首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibitors of myostatin, a negative regulator of skeletal muscle mass, are being developed to mitigate aging-related muscle loss. Knock-out (KO) mouse studies suggest myostatin also affects adiposity, glucose handling and cardiac growth. However, the cardiac consequences of inhibiting myostatin remain unclear. Myostatin inhibition can potentiate cardiac growth in specific settings ( Morissette et al., 2006) , a concern because of cardiac hypertrophy is associated with adverse clinical outcomes. Therefore, we examined the systemic and cardiac effects of myostatin deletion in aged mice (27–30 months old). Heart mass increased comparably in both wild-type (WT) and KO mice. Aged KO mice maintained twice as much quadriceps mass as aged WT; however, both groups lost the same percentage (36%) of adult muscle mass. Dual-energy X-ray absorptiometry revealed increased bone density, mineral content, and area in aged KO vs. aged WT mice. Serum insulin and glucose levels were lower in KO mice. Echocardiography showed preserved cardiac function with better fractional shortening (58.1% vs. 49.4%, P  = 0.002) and smaller left ventricular diastolic diameters (3.41 vs. 2.71, P  = 0.012) in KO vs. WT mice. Phospholamban phosphorylation was increased 3.3-fold in KO hearts ( P  < 0.05), without changes in total phospholamban, sarco(endo)plasmic reticulum calcium ATPase 2a or calsequestrin. Aged KO hearts showed less fibrosis by Masson's Trichrome staining. Thus, myostatin deletion does not affect aging-related increases in cardiac mass and appears beneficial for bone density, insulin sensitivity and heart function in senescent mice. These results suggest that clinical interventions designed to inhibit skeletal muscle mass loss with aging could have beneficial effects on other organ systems as well.  相似文献   

2.
Loss of myostatin (mstn) function leads to a decrease in mitochondrial content, a reduced expression of cytochrome c oxidase, and a lower citrate synthase activity in skeletal muscle. These data suggest functional or ultrastructural mitochondrial abnormalities that can impact on muscle endurance characteristics in such phenotype. To address this issue, we investigated subsarcolemmal and intermyofibrillar (IMF) mitochondrial activities, skeletal muscle redox homeostasis, and muscle fiber endurance quality in mstn-deficient mice [mstn knockout (KO)]. We report that lack of mstn induced a decrease in the coupling of IMF mitochondria respiration, with significantly higher basal oxygen consumption. No lysis of mitochondrial cristae or excessive swelling were observed in mstn KO mice compared with wild-type (WT) mice. Concerning redox status, mstn KO gastrocnemius exhibited a significant decrease in lipid peroxidation levels (-56%; P < 0.01 vs. WT) together with a significant upregulation of the antioxidant glutathione system. In contrast, superoxide dismutase and catalase activities were altered in mstn KO, gastrocnemius and soleus with a reduction of up to 80% compared with WT animals. The force production observed after contractile endurance test was significantly lower in extensor digitorum longus and soleus muscles of mstn KO mice compared with the controls (17 ± 3 and 36 ± 5% vs. 28 ± 4 and 56 ± 5%, respectively, P < 0.05). Together, these findings indicate that, besides an increased skeletal muscle mass, genetic mstn inhibition has differential effects on redox homeostasis and mitochondrial function that would have functional consequences on muscle response to endurance exercise.  相似文献   

3.
Adiponectin (Ad) is linked to various disease states and mediates antidiabetic and anti-inflammatory effects. While it was originally thought that Ad expression was limited to adipocytes, we demonstrate here that Ad is expressed in mouse skeletal muscles and within differentiated L6 myotubes, as assessed by RT-PCR, Western blot, and immunohistochemical analyses. Serial muscle sections stained for fiber type, lipid content, and Ad revealed that muscle fibers with elevated intramyocellular Ad expression were consistently type IIA and IID fibers with detectably higher intramyocellular lipid (IMCL) content. To determine the effect of Ad on muscle phenotype and function, we used an Ad-null [knockout (KO)] mouse model. Body mass increased significantly in 24-wk-old KO mice [+5.5 +/- 3% relative to wild-type mice (WT)], with no change in muscle mass observed. IMCL content was significantly increased (+75.1 +/- 25%), whereas epididymal fat mass, although elevated, was not different in the KO mice compared with WT (+35.1 +/- 23%; P = 0.16). Fiber-type composition was unaltered, although type IIB fiber area was increased in KO mice (+25.5 +/- 6%). In situ muscle stimulation revealed lower peak tetanic forces in KO mice relative to WT (-47.5 +/- 6%), with no change in low-frequency fatigue rates. These data demonstrate that the absence of Ad expression causes contractile dysfunction and phenotypical changes in skeletal muscle. Furthermore, we demonstrate that Ad is expressed in skeletal muscle and that its intramyocellular localization is associated with elevated IMCL, particularly in type IIA/D fibers.  相似文献   

4.
Transforming growth factor-β superfamily ligands, including activin and myostatin, modulate body composition, islet function, and glucose homeostasis. Their bioactivity is controlled by the antagonists follistatin (FST) and FST like-3 (FSTL3). The hypothesis tested was that FST and FSTL3 have distinct roles in regulating body composition, glucose homeostasis, and islet function through regulation of activin and myostatin bioactivity. Three genetic mutant mouse lines were created. FSTL3 knockout (FSTL3 KO), a mouse line producing only the FST288 isoform (FST288-only) and a double mutant (2xM) in which the lines were crossed. FST288-only males were lighter that wild-type (WT) littermates while FSTL3 KO and 2xM males had reduced perigonadal fat pad weights. However, only 2xM mice had increased whole body fat mass and decreased lean mass by quantitative nuclear magnetic resonance (qNMR). Fasting glucose levels in FSTL3 WT and KO mice were lower than FST mice in younger animals but were higher in older mice. Serum insulin and pancreatic insulin content in 2xM mice was significantly elevated over other genotypes. Nevertheless, 2xM mice were relatively insulin resistant and glucose intolerant compared to FST288-only and WT mice. Fractional islet area and proportion of β-cells/islet were increased in FSTL3 KO and 2xM, but not FST288-only mice. Despite their larger size, islets from FSTL3 KO and 2xM mice were not functionally enhanced compared to WT mice. These results demonstrate that body composition and glucose homeostasis are differentially regulated by FST and FSTL3 and that their combined loss is associated with increased fat mass and insulin resistance despite elevated insulin production.  相似文献   

5.
Animal studies in vivo indicate that leptin treatment in extremely leptin-sensitive ob/ob mice reduces body weight exclusively by reducing fat mass and that it increases muscle mass by downregulating myostatin expression. Data from human trials are limited. Therefore, we aimed at characterizing the effects of leptin administration on fat mass, lean body mass, and circulating regulators of muscle growth in hypoleptinemic and presumably leptin-sensitive human subjects. In an open-label, single-arm trial, seven lean, strenuously exercising, amenorrheic women with low leptin concentrations (≤5 ng/ml) were given recombinant methionyl human leptin (metreleptin; 0.08 mg·kg(-1)·day(-1)) for 10 wk. In a separate randomized, double-blind, placebo-controlled trial, seven women were given metreleptin (initial dose: 0.08 mg·kg(-1)·day(-1) for 3 mo, increased thereafter to 0.12 mg·kg(-1)·day(-1) if menstruation did not occur), and six were given placebo for 9 mo. Metreleptin significantly reduced total body fat by an average of 18.6% after 10 wk (P < 0.001) in the single-arm trial and by 19.5% after 9 mo (placebo subtracted; P for interaction = 0.025, P for metreleptin = 0.004) in the placebo-controlled trial. There were no significant changes in lean body mass (P ≥ 0.33) or in serum concentrations of myostatin (P ≥ 0.35), follistatin (P ≥ 0.30), and activin A (P ≥ 0.20) whether in the 10-wk trial or the 9-mo trial. We conclude that metreleptin administration in lean hypoleptinemic women reduces fat mass exclusively and does not affect lean body mass or the myostatin-follistatin-activin axis.  相似文献   

6.
Burgess K  Xu T  Brown R  Han B  Welle S 《PloS one》2011,6(2):e17090
The marked hypermuscularity in mice with constitutive myostatin deficiency reduces fat accumulation and hyperglycemia induced by high-fat feeding, but it is unclear whether the smaller increase in muscle mass caused by postdevelopmental loss of myostatin activity has beneficial metabolic effects during high-fat feeding. We therefore examined how postdevelopmental myostatin knockout influenced effects of high-fat feeding. Male mice with ubiquitous expression of tamoxifen-inducible Cre recombinase were fed tamoxifen for 2 weeks at 4 months of age. This depleted myostatin in mice with floxed myostatin genes, but not in control mice with normal myostatin genes. Some mice were fed a high-fat diet (60% of energy) for 22 weeks, starting 2 weeks after cessation of tamoxifen feeding. Myostatin depletion increased skeletal muscle mass ~30%. Hypermuscular mice had ~50% less weight gain than control mice over the first 8 weeks of high-fat feeding. During the subsequent 3 months of high-fat feeding, additional weight gain was similar in control and myostatin-deficient mice. After 5 months of high-fat feeding, the mass of epididymal and retroperitoneal fat pads was similar in control and myostatin-deficient mice even though myostatin depletion reduced the weight gain attributable to the high-fat diet (mean weight with high-fat diet minus mean weight with low-fat diet: 19.9 g in control mice, 14.1 g in myostatin-deficient mice). Myostatin depletion did not alter fasting blood glucose levels after 3 or 5 months of high-fat feeding, but reduced glucose levels measured 90 min after intraperitoneal glucose injection. Myostatin depletion also attenuated hepatic steatosis and accumulation of fat in muscle tissue. We conclude that blocking myostatin signaling after maturity can attenuate some of the adverse effects of a high-fat diet.  相似文献   

7.
Previously, we have shown that A(2A) adenosine receptor (A(2A)AR) knockout mice (KO) have increased contraction to adenosine. The signaling mechanism(s) for A(2A)AR is still not fully understood. In this study, we hypothesize that, in the absence of A(2A)AR, ω-hydroxylase (Cyp4a) induces vasoconstriction through mitogen-activated protein kinase (MAPK) via upregulation of adenosine A(1) receptor (A(1)AR) and protein kinase C (PKC). Organ bath and Western blot experiments were done using isolated aorta from A(2A)KO and corresponding wild-type (WT) mice. Isolated aortic rings from WT and A(2A)KO mice were precontracted with submaximal dose of phenylephrine (10(-6) M), and concentration responses for selective A(1)AR, A(2A)AR agonists, angiotensin II and cytochrome P-450-epoxygenase, 20-hydroxyeicosatrienoic acid (20-HETE) PKC, PKC-α, and ERK1/2 inhibitors were obtained. 2-p-(2-Carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680, A(2A)AR agonist) induced concentration-dependent relaxation in WT, which was blocked by methylsulfonyl-propargyloxyphenylhexanamide (cytochrome P-450-epoxygenase inhibitor; 10(-5) M) and also with removal of endothelium. A(1) agonist, 2-chloro-N(6)-cyclopentyladenosine (CCPA) produced higher contraction in A(2A)KO aorta than WT (49.2 ± 8.5 vs. 27 ± 5.9% at 10(-6) M, P < 0.05). 20-HETE produced higher contraction in A(2A)KO than WT (50.6 ± 8.8 vs. 21.1 ± 3.3% at 10(-7) M, P < 0.05). Contraction to CCPA in WT and A(2A)KO aorta was inhibited by PD-98059 (p42/p44 MAPK inhibitor; 10(-6) M), chelerythrine chloride (nonselective PKC blocker; 10(-6) M), G?-6976 (selective PKC-α inhibitor; 10(-7) M), and HET0016 (20-HETE inhibitor; 10(-5) M). Also, contraction to 20-HETE in WT and A(2A)KO aorta was inhibited by PD-98059 and G?-6976. Western blot analysis indicated the upregulation of A(1)AR, Cyp4a, PKC-α, and phosphorylated-ERK1/2 in A(2A)KO compared with WT (P < 0.05), while expression of Cyp2c29 was significantly higher in WT. CCPA (10(-6) M) increased the protein expression of PKC-α and phosphorylated-ERK1/2, while HET0016 significantly reduced the CCPA-induced increase in expression of these proteins. These data suggest that, in the absence of A(2A)AR, Cyp4a induces vasoconstriction through MAPK via upregulation of A(1)AR and PKC-α.  相似文献   

8.
Myostatin, a member of the TGF-beta family, negatively regulates skeletal muscle development. Depression of myostatin activity leads to increased muscle growth and carcass lean yield. In an attempt to down-regulate myostatin, transgenic mice were produced with a ribozyme-based construct or a myostatin pro domain construct. Though the expression of the ribozyme was detected, muscle development was not altered by the ribozyme transgene. However, a dramatic muscling phenotype was observed in transgenic mice carrying the myostatin pro domain gene. Expression of the pro domain transgene at 5% of beta-actin mRNA levels resulted in a 17-30% increase in body weight (P < 0.001). The carcass weight of the transgenic mice showed a 22-44% increase compared with nontransgenic littermates at 9 weeks of age (16.05 +/- 0.67 vs. 11.16 +/- 0.28 g in males; 9.99 +/- 0.38 vs. 8.19 +/- 0.19 g in females, P < 0.001). Extreme muscling was present throughout the whole carcass of transgenic mice as hind and fore limbs and trunk weights, all increased significantly (P < 0.001). Epididymal fat pad weight, an indicator of body fat, was significantly decreased in pro domain transgenic mice (P < 0.001). Analysis of muscle morphology indicated that cross-sectional areas of fast-glycolytic fibers (gastrocnemius) and fast-oxidative glycolytic fibers (tibialis) were larger in pro domain transgenic mice than in their controls (P < 0.01), whereas fiber number (gastrocnemius) was not different (P > 0.05). Thus, the muscular phenotype is attributable to myofiber hypertrophy rather than hyperplasia. The results of this study suggest that the over-expression of myostatin pro domain may provide an alternative to myostatin knockouts as a means of increasing muscle mass in other mammals.  相似文献   

9.
Mice with disruptions of growth hormone‐releasing hormone (GHRH) or growth hormone receptor (GHR) exhibit similar phenotypes of prolonged lifespan and delayed age‐related diseases. However, these two models respond differently to calorie restriction indicating that they might carry different and/or independent mechanisms for improved longevity and healthspan. In order to elucidate these mechanisms, we generated GHRH and GHR double‐knockout mice (D‐KO). In the present study, we focused specifically on the characteristics of female D‐KO mice. The D‐KO mice have reduced body weight and enhanced insulin sensitivity compared to wild‐type (WT) controls. Growth retardation in D‐KO mice is accompanied by decreased GH expression in pituitary, decreased circulating IGF‐1, increased high‐molecular‐weight (HMW) adiponectin, and leptin hormones compared to WT controls. Generalized linear model‐based regression analysis, which controls for body weight differences between D‐KO and WT groups, shows that D‐KO mice have decreased lean mass, bone mineral density, and bone mineral content, but increased adiposity. Indirect calorimetry markers including oxygen consumption, carbon dioxide production, and energy expenditure were significantly lower in D‐KO mice relative to the controls. In comparison with WT mice, the D‐KO mice displayed reduced respiratory exchange ratio (RER) values only during the light cycle, suggesting a circadian‐related metabolic shift toward fat utilization. Interestingly, to date survival data suggest extended lifespan in D‐KO female mice.  相似文献   

10.
Knockout of the P27(kip) gene, which encodes a cyclin-dependent kinase inhibitor involved in cell proliferation regulation, results in growth enhancement in mice. To investigate how p27 deficiency affected adipogenesis and myogenesis, levels of PPARgamma, C/EBPalpha, and the myogenesis inhibitor, myostatin, were measured in p27(-/-) (n=14), p27(+/-) (n=18), and p27(+/+) mice (n=11). Body weight and gastrocnemius muscle (GC) mass were increased in p27(-/-) mice (P<0.05), but there were no differences in fat depot weights, percent body fat or serum leptin concentrations among genotypes. PPARgamma, but not C/EBPalpha, was markedly increased in p27(-/-) mice (P<0.05). There was also a higher incidence of inguinal fat apoptosis (P<0.01) in p27(-/-) mice. Myostatin levels were reduced in GC muscle of p27(-/-) mice (P<0.05). These findings suggest that in p27 deficient mice, increased skeletal muscle mass is mediated in part through decreased myostatin. Although total adiposity was not changed, increased PPARgamma levels suggest an alteration in adipogenesis.  相似文献   

11.
Acylation-stimulating protein (ASP) acts as a paracrine signal to increase triglyceride synthesis in adipocytes. In mice, C3 (the precursor to ASP) knock-out (KO) results in ASP deficiency and leads to reduced body fat and leptin levels yet they are hyperphagic. In the present study, we investigated the mechanism for this energy repartitioning. Compared with wild-type (WT) mice, male and female C3(-/-) ASP-deficient mice had elevated oxygen consumption (VO2) in both the active (dark) and resting (light) phases of the diurnal cycle: +8.9% males (p < 0.05) +9.4% females (p < 0.05). Increased physical activity (movement) was observed during the dark phase in female but not in male KO animals. Female WT mice moved 16.9 +/- 2.4 m whereas KO mice moved 30.1 +/- 5.4 m, over 12 h, +78.4%, p < 0.05). In contrast, there was no difference in physical activity in male mice, but a repartitioning of dietary fat following intragastric fat administration was noted. This was reflected by increased fatty acid oxidation in liver and muscle in KO mice, with increased UCP2 (inguinal fat) and UCP3 (muscle) mRNA expression (p = 0.005 and 0.036, respectively). Fatty acid uptake into brown adipose tissue (BAT) and white adipose tissue (WAT) was reduced as reflected by a decrease in the fatty acid incorporation into lipids (BAT -68%, WAT -29%. The decrease of FA incorporation was normalized by intraperitoneal administration of ASP at the time of oral fat administration. These results suggest that ASP deficiency results in energy repartitioning through different mechanisms in male and female mice.  相似文献   

12.
Female hypocretin knockout (Hcrt KO) mice have increased body weight despite decreased food intake compared to wild type (WT) mice. In order to understand the nature of the increased body weight, we carried out a detailed study of Hcrt KO and WT, male, and female mice. Female KO mice showed consistently higher body weight than WT mice, from 4 to 20 months (20–60%). Fat, muscle, and free fluid levels were all significantly higher in adult (7–9 months) as well as old (18–20 months) female KO mice compared to age‐matched WT mice. Old male KO mice showed significantly higher fat content (150%) compared to age‐matched WT mice, but no significant change in body weight. Respiratory quotient (?19%) and metabolic rates (?14%) were significantly lower in KO mice compared to WT mice, regardless of gender or age. Female KO mice had significantly higher serum leptin levels (191%) than WT mice at 18–20 months, but no difference between male mice were observed. Conversely, insulin resistance was significantly higher in both male (73%) and female (93%) KO mice compared to age‐ and sex‐matched WT mice. We conclude that absence of the Hcrt peptide has gender‐specific effects. In contrast, Hcrt‐ataxin mice and human narcoleptics, with loss of the whole Hcrt cell, show weight gain in both sexes.

  相似文献   


13.
Low serotonin function is associated with alcoholism, leading to speculation that increasing serotonin function could decrease ethanol consumption. Mice with one or two deletions of the serotonin transporter (SERT) gene have increased extracellular serotonin. To examine the relationship between SERT genotype and motivation for alcohol, we compared ethanol self‐administration in mice with zero (knockout, KO), one (HET) or two copies (WT) of the SERT gene. All three genotypes learned to self‐administer ethanol. The SSRI, fluvoxamine, decreased responding for ethanol in the HET and WT, but not the KO mice. When tested under a progressive ratio schedule, KO mice had lower breakpoints than HET or WT. As work requirements were increased across sessions, behavioral economic analysis of ethanol self‐administration indicated that the decreased breakpoint in KO as compared to HET or WT mice was a result of lower levels of unconstrained demand, rather than differences in elasticity, i.e. the proportional decreases in ethanol earned with increasing work requirements were similar across genotypes. The difference in unconstrained demand was unlikely to result from motor or general motivational factors, as both WT and KO mice responded at high levels for a 50% condensed milk solution. As elasticity is hypothesized to measure essential value, these results indicate that KO value ethanol similarly to WT or HET mice despite having lower break points for ethanol .  相似文献   

14.
Adenosine, acting on A(1)-receptors (A(1)-AR) in the nephron, increases sodium reabsorption, and also increases renal vascular resistance (RVR), via A(1)-ARs in the afferent arteriole. ANG II increases blood pressure and RVR, and it stimulates adenosine release in the kidney. We tested the hypothesis that ANG II-infused hypertension is potentiated by A(1)-ARs' influence on Na(+) reabsorption. Mean arterial pressure (MAP) was measured by radiotelemetry in A(1)-AR knockout mice (KO) and their wild-type (WT) controls, before and during ANG II (400 ng·kg(-1)·min(-1)) infusion. Baseline MAP was not different between groups. ANG II increased MAP in both groups, but on day 12, MAP was lower in A(1)-AR KO mice (KO: 128 ± 3 vs. 139 ± 3 mmHg, P < 0.01). Heart rates were significantly different during days 11-14 of ANG II. Basal sodium excretion was not different (KO: 0.15 ± 0.03 vs. WT: 0.13 ± 0.04 mmol/day, not significant) but was higher in KO mice 12 days after ANG II despite a lower MAP (KO: 0.22 ± 0.03 vs. WT: 0.11 ± 0.02 mmol/day, P < 0.05). Phosphate excretion was also higher in A(1)-AR KO mice on day 12. Renal expression of the sodium-dependent phosphate transporter and the Na(+)/glucose cotransporter were lower in the KO mice during ANG II treatment, but the expression of the sodium hydrogen exchanger isoform 3 was not different. These results indicate that the increase in blood pressure seen in A(1)-AR KO mice is lower than that seen in WT mice but was increased by ANG II nonetheless. The presence of A(1)-ARs during a low dose of ANG II-infusion limits Na(+) and phosphate excretion. This study suggests that A(1)-AR antagonists might be an effective antihypertensive agent during ANG II and volume-dependent hypertension.  相似文献   

15.
Myostatin knockout in mice increases myogenesis and decreases adipogenesis   总被引:34,自引:0,他引:34  
Growth differentiation factor-8 (GDF-8), or Myostatin, plays an important inhibitory role during muscle development. Since muscle and adipose tissue develop from the same mesenchymal stem cells, we hypothesized that Myostatin gene knockout may cause a switch between myogenesis and adipogenesis. Male and female wild type (WT) and Myostatin knockout (KO) mice were sacrificed at 4, 8, and 12 weeks of age. The gluteus muscle (GM) was larger in KO mice compared to WT mice at 8 (P < 0.01) and 12 (P < 0.001) weeks. At 12 weeks, KO mice had decreased fat depots (P < 0.01). Compared to 12-week-old WT mice, serum leptin concentration in KO mice was lower (P < 0.001) and leptin mRNA expression was decreased (P < 0.01) in inguinal adipose tissue. CCAAT/enhancer binding protein-alpha (C/EBPalpha) and peroxisome proliferator-activated receptor-gamma (PPARgamma) levels in adipose tissue were significantly lower in KO mice compared to WT mice. Thus, increased muscle development in Myostatin knockout mice is associated with reduced adipogenesis and consequently, decreased leptin secretion.  相似文献   

16.
The established role of ATP-responsive P2X7 receptor in inflammatory, neurodegenerative, and immune diseases is now expanding to include several aspects of metabolic dysregulation. Indeed, P2X7 receptors are involved in β cell function, insulin secretion, and liability to diabetes, and loss of P2X7 function may increase the risk of hepatic steatosis and disrupt adipogenesis. Recently, body weight gain, abnormal lipid accumulation, adipocyte hyperplasia, increased fat mass, and ectopic fat distribution have been found in P2X7 KO mice. Here, we hypothesized that such clinical picture of dysregulated lipid metabolism might be the result of altered in vivo energy metabolism. By indirect calorimetry, we assessed 24 h of energy expenditure (EE) and respiratory exchange ratio (RER) as quotient of carbohydrate to fat oxidation in P2X7 KO mice. Moreover, we assessed the same parameters in aged-matched WT counterparts that underwent a 7-day treatment with the P2X7 antagonist A804598. We found that loss of P2X7 function elicits a severe decrease of EE that was less pronounced in A804598-treated mice. In parallel, P2X7KO mice show a drastic increase of RER, thus indicating the occurrence of a greater ratio of carbohydrate to fat oxidation. Decreased EE and fat oxidation is predictive of body weight gain, which was here confirmed. Taken together, our data provide evidence that P2X7 loss of function produces defective energy homeostasis that, together with disrupted adipogenesis, might help to explain accumulation of adipose tissue and contribute to disclose the potential role of P2X7 in metabolic diseases.  相似文献   

17.
Studies suggest that soluble epoxide hydrolase (sEH) inhibition reduces end-organ damage in cardiovascular diseases. We hypothesize that sEH gene (Ephx2) knockout (KO) improves endothelial function and reduces renal injury in streptozotocin-induced diabetes. After 6 wk of diabetes, afferent arteriolar relaxation to acetylcholine was impaired in diabetic wild-type (WT) mice, as the maximum relaxation was 72% of baseline diameter in the WT but only 31% in the diabetic mice. Ephx2 KO improved afferent arteriolar relaxation to acetylcholine in diabetes as maximum relaxation was 58%. Urinary monocyte chemoattractant protein-1 (MCP-1) excretion significantly increased in diabetic WT mice compared with control (868 ± 195 vs. 31.5 ± 7 pg/day), and this increase was attenuated in diabetic Ephx2 KO mice (420 ± 98 pg/day). The renal phospho-IKK-to-IKK ratio and nuclear factor-κB were significantly decreased, and hemeoxygenase-1 (HO-1) expression increased in diabetic Ephx2 KO compared with diabetic WT mice. Renal NADPH oxidase and urinary thiobarbituric acid reactive substances excretion were reduced in diabetic Ephx2 KO compared with diabetic WT mice. Albuminuria was also elevated in diabetic WT mice compared with control (170 ± 43 vs. 37 ± 13 μg/day), and Ephx2 KO reduced this elevation (50 ± 15 μg/day). Inhibition of sEH using trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (tAUCB) also reduced renal inflammation and injury in diabetic WT mice. Furthermore, inhibition of HO with stannous mesoporphyrin negated the reno-protective effects of tAUCB or Ephx2 KO during diabetes. These data demonstrate that Ephx2 KO improves endothelial function and reduces renal injury during diabetes. Additionally, our data also suggest that activation of HO-1 contributes to improved renal injury in diabetic Ephx2 KO mice.  相似文献   

18.
Weight loss normally stimulates hunger, through mechanisms that include falls in circulating leptin and insulin, leading to stimulation of hypothalamic neuropeptide Y (NPY). Here, we investigated the leptin, insulin and NPY to clarify why hunger is suppressed in mice with severe cachexia due to the MAC16 adenocarcinoma. MAC16-bearing mice progressively lost weight (19% below controls) and fat (- 61%) over 16 days after tumour transplantation, while total food intake fell by 10%. Pair-fed mice showed less wasting, with final weight being 9% and fat mass 25% below controls. Plasma leptin fell by 85% in MAC16 and 51% in pair-fed mice, in proportion to loss of fat. Plasma insulin was also reduced by 49% in MAC16 and 53% in pair-fed groups. Hypothalamic leptin receptor (OB-Rb) mRNA was significantly increased in both MAC16 (+ 223%) and pair-fed (+192%) mice. Hypothalamic NPY mRNA was also significantly raised in MAC16 (+152%) and pair-fed (+ 99%) groups, showing negative correlations with plasma leptin and insulin, and a positive association with OB-Rb mRNA. In MAC16-induced cachexia, leptin production and hypothalamic OB-Rb and NPY expression are regulated appropriately in response to fat depletion. Therefore, suppression of hunger is probably due to tumour products that inhibit NPY transport or release, or that interfere with neuronal targets downstream of NPY.  相似文献   

19.
CD24 is a glycophosphatidylinositol (GPI)-linked cell surface receptor that is involved in regulating the survival or differentiation of several different cell types. CD24 has been used to identify pre-adipocytes that are able to reconstitute white adipose tissue (WAT) in vivo. Moreover, we recently found that the dynamic upregulation of CD24 in vitro during early phases of adipogenesis is necessary for mature adipocyte development. To determine the role of CD24 in adipocyte development in vivo, we evaluated the development of the inguinal and interscapular subcutaneous WAT and the epididymal visceral WAT in mice with a homozygous deletion of CD24 (CD24KO). We observed a significant decrease in WAT mass of 40% to 74% in WAT mass from both visceral and subcutaneous depots in male mice, with no significant effect in female mice, compared to wild-type (WT) sex- and age-matched controls. We also found that CD24KO mice had increased fasting glucose and free fatty acids, decreased fasting insulin, and plasma leptin. No major differences were observed in the sensitivity to insulin or glucose, or in circulating triglycerides, total cholesterol, HDL-cholesterol, or LDL-cholesterol levels between WT and CD24KO mice. Challenging the CD24KO mice with either high sucrose (35%) or high fat (45%) diets that promote increased adiposity, increased WAT mass and fasting insulin, adiponectin and leptin levels, as well as reduced the sensitivity to insulin and glucose, to the levels of WT mice on the same diets. The CD24-mediated reduction in fat pad size was due to a reduction in adipocyte cell size in all depots with no significant reduction pre-adipocyte or adipocyte cell number. Thus, we have clearly demonstrated that the global absence of CD24 affects adipocyte cell size in vivo in a sex- and diet-dependent manner, as well as causing metabolic disturbances in glucose homeostasis and free fatty acid levels.  相似文献   

20.
Leptin signaling in the brain regulates energy intake and expenditure. To test the degree of functional neuronal leptin signaling required for the maintenance of body composition, fertility, and cold tolerance, transgenic mice expressing Cre in neurons (CaMKIIalpha-Cre) were crossed to mice carrying a floxed leptin receptor (Lepr) allele to generate mice with neuron-specific deletion of Lepr in approximately 50% (C F/F mice) and approximately 75% (C Delta17/F mice) of hypothalamic neurons. Leptin receptor (LEPR)-deficient mice (Delta17/Delta17) with heat-shock-Cre-mediated global Lepr deletion served as obese controls. At 16 wk, male C F/F, C Delta17/F, and Delta17/Delta17 mice were 13.2 (P < 0.05), 45.0, and 55.9% (P < 0.001) heavier, respectively, than lean controls, whereas females showed 31.6, 68.8, and 160.7% increases in body mass (P < 0.001). Significant increases in total fat mass (C F/F: P < 0.01; C Delta17/F and Delta17/Delta17:P < 0.001 vs. sex-matched, lean controls), and serum leptin concentrations (P < 0.001 vs. controls) were present in proportion to Lepr deletion. Male C Delta17/F mice had significant elevations in basal serum insulin concentrations (P < 0.001 vs. controls) and were glucose intolerant, as measured by glucose tolerance test (AUC P < 0.01 vs. controls). In contrast with previous observations in mice null for LEPR signaling, C F/F and C Delta17/F mice were fertile and cold tolerant. These findings support the hypothesis that body weight, adiposity, serum leptin concentrations, and glucose intolerance are proportional to hypothalamic LEPR deficiency. However, fertility and cold tolerance remain intact unless hypothalamic LEPR deficiency is complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号