accessory proteins. The EH-NPF interactions described thus far are of very low affinity and specificity. Here, we identify the presynaptic endocytic sorting adaptor stonin2 as a high-affinity ligand for the second EH domain (EH2) of the clathrin accessory protein Eps15. Calorimetric data indicate that both NPF motifs within stonin2 interact with EH2 simultaneously and with sub-micromolar affinity. The solution structure of this complex reveals that the first NPF motif binds to the conserved site on the EH domain, whereas the second motif inserts into a novel hydrophobic pocket. Our data show how combination of two EH-attachment sites provides a means for modulating specificity and allows discrimination from a large pool of potential binding partners containing NPF motifs.  相似文献   

12.
Identifying susceptibility genes that influence complex diseases is extremely difficult because loci often influence the disease state through genetic interactions. Numerous approaches to detect disease-associated SNP-SNP interactions have been developed, but none consistently generates high-quality results under different disease scenarios. Using summarizing techniques to combine a number of existing methods may provide a solution to this problem. Here we used three popular non-parametric methods—Gini, absolute probability difference (APD), and entropy—to develop two novel summary scores, namely principle component score (PCS) and Z-sum score (ZSS), with which to predict disease-associated genetic interactions. We used a simulation study to compare performance of the non-parametric scores, the summary scores, the scaled-sum score (SSS; used in polymorphism interaction analysis (PIA)), and the multifactor dimensionality reduction (MDR). The non-parametric methods achieved high power, but no non-parametric method outperformed all others under a variety of epistatic scenarios. PCS and ZSS, however, outperformed MDR. PCS, ZSS and SSS displayed controlled type-I-errors (< 0.05) compared to GS, APDS, ES (> 0.05). A real data study using the genetic-analysis-workshop 16 (GAW 16) rheumatoid arthritis dataset identified a number of interesting SNP-SNP interactions.  相似文献   

13.
Emerging high-throughput techniques for the characterization of protein and protein-complex structures yield noisy data with sparse information content, placing a significant burden on computation to properly interpret the experimental data. One such technique uses cross-linking (chemical or by cysteine oxidation) to confirm or select among proposed structural models (e.g., from fold recognition, ab initio prediction, or docking) by testing the consistency between cross-linking data and model geometry. This paper develops a probabilistic framework for analyzing the information content in cross-linking experiments, accounting for anticipated experimental error. This framework supports a mechanism for planning experiments to optimize the information gained. We evaluate potential experiment plans using explicit trade-offs among key properties of practical importance: discriminability, coverage, balance, ambiguity, and cost. We devise a greedy algorithm that considers those properties and, from a large number of combinatorial possibilities, rapidly selects sets of experiments expected to discriminate pairs of models efficiently. In an application to residue-specific chemical cross-linking, we demonstrate the ability of our approach to plan experiments effectively involving combinations of cross-linkers and introduced mutations. We also describe an experiment plan for the bacteriophage lambda Tfa chaperone protein in which we plan dicysteine mutants for discriminating threading models by disulfide formation. Preliminary results from a subset of the planned experiments are consistent and demonstrate the practicality of planning. Our methods provide the experimenter with a valuable tool (available from the authors) for understanding and optimizing cross-linking experiments.  相似文献   

14.
Vultures are recognized as the scroungers of the natural world, owing to their ecological role as obligate scavengers. While it is well known that vultures use intraspecific social information as they forage, the possibility of inter-guild social information transfer and the resulting multi-species social dilemmas has not been explored. Here, we use data on arrival times at carcasses to show that such social information transfer occurs, with raptors acting as producers of information and vultures acting as scroungers of information. We develop a game-theoretic model to show that competitive asymmetry, whereby vultures dominate raptors at carcasses, predicts this evolutionary outcome. We support this theoretical prediction using empirical data from competitive interactions at carcasses. Finally, we use an individual-based model to show that these producer–scrounger dynamics lead to vultures being vulnerable to declines in raptor populations. Our results show that social information transfer can lead to important non-trophic interactions among species and highlight important potential links among social evolution, community ecology and conservation biology. With vulture populations suffering global declines, our study underscores the importance of ecosystem-based management for these endangered keystone species.  相似文献   

15.
16.
17.
Epidemiological models generally assume that the number of susceptible individuals that become infected within a unit of time depends on the density of the hosts and the concentration of parasites (i.e. mass-action principle). However, empirical studies have found significant deviations from this assumption due to biotic and abiotic factors, such as seasonality, the spatial structure of the host population and host heterogeneity with respect to immunity and susceptibility. In this paper, we examine the effect of the dose level of the bacterial endoparasite Pasteuria ramosa on the infection rate of its host, the water flea Daphnia magna. Using seven host clones and two parasite isolates, we measure the fraction of infected hosts after exposure to eight different parasite doses to determine whether there is variation in the infection process across different host clone-parasite isolate combinations. In five combinations, a pronounced dose-dependent infection pattern was found. Using a likelihood approach, we compare the infection data of these five combinations to the fit of three mathematical models: a mass-action model, a parasite antagonism model (i.e. an increase in the parasite dose leads to an under-proportionate increase in the infection rate per host) and a heterogeneous host model. We found that the host heterogeneity model, in which we assumed the existence of non-inherited phenotypic differences in host susceptibilities to the parasite, provides the best fit. Our analysis suggests that among 5 out of the 14 host clone-parasite isolate combinations that resulted in appreciable infections, non-genetic host heterogeneity plays an important role.  相似文献   

18.

BACKGROUND:

Idiopathic pulmonary arterial hypertension (IPAH) is a poorly understood complex disorder, which results in progressive remodeling of the pulmonary artery that ultimately leads to right ventricular failure. A two-hit hypothesis has been implicated in pathogenesis of IPAH, according to which the vascular abnormalities characteristic of PAH are triggered by the accumulation of genetic and/or environmental insults in an already existing genetic background. The multifactor dimensionality reduction (MDR) analysis is a statistical method used to identify gene–gene interaction or epistasis and gene–environment interactions that are associated with a particular disease. The MDR method collapses high-dimensional genetic data into a single dimension, thus permitting interactions to be detected in relatively small sample sizes.

AIM:

To identify and characterize polymorphisms/genes that increases the susceptibility to IPAH using MDR analysis.

MATERIALS AND METHODS:

A total of 77 IPAH patients and 100 controls were genotyped for eight polymorphisms of five genes (5HTT, EDN1, NOS3, ALK-1, and PPAR-γ2). MDR method was adopted to determine gene–gene interactions that increase the risk of IPAH.

RESULTS:

With MDR method, the single-locus model of 5HTT (L/S) polymorphism and the combination of 5HTT(L/S), EDN1(K198N), and NOS3(G894T) polymorphisms in the three-locus model were attributed to be the best models for predicting susceptibility to IPAH, with a P value of 0.05.

CONCLUSION:

MDR method can be useful in understanding the role of epistatic and gene–environmental interactions in pathogenesis of IPAH.  相似文献   

19.
20.
Pathogens have evolved numerous strategies to infect their hosts, while hosts have evolved immune responses and other defenses to these foreign challenges. The vast majority of host-pathogen interactions involve protein-protein recognition, yet our current understanding of these interactions is limited. Here, we present and apply a computational whole-genome protocol that generates testable predictions of host-pathogen protein interactions. The protocol first scans the host and pathogen genomes for proteins with similarity to known protein complexes, then assesses these putative interactions, using structure if available, and, finally, filters the remaining interactions using biological context, such as the stage-specific expression of pathogen proteins and tissue expression of host proteins. The technique was applied to 10 pathogens, including species of Mycobacterium, apicomplexa, and kinetoplastida, responsible for "neglected" human diseases. The method was assessed by (1) comparison to a set of known host-pathogen interactions, (2) comparison to gene expression and essentiality data describing host and pathogen genes involved in infection, and (3) analysis of the functional properties of the human proteins predicted to interact with pathogen proteins, demonstrating an enrichment for functionally relevant host-pathogen interactions. We present several specific predictions that warrant experimental follow-up, including interactions from previously characterized mechanisms, such as cytoadhesion and protease inhibition, as well as suspected interactions in hypothesized networks, such as apoptotic pathways. Our computational method provides a means to mine whole-genome data and is complementary to experimental efforts in elucidating networks of host-pathogen protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号