首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between the levels of 70 kDa family heat shock protein (Hsp) synthesis and lymphocyte sensitivity to stressors was investigated. Lymphocyte cultivation in mitogen deprived culture medium and/or the cell treatment with alkylating agents have been used as a stress challenge. Model experiments with two inbred murine strains genetically contrasting by the sensitivity to alkylating agents demonstrated that the basic level of Hsp synthesis depends on genotype. The quantity Hsp70 mRNA, as well as intracellular level of the proteins, in BALB/c was significantly higher than those in C57BL/6 mice. The mice, which were characterized by higher Hsp levels, demonstrated higher resistance to alkylating agent action. The induction of surplus amount of Hsp by heat shock increased the cell resistance to an alkylating agent melphalan. Lymphocyte isolated from high Hsp producers BALB/c mice were more resistant to apoptotic signals induced by mitogen deprivation.  相似文献   

2.
3.
Heat shock protein 70 (Hsp70), a protein induced in cells exposed to sublethal heat shock, is present in all living cells and has been highly conserved during evolution. The aim of the current study was to determine the role of heat shock proteins in the resistance of prostate carcinoma cell line spheroids to hyperthermia. In vitro, the expression of Hsp70 by the DU 145 cell line, when cultured as monolayer or multicellular spheroids, was studied using Western blotting and enzyme-linked immunosorbent assay methods. The level of Hsp70 in spheroid cultures for up to 26 days at 37 degrees C remained similar to monolayer cultures. However, in samples treated with hyperthermia at 43 degrees C for 120 min, the spheroid cultures expressed a higher level of Hsp70 as compared to monolayer culture. Under similar conditions of heat treatment, the spheroids showed more heat resistance than monolayer cultures as judged by the number of colonies that they formed in suspension cultures. The results suggest that cells cultured in multicellular spheroids showed more heat resistance as compared to monolayer cultures by producing higher levels of Hsp70.  相似文献   

4.
The 65 kilodalton heat shock protein (Hsp65) from mycobacterial species elicits immune responses and in some cases protective immunity. Here we have used a DNA sublibrary approach to identify antigenic fragments of Mycobacterium avium Hsp65 and a synthetic peptide approach to delineate CD4+ T cell determinants. A panel of Hsp65 reactive CD4+ T cell clones was established from lymph node cells obtained from BALB/c mice immunized with recombinant Hsp65. The clones were tested for proliferative reactivity against the products of the DNA sublibrary of the hsp65 gene. A T cell epitope, restricted by the I-Ad molecule, was identified within the C-terminal region of Hsp65 and the minimal epitope (amino acid residues 489-503) delineated using overlapping peptides spanning the C-terminal fragment. Additionally, the CD4+ T cell clone recognizing this epitope also responded to native Hsp65 present in M. avium lysates by both proliferation and cytokine production, indicating that the epitope was present and processed similarly both in the native and the recombinant forms of Hsp65. This sequence identified in BALB/c mice (Hsp65 489-503) is identical in other mycobacteria, notably M. tuberculosis, M. bovis and M. leprae, suggesting the epitope may have wider application in murine models of other mycobacterial infections.  相似文献   

5.
Sensory hair cells of the inner ear are sensitive to death from aging, noise trauma, and ototoxic drugs. Ototoxic drugs include the aminoglycoside antibiotics and the antineoplastic agent cisplatin. Exposure to aminoglycosides results in hair cell death that is mediated by specific apoptotic proteins, including c-Jun N-terminal kinase (JNK) and caspases. Induction of heat shock proteins (Hsps) can inhibit JNK- and caspase-dependent apoptosis in a variety of systems. We have previously shown that heat shock results in robust upregulation of Hsps in the hair cells of the adult mouse utricle in vitro. In addition, heat shock results in significant inhibition of both cisplatin- and aminoglycoside-induced hair cell death. In this system, Hsp70 is the most strongly induced Hsp, which is upregulated over 250-fold at the level of mRNA 2 h after heat shock. Hsp70 overexpression inhibits aminoglycoside-induced hair cell death in vitro. In this study, we utilized Hsp70-overexpressing mice to determine whether Hsp70 is protective in vivo. Both Hsp70-overexpressing mice and their wild-type littermates were treated with systemic kanamycin (700 mg/kg body weight) twice daily for 14 days. While kanamycin treatment resulted in significant hearing loss and hair cell death in wild-type mice, Hsp70-overexpressing mice were significantly protected against aminoglycoside-induced hearing loss and hair cell death. These data indicate that Hsp70 is protective against aminoglycoside-induced ototoxicity in vivo.  相似文献   

6.
The proliferative response of spleen cells from BALB/c mice to stimulation with a T cell mitogen, concanavalin A (Con A), was two or more times stronger than that of cells from C57BL/10SnSc (B10) mice. In contrast, the cells from B10 mice responded better to B cell mitogen bacterial lipopolysaccharide (LPS). The differences in the proliferative response to Con A stimulation were not associated with the function of macrophages nor did they depend on IL-1. Spleen cells from BALB/c and B10 mice synthesized comparable amounts of mRNA for IL-1 alpha, and the production of biologically active IL-1 was even higher in the B10 strain. Indomethacin, an inhibitor of prostaglandin synthesis, had no effect on the differences in reactivity between the cells from BALB/c and B10 mice. In addition, no differences in the synthesis of mRNA for the inducible 55-kDa interleukin-2 (IL-2) receptors were found between the spleen cells from BALB/c and B10 mice. However, Con A-stimulated spleen cells from B10 mice produced a significantly lower amount of biologically active IL-2 than similarly stimulated cells from BALB/c mice. In the presence of exogenous IL-2, these low responder spleen cells from the B10 mice responded by proliferation to Con A stimulation to the same extent as cells from the BALB/c mice. These results thus show that a low proliferative response to Con A stimulation in B10 mice was a consequence of a lower production of IL-2 and possibly abrogated the proliferative hyporeactivity produced by exogenous IL-2. We suggest that the differences in the ability to produce IL-2 could be a reason for the discrepancies observed in the immunological responsiveness between BALB/c and B10 mice.  相似文献   

7.
The elevated expression of 70 kDa heat shock protein (Hsp70) induces resistance to stress-induced apoptosis. We have screened a variety of natural products for their ability to enhance Hsp70 expression as anti-apoptotic agent. We found that glucuronic acid (GA) induced the synthesis of Hsp70 and that cells pretreated with GA were significantly tolerant to stress including heat shock and hydrogen peroxide. We also found that GA induces the production of reactive oxygen species (ROS), a process inhibited by NADPH oxidase inhibitor, diphenyleneiodonium chloride (DPI) and antioxidant N-acetylcysteine (NAC). GA-induced ROS production was also inhibited in RacN17 cell line overexpressing a dominant negative mutant of Rac1. Furthermore, GA treatment induces MAPKs activation (SAPK/JNK and p38) and Hsp70 expression in ROS dependent manner, suggesting that GA turns on the signaling pathway by generation of ROS through Rac1. We analyzed the profiles of newly synthesized proteins by GA with 2-dimensional gel electrophoresis and MALDI-TOF MS and found that two families of proteins were expressed by GA. One was similar to the protein family synthesized by heat shock (Hsp70, Hsp73, Hsp65, Hsp90, vimentin, tubulin, Ras homolog); and the other was a family of protein specific to GA (calreticulin, annexin III, thioredoxin peroxidase). These results suggest that GA-induced stress responses are mediated by ROS generation and are similar, in part, to heat shock-induced responses and GA can be possibly adopted for the protecting agent from cell death.  相似文献   

8.
The immunodepressant action of cyclophosphamide, thiophosphamide and sarcolysine was examined in experimental primary immune response in mice of different lines immunized with sheep red blood cells. DBA/2 and C3H/Sn mice were marked by the highest sensitivity to the immunodepressant action of the alkylating agents. BALB/c mice were relatively resistant to the immunodepressant action. Possible reasons for the interspecific differences found are discussed.  相似文献   

9.
Induction of the heat shock proteins (HSPs) is involved in the increased resistance to cancer therapies such as chemotherapy and hyperthermia. We used two human ovarian cancer cell lines; a cisplatin (CDDP)-sensitive line A2780 and its CDDP-resistant derivative, A2780CP. The concentration of intracellular glutathione (GSH) is higher (2.7-fold increase) in A2780CP cells than in A2780 cells. A mild treatment with a heat stress (42 degrees C for 30 min) induced synthesis of both the heat shock protein 72 (Hsp72) mRNA and the HSP72 protein in A2780CP cells, but not in A2780 cells. In contrast, a severe heat stress (45 degrees C for 30 min) increased synthesis of the HSP72 protein in the two cell lines. The induced level of the HSP72 protein by the severe treatment was higher in A2780CP than in A2780 cells. The gel mobility shift assay showed that DNA binding activities of the heat shock factor (HSF) in the two cell lines were induced similarly and significantly by the mild heat stress. Immunocytochemistry using an anti HSF1 antibody also indicated that mild heat stress activated the HSF1 translocation from the cytosol to the nucleus similarly in the both cell lines. Pretreatment of CDDP-sensitive A2780 cells with N-acetyl-L-cysteine, a precursor of GSH, effectively enhanced induction of the Hsp72 mRNA by the mild heat stress. The present findings demonstrate that induction of the Hsp72 mRNA by the mild heat stress was more extensive in CDDP-resistant A2780CP cells. It is likely that the higher GSH concentration in A2780CP cells plays an important role in promoting Hsp72 gene expression induced by the mild heat stress probably through processes downstream of activation of HSF-DNA binding.  相似文献   

10.
Heat shock proteins (Hsps) are ubiquitous proteins that are induced following exposure to sublethal heat shock, are highly conserved during evolution, and protect cells from damage through their function as molecular chaperones. Some cancers demonstrate elevated levels of Hsp70, and their expression has been associated with cell proliferation, disease prognosis, and resistance to chemotherapy. In this study, we developed a tetracycline-regulated gene expression system to determine the specific effects of inducible Hsp70 on cell growth and protection against hyperthermia in MCF-7 breast cancer cells. MCF-7 cells expressing high levels of Hsp70 demonstrated a significantly faster doubling time (39 hours) compared with nonoverexpressing control cells (54 hours). The effect of elevated Hsp70 on cell proliferation was characterized further by 5-bromo-2'deoxyuridine labeling, which demonstrated a higher number of second and third division metaphases in cells at 42 and 69 hours, respectively. Estimates based on cell cycle analysis and mean doubling time indicated that Hsp70 may be exerting its growth-stimulating effect on MCF-7 cells primarily by shortening of the G0/G1 and S phases of the cell cycle. In addition to the effects on cell growth, we found that elevated levels of Hsp70 were sufficient to confer a significant level of protection against heat in MCF-7 cells. The results of this study support existing evidence linking Hsp70 expression with cell growth and cytoprotection in human cancer cells.  相似文献   

11.
The heat shock protein [Hsp] family guides several steps during protein synthesis, are abundant in prokaryotic and eukaryotic cells, and are highly conserved during evolution. The Hsp60 family is involved in assembly and transport of proteins, and is expressed at very high levels during autoimmunity or autoinflammatory phenomena. Here, the pathophysiological role of the wild type [WT] and the point mutated K(409)A recombinant Hsp65 of M. leprae in an animal model of Systemic Lupus Erythematosus [SLE] was evaluated in vivo using the genetically homogeneous [NZBxNZW]F(1) mice. Anti-DNA and anti-Hsp65 antibodies responsiveness was individually measured during the animal's life span, and the mean survival time [MST] was determined. The treatment with WT abbreviates the MST in 46%, when compared to non-treated mice [p<0.001]. An increase in the IgG2a/IgG1 anti-DNA antibodies ratio was also observed in animals injected with the WT Hsp65. Incubation of BALB/c macrophages with F(1) serum from WT treated mice resulted in acute cell necrosis; treatment of these cells with serum from K(409)A treated mice did not cause any toxic effect. Moreover, the involvement of WT correlates with age and is dose-dependent. Our data suggest that Hsp65 may be a central molecule intervening in the progression of the SLE, and that the point mutated K(409)A recombinant immunogenic molecule, that counteracts the deleterious effect of WT, may act mitigating and delaying the development of SLE in treated mice. This study gives new insights into the general biological role of Hsp and the significant impact of environmental factors during the pathogenesis of this autoimmune process.  相似文献   

12.
Duncan RF 《The FEBS journal》2005,272(20):5244-5256
The induction of the heat shock response as well as its termination is autoregulated by heat shock protein activities. In this study we have investigated whether Hsp90 functional protein levels influence the characteristics and duration of the heat shock response. Treatment of cells with several benzoquinone ansamycin inhibitors of Hsp90 (geldanamycin, herbimycin A) activated a heat shock response in the absence of heat shock, as reported previously. Pretreatment of cells with the Hsp90 inhibitors significantly delayed the rate of restoration of normal protein synthesis following a brief heat shock. Concurrently, the rate of Hsp synthesis and accumulation was substantially increased and prolonged. The cessation of heat shock protein synthesis did not occur until the levels of Hsp70 were substantially elevated relative to its standard threshold for autoregulation. The elevated levels of HSPS 22-28 (the small HSPS) and Hsp70 are not able to promote thermotolerance when Hsp90 activity is repressed by ansamycins; rather a suppression of thermotolerance is observed. These results suggest that a multicomponent protein chaperone complex involving both Hsp90 and Hsp70 signals the cessation of heat shock protein synthesis, the restoration of normal translation, and likely the establishment of thermotolerance. Impaired function of either component is sufficient to alter the heat shock response.  相似文献   

13.
I G Lil'p  Iu V Korogodina 《Tsitologiia》1981,23(10):1174-1179
Sensitivity of bone marrow cell chromosomes to alkylating agent thiophosphamide and to gamma-irradiation has been studied in the course of ageing in 101/H, A/He, CBA, BALB/c and C57BL/6 mice. The effects of both the kinds of mutagenic treatment and of the genotype of the animals on the age-dependent changes in sensitivity of bone marrow cell chromosomes were found. Following gamma-irradiation under our experimental conditions, no variation in the output of chromosomal aberrations was observed between the strains studied. Following thiophosphamide treatment, aged mice of strains 101/H, A/He and CBA showed an increased chromosome instability as compared to young ones. In C57BL/6 mice the level of induced chromosome aberrations was found to be age-independent. Following thiophosphamide treatment, cells with multiple chromosome lesions were found in the bone marrow. The higher instability of aged animals in some strains was mainly due to a sharp increase in the number of such cells. In the intact mice of all the strains studied no age-dependent increase in the number of cells showing structural chromosome aberrations was observed, while accumulation of aneuploid cells varied with genotype.  相似文献   

14.
Experiments with cultured cells showed that most cellular stress resistance components are specialized for certain types of damage. For example, superoxide dismutase protects from oxidative damage; DNA repair enzymes guard against mutagens and other DNA-damaging agents. On the other hand, the major inducible heat shock protein Hsp72 protects cells from a large variety of stresses and thus represents a generalized repair/stress resistance component. Hsp72 not only refolds damaged proteins but also interferes with programmed cell death signaling pathways, thus providing cells with time to repair the damage, hence its universality as a stress protector. In the present study we demonstrate the occurrence in murine and human ascites fluids (AF) of a natural nontoxic extracellular factor (ascites Hsp72-inducing factor, AHIF) capable of activating Hsp72 expression in different types of cells via a pathway distinct from the heat shock response pathway. AHIF is unique in that it is the first physiological factor capable of inducing synthesis of Hsp72 not only in young cells but, remarkably, also in aged human cells that largely have lost the ability to express Hsp72 in response to stresses, a manifestation at the cellular level of a progressive impairment in the ability to adapt to environmental changes which characterizes aging. Pretreatment of aged human cells with AF triggers Hsp72 expression at levels seen in young stressed cells and protects cells from a variety of otherwise lethal stressful treatments such as heat shock, TNF, UV irradiation, etoposide, and menadione. Activation of Hsp72 expression is essential for antiapoptotic action of AHIF because specific inhibition of Hsp72 expression by antisense RNA abolishes the cytoprotective effect of AF. In view of an important link between stress resistance and longevity in different organisms, the abilities of AHIF make it a unique candidate for the role of a systemic regulator of the aging process. While a cell-autonomous stress response diminishes with aging, aged cells retain the ability to respond to an extracellular factor which induces the expression of Hsp72. This finding opens up exciting possibilities for using AF factor to restore stress resistance to old cells and organisms and the possibility of interfering with the aging process. The ability to induce stress resistance in young cells and to restore it in aged cells could serve as a basis for developing effective antiapoptotic therapies.  相似文献   

15.
Heat shock proteins are generally regarded as intracellular proteins acting as molecular chaperones; however, Hsp72 is also detected in the extracellular compartment. Hsp72 has been identified in the bronchoalveolar lavage fluid (BALF) of patients with acute lung injury. To address whether Hsp72 directly activated airway epithelium, human bronchial epithelial cells (16HBE14o-) were treated with recombinant Hsp72. Hsp72 induced a dose-dependent increase in IL-8 expression, which was inhibited by the NF-kappaB inhibitor parthenolide. Hsp72 induced activation of NF-kappaB, as evidenced by NF-kappaB trans-activation and by p65 RelA and p50 NF-kappaB1 binding to DNA. Endotoxin contamination of the Hsp72 preparation was not responsible for these effects. Next, BALB/c mice were challenged with a single intratracheal inhalation of Hsp72 and killed 4 h later. Hsp72 induced significant up-regulation of KC, TNF-alpha, neutrophil recruitment, and myeloperoxidase in the BALF. A similar challenge with Hsp72 in TLR4 mutant mice did not stimulate the inflammatory response, stressing the importance of TLR4 in Hsp72-mediated lung inflammation. Last, cultured mouse tracheal epithelial cells (MTEC) from BALB/c and TLR4 mutant and wild-type mice were treated ex vivo with Hsp72. Hsp72 induced a significant increase in KC expression from BALB/c and wild-type MTEC in an NF-kappaB-dependent manner; however, TLR4 mutant MTEC had minimal cytokine release. Taken together, these data suggest that Hsp72 is released and biologically active in the BALF and can regulate airway epithelial cell cytokine expression in a TLR4 and NF-kappaB-dependent mechanism.  相似文献   

16.
In Leishmania major a 100-kDa heat shock protein, Hsp100, is abundant in the intracellular amastigote stage which persists in the mammalian host. A replacement of both clpB alleles which encode Hsp100 does not affect promastigote viability under standard culture conditions but impairs thermotolerance in vitro. In experimental infections of BALB/c inbred mice, the lack of Hsp100 in the gene replacement mutants results in a markedly delayed lesion development compared with that in infections with wild-type L. major. Overexpression of exogenous clpB gene copies can partly restore virulence to the gene replacement mutants. Genetic-selection experiments also reveal a strong pressure for Hsp100 expression in the mammalian stage. This requirement for Hsp100 was also observed in in vitro infection experiments with mouse peritoneal macrophages. These experiments indicated a role for Hsp100 during the development from the promastigote to the amastigote stage. Our results suggest an important role for this parasite heat shock protein during the initial stages of a mammalian infection.  相似文献   

17.
Cellular stress may stimulate cell survival pathways or cell death depending on its severity. 6-Hydroxydopamine (6-OHDA) is a neurotoxin that targets dopaminergic neurons that is often used to induce neuronal cell death in models of Parkinson's disease. Here we present evidence that 6-OHDA induces apoptosis in rat PC12 cells that involves release of cytochrome c and Smac/Diablo from mitochondria, caspase-3 activation, cleavage of PARP, and nuclear condensation. 6-OHDA also induced the heat shock response, leading to increased levels of Hsp25 and Hsp70. Increased Hsp25 expression was associated with cell survival. Prior heat shock or overexpression of Hsp27 (human homologue of Hsp25) delayed cytochrome c release, caspase activation, and reduced the level of apoptosis caused by 6-OHDA. We conclude that 6-OHDA induces a variety of responses in cultured PC12 cells ranging from cell survival to apoptosis, and that induction of stress proteins such as Hsp25 may protect cells from undergoing 6-OHDA-induced apoptosis.  相似文献   

18.
19.
In response to many stresses and pathologic states, including different models of nervous system injury, cells synthesize a variety of proteins, most notably the inducible 72 kDa heat shock protein 70 (Hsp70), which plays important roles in maintaining cellular integrity and viability. We report here that cultured astrocytes from rat diencephalon express high levels of Hsp70 upon exposure to elevated temperatures, and are less vulnerable to a subsequent oxidative stress. Complex oxidative stress was induced by exposure of astrocytes to an aqueous extract of tobacco smoke. This resulted in both glutathione and ATP depletion, along with cell death that proceeded through a necrotic pathway. Pretreatment of cultures with the glutathione replenishing agent, N-acetyl-L-cysteine, prevented glutathione and ATP loss as well as necrotic cell death. Thermal stress also protected astrocytes from necrotic cell death but without affecting glutathione or ATP levels. We propose that heat shock protects astrocytes from necrosis induced by oxidative stress, probably as a result of Hsp70 synthesis, through an antioxidant-ATP independent mechanism. As Hsp70 may transfer from glial to neuronal cells, its synthesis by astrocytes may represent an important survival mechanism by which astrocytes protect neurons against oxidative-mediated cell death.  相似文献   

20.
Heat shock proteins (HSPs) are highly conserved among all organisms from prokaryotes to eukaryotes. In mice, the HSP genes Hsp70.1 and Hsp70.3 are induced by both endogenous and exogenous stressors, such as heat and toxicants. In order to determine whether such proteins specifically influence genomic instability, mice deficient for Hsp70.1 and Hsp70.3 (Hsp70.1/3(-/-) mice) were generated by gene targeting. Mouse embryonic fibroblasts (MEFs) prepared from Hsp70.1/3(-/-) mice did not synthesize Hsp70.1 or Hsp70.3 after heat-induced stress. While the Hsp70.1/3(-/-) mutant mice were fertile, their cells displayed genomic instability that was enhanced by heat treatment. Cells from Hsp70.1/3(-/-) mice also display a higher frequency of chromosome end-to-end associations than do control Hsp70.1/3(+/+) cells. To determine whether observed genomic instability was related to defective chromosome repair, Hsp70.1/3(-/-) and Hsp70.1/3(+/+) fibroblasts were treated with ionizing radiation (IR) alone or heat and IR. Exposure to IR led to more residual chromosome aberrations, radioresistant DNA synthesis (a hallmark of genomic instability), increased cell killing, and enhanced IR-induced oncogenic transformation in Hsp70.1/3(-/-) cells. Heat treatment prior to IR exposure enhanced cell killing, S-phase-specific chromosome damage, and the frequency of transformants in Hsp70.1/3(-/-) cells in comparison to Hsp70.1/3(+/+) cells. Both in vivo and in vitro studies demonstrate for the first time that Hsp70.1 and Hsp70.3 have an essential role in maintaining genomic stability under stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号