首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Myelinating Schwann cells regulate the localization of ion channels on the surface of the axons they ensheath. This function depends on adhesion complexes that are positioned at specific membrane domains along the myelin unit. Here we show that the precise localization of internodal proteins depends on the expression of the cytoskeletal adapter protein 4.1G in Schwann cells. Deletion of 4.1G in mice resulted in aberrant distribution of both glial adhesion molecules and axonal proteins that were present along the internodes. In wild-type nerves, juxtaparanodal proteins (i.e., Kv1 channels, Caspr2, and TAG-1) were concentrated throughout the internodes in a double strand that flanked paranodal junction components (i.e., Caspr, contactin, and NF155), and apposes the inner mesaxon of the myelin sheath. In contrast, in 4.1G(-/-) mice, these proteins "piled up" at the juxtaparanodal region or aggregated along the internodes. These findings suggest that protein 4.1G contributes to the organization of the internodal axolemma by targeting and/or maintaining glial transmembrane proteins along the axoglial interface.  相似文献   

3.
The investigation of multiple nerve membrane properties by mathematical models has become a new tool to study peripheral neuropathies. In demyelinating neuropathies, the membrane properties such as potentials (intracellular, extracellular, electrotonic) and indices of axonal excitability (strength-duration time constants, rheobases and recovery cycles) can now be measured at the peripheral nerves. This study provides numerical simulations of the membrane properties of human motor nerve fibre in cases of internodal, paranodal and simultaneously of paranodal internodal demyelinations, each of them mild systematic or severe focal. The computations use our previous multi-layered model of the fibre. The results show that the abnormally greater increase of the hyperpolarizing electrotonus, shorter strength-duration time constants and greater axonal superexcitability in the recovery cycles are the characteristic features of the mildly systematically demyelinated cases. The small decrease of the polarizing electrotonic responses in the demyelinated zone in turn leads to a compensatory small increase of these responses outside the demyelinated zone of all severely focally demyelinated cases. The paper summarizes the insights gained from these modeling studies on the membrane property abnormalities underlying the variation in clinical symptoms of demyelination in Charcot-Marie-Tooth disease type 1A, chronic inflammatory demyelinating polyneuropathy, Guillain-Barré syndrome and multifocal motor neuropathy. The model used provides an objective study of the mechanisms of these diseases which up till now have not been sufficiently well understood, because quite different assumptions have been given in the literature for the interpretation of the membrane property abnormalities obtained in hereditary, chronic and acquired demyelinating neuropathies.  相似文献   

4.
Membrane properties such as potentials (intracellular, extracellular, electrotonic) and axonal excitability indices (strength–duration and charge–duration curves, strength–duration time constants, rheobasic currents, recovery cycles) can now be measured in healthy subjects and patients with demyelinating neuropathies. They are regarded here in two cases of simultaneously reduced paranodal seal resistance and myelin lamellae in one to three consecutive internodes of human motor nerve fiber. The investigations are performed for 70 and 96% myelin reduction values. The first value is not sufficient to develop a conduction block, but the second leads to a block and the corresponding demyelinations are regarded as mild and severe. For both the mild and severe demyelinations, the paranodally internodally focally demyelinated cases (termed as PIFD1, PIFD2, and PIFD3, respectively, with one, two, and three demyelinated internodes) are simulated using our previous double-cable model of the fiber. The axon model consists of 30 nodes and 29 internodes. The membrane property abnormalities obtained can be observed in vivo in patients with demyelinating forms of Guillain-Barré syndrome (GBS) and multifocal motor neuropathy (MMN). The study confirms that focal demyelinations are specific indicators for acquired demyelinating neuropathies. Moreover, the following changes have been calculated in our previous papers: (1) uniform reduction of myelin thickness in all internodes (Stephanova et al. in Clin Neurophysiol 116: 1153–1158, 2005); (2) demyelination of all paranodal regions (Stephanova and Daskalova in Clin Neurophysiol 116: 1159–1166, 2005a); (3) simultaneous reduction of myelin thickness and paranodal demyelination in all internodes (Stephanova and Daskalova in Clin Neurophysiol 116: 2334–2341, 2005b); and (4) reduction of myelin thickness of up to three internodes (Stephanova et al., in J Biol Phys, 2006a,b, DOI: 10.1007/s10867-005-9001-9; DOI: 10.1007/s10867-006-9008-x). The mem- brane property abnormalities obtained in the homogenously demyelinated cases are quite different and abnormally greater than those in the case investigated here of simultaneous reduction in myelin thickness and paranodal demyelination of up to three internodes. Our previous and present results show that unless focal demyelination is severe enough to cause outright conduction block, changes are so slight as to be essentially indistinguishable from normal values. Consequently, the excitability-based approaches that have shown strong potential as diagnostic tools in systematically demyelinated conditions may not be useful in detecting mild focal demyelinations, independently of whether they are internodal, paranodal, or paranodal internodal.  相似文献   

5.
The myelin and lymphocyte protein (MAL) is a tetraspan raft-associated proteolipid predominantly expressed by oligodendrocytes and Schwann cells. We show that genetic ablation of mal resulted in cytoplasmic inclusions within compact myelin, paranodal loops that are everted away from the axon, and disorganized transverse bands at the paranode--axon interface in the adult central nervous system. These structural changes were accompanied by a marked reduction of contactin-associated protein/paranodin, neurofascin 155 (NF155), and the potassium channel Kv1.2, whereas nodal clusters of sodium channels were unaltered. Initial formation of paranodal regions appeared normal, but abnormalities became detectable when MAL started to be expressed. Biochemical analysis revealed reduced myelin-associated glycoprotein, myelin basic protein, and NF155 protein levels in myelin and myelin-derived rafts. Our results demonstrate a critical role for MAL in the maintenance of central nervous system paranodes, likely by controlling the trafficking and/or sorting of NF155 and other membrane components in oligodendrocytes.  相似文献   

6.
Mitochondria and other membranous organelles are frequently enriched in the nodes and paranodes of peripheral myelinated axons, particularly those of large caliber. The physiologic role(s) of this organelle enrichment and the rheologic factors that regulate it are not well understood. Previous studies suggest that axonal transport of organelles across the nodal/paranodal region is locally regulated. In this study, we have examined the ultrastructure of myelinated axons in the sciatic nerves of mice deficient in the contactin-associated protein (Caspr), an integral junctional component. These mice, which lack the normal septate-like junctions that promote attachment of the glial (paranodal) loops to the axon, contain aberrant mitochondria in their nodal/paranodal regions. These mitochondria are typically large and swollen and occupy prominent varicosities of the nodal axolemma. In contrast, mitochondria located outside the nodal/paranodal regions of the myelinated axons appear normal. These findings suggest that paranodal junctions regulate mitochondrial transport and function in the axoplasm of the nodal/paranodal region of myelinated axons of peripheral nerves. They further implicate the paranodal junctions in playing a role, either directly or indirectly, in the local regulation of energy metabolism in the nodal region.  相似文献   

7.
The membrane of myelinated axons is divided into functionally distinct domains characterized by the enrichment of specific proteins. The mechanisms responsible for this organization have not been fully identified. To further address the role of oligodendrocytes in the functional segmentation of the axolemma in vivo, the distribution of nodal (Na(+) channels, ankyrin G), paranodal (paranodin/contactin-associated-protein) and juxtaparanodal (Kv1.1 K(+) channels) axonal markers, was studied in the brain of MBP-TK and jimpy mice. In MBP-TK transgenic mice, oligodendrocyte ablation was selectively induced by FIAU treatment before and during the onset of myelination. In jimpy mice, oligodendrocytes degenerate spontaneously within the first postnatal weeks after the onset of myelination. Interestingly, in MBP-TK mice treated for 1-20 days with FIAU, despite the ablation of more than 95% of oligodendrocytes, the protein levels of all tested nodal markers was unaltered. Nevertheless, these proteins failed to cluster in the nodal regions. By contrast, in jimpy mice, despite a diffused localization of paranodin, the formation of nodal clusters of Na(+) channels and ankyrin G was observed. Furthermore, K(+) channels clusters were transiently visible, but were in direct contact with nodal markers. These results demonstrate that the organization of functional domains in myelinated axons is oligodendrocyte dependent. They also show that the presence of these cells is a requirement for the maintenance of nodal and paranodal regions.  相似文献   

8.
Neurofascins are required to establish axonal domains for saltatory conduction   总被引:14,自引:0,他引:14  
Voltage-gated sodium channels are concentrated in myelinated nerves at the nodes of Ranvier flanked by paranodal axoglial junctions. Establishment of these essential nodal and paranodal domains is determined by myelin-forming glia, but the mechanisms are not clear. Here, we show that two isoforms of Neurofascin, Nfasc155 in glia and Nfasc186 in neurons, are required for the assembly of these specialized domains. In Neurofascin-null mice, neither paranodal adhesion junctions nor nodal complexes are formed. Transgenic expression of Nfasc155 in the myelinating glia of Nfasc-/- nerves rescues the axoglial adhesion complex by recruiting the axonal proteins Caspr and Contactin to the paranodes. However, in the absence of Nfasc186, sodium channels remain diffusely distributed along the axon. Our study shows that the two major Neurofascins play essential roles in assembling the nodal and paranodal domains of myelinated axons; therefore, they are essential for the transition to saltatory conduction in developing vertebrate nerves.  相似文献   

9.
On the molecular architecture of myelinated fibers   总被引:11,自引:0,他引:11  
Schwann cells and oligodendrocytes make the myelin sheaths of the PNS and CNS, respectively. Their myelin sheaths are structurally similar, consisting of multiple layers of specialized cell membrane that spiral around axons, but there are several differences. (1) CNS myelin has a ”radial component” composed of a tight junction protein, claudin-11/oligodendrocyte-specific protein. (2) Schwann cells have a basal lamina and microvilli. (3) Although both CNS and PNS myelin sheaths have incisures, those in the CNS lack the structural as well as the molecular components of ”reflexive” adherens junctions and gap junctions. In spite of their structural differences, the axonal membranes of the PNS and CNS are similarly organized. The nodal axolemma contains high concentrations of voltage-dependent sodium channels that are linked to the axonal cytoskeleton by ankyrinG. The paranodal membrane contains Caspr/paranodin, which may participate in the formation of axoglial junctions. The juxtaparanodal axonal membrane contains the potassium channels Kv1.1 and Kv1.2, their associated β2 subunit, as well as Caspr2, which is closely related to Caspr. The myelin sheath probably organizes these axonal membrane-related proteins via trans interactions. Accepted: 25 November 1999  相似文献   

10.
The axoglial paranodal junctions, flanking the Ranvier nodes, are specialized adhesion sites between the axolemma and myelinating glial cells. Unraveling the molecular composition of paranodal junctions is crucial for understanding the mechanisms involved in the regulation of myelination, and positioning and segregation of the voltage-gated Na+ and K+ channels, essential for the generation and conduction of action potentials. Paranodin/Caspr was the first neuronal transmembrane glycoprotein identified at the paranodal junctions. Paranodin/Caspr is associated on the axonal membrane with contactin/F3, a glycosylphosphatidylinositol-anchored protein, essential for its correct targeting. The extra and intracellular regions of paranodin encompass multiple domains which can be involved in protein-protein interactions with other axonal proteins and glial proteins. Thus, paranodin plays a central role in the assembly of multiprotein complexes necessary for the formation and maintenance of paranodal junctions.  相似文献   

11.
In myelinated fibers of the vertebrate nervous system, glial-ensheathing cells interact with axons at specialized adhesive junctions, the paranodal septate-like junctions. The axonal proteins paranodin/Caspr and contactin form a cis complex in the axolemma at the axoglial adhesion zone, and both are required to stabilize the junction. There has been intense speculation that an oligodendroglial isoform of the cell adhesion molecule neurofascin, NF155, expressed at the paranodal loop might be the glial receptor for the paranodin/Caspr-contactin complex, particularly since paranodin/Caspr and NF155 colocalize to ectopic sites in the CNS of the dysmyelinated mouse Shiverer mutant. We report that the extracellular domain of NF155 binds specifically to transfected cells expressing the paranodin/Caspr-contactin complex at the cell surface. This region of NF155 also binds the paranodin/Caspr-contactin complex from brain lysates in vitro. In support of the functional significance of this interaction, NF155 antibodies and the extracellular domain of NF155 inhibit myelination in myelinating cocultures, presumably by blocking the adhesive relationship between the axon and glial cell. These results demonstrate that the paranodin/Caspr-contactin complex interacts biochemically with NF155 and that this interaction is likely to be biologically relevant at the axoglial junction.  相似文献   

12.
Rydmark  M  Berthold  C.-H  Gatzinsky  K. P 《Brain Cell Biology》1998,27(2):99-108
We have calculated the number of paranodal Schwann cell mitochondria in adult feline ventral and dorsal lumbar spinal roots using ultrastructural serial section analysis. Distinct accumulations of paranodal mitochondria were noted in nerve fibres more than 4-5 mm in diameter. The calculated number of paranodal mitochondria increased linearly with fibre diameter from a few hundred up to 20 000-30 000 per node. A linear increase in the number of paranodal mitochondria per node also appeared as a function of nodal variables such as ‘nodal axon membrane area’, ‘nodal Schwann cell membrane area’, and ‘node gap extracellular volume’. In large fibres (D=15-18 mm), a calculated number of about 20 000 paranodal Schwann cell mitochondria were accumulated at each node of Ranvier and related to nodal axon membrane area of about 20 mm2. Our calculations indicate that, on the average, 1000 paranodal Schwann cell mitochondria with a total volume of 6.7 mm3, a total outer membrane area of 250 mm2 and a total inner membrane area of 580 mm2 projected to each mm2 of the nodal axon membrane via the nodal Schwann cell brush border.  相似文献   

13.
Protein 4.1B contributes to the organization of peripheral myelinated axons   总被引:1,自引:0,他引:1  
Neurons are characterized by extremely long axons. This exceptional cell shape is likely to depend on multiple factors including interactions between the cytoskeleton and membrane proteins. In many cell types, members of the protein 4.1 family play an important role in tethering the cortical actin-spectrin cytoskeleton to the plasma membrane. Protein 4.1B is localized in myelinated axons, enriched in paranodal and juxtaparanodal regions, and also all along the internodes, but not at nodes of Ranvier where are localized the voltage-dependent sodium channels responsible for action potential propagation. To shed light on the role of protein 4.1B in the general organization of myelinated peripheral axons, we studied 4.1B knockout mice. These mice displayed a mildly impaired gait and motility. Whereas nodes were unaffected, the distribution of Caspr/paranodin, which anchors 4.1B to the membrane, was disorganized in paranodal regions and its levels were decreased. In juxtaparanodes, the enrichment of Caspr2, which also interacts with 4.1B, and of the associated TAG-1 and Kv1.1, was absent in mutant mice, whereas their levels were unaltered. Ultrastructural abnormalities were observed both at paranodes and juxtaparanodes. Axon calibers were slightly diminished in phrenic nerves and preterminal motor axons were dysmorphic in skeletal muscle. βII spectrin enrichment was decreased along the axolemma. Electrophysiological recordings at 3 post-natal weeks showed the occurrence of spontaneous and evoked repetitive activity indicating neuronal hyperexcitability, without change in conduction velocity. Thus, our results show that in myelinated axons 4.1B contributes to the stabilization of membrane proteins at paranodes, to the clustering of juxtaparanodal proteins, and to the regulation of the internodal axon caliber.  相似文献   

14.
Caspr/paranodin is an essential neuronal component of paranodal axoglial junctions, associated with contactin/F3. Its short intracellular domain contains a conserved motif (GNP motif) capable of binding protein 4.1 domains [FERM domains (four point one, ezrin, radixin, moesin)]. Schwannomin/merlin is a tumour suppressor expressed in many cell types, including in neurons, the function and partners of which are still poorly characterized. We show that the FERM domain of schwannomin binds to the paranodin GNP motif in glutathione S-transferase (GST)-pull down assays and in transfected COS-7 cells. The two proteins co-immunoprecipitated in brain extracts. In addition, paranodin and schwannomin were associated with integrin beta1 in transfected cells and in brain homogenates. The presence of paranodin increased the association between integrin beta1 and schwannomin or its N-terminal domain, suggesting that the interactions between these proteins are interdependent. In jimpy mutant mice, which display a severe dysmyelination with deficient paranodal junctions, the interactions between paranodin, schwannomin and integrin beta1 were profoundly altered. Our results show that schwannomin and integrin beta1 can be associated with paranodin in the central nervous system. Since integrin beta1 and schwannomin do not appear to be enriched in paranodes they may be quantitatively minor partners of paranodin in these regions and/or be associated with paranodin at other locations.  相似文献   

15.
Developmental alterations of paranodal fiber segments have not been investigated systematically in human nerve fibers at the light- and electron-microscopic level. We have therefore analyzed developmental changes in the fine structure of the paranode in 43 human sural nerves during the axonal growth period up to 5 years of age, and during the subsequent myelin development up to 20 years and thereafter. The nodal, internodal, and paranodal axon diameters reach their adult values at 4–5 years of age. The ratio between internodal and paranodal axon diameters remains constant at 1.8–2.0. Despite a considerable increase in myelin sheath thickness, the length of the paranodal myelin sheath attachment zone at the axon does not increase correspondingly, because of attenuation, separation from the axolemma, and piling up of myelin loops in the paranode. Separation of variable numbers of terminal myelin loops from the underlying axolemma results in the formation of bracelets of Nageotte, whereas the transverse bands of these loops disappear. The adaptation of the paranodal myelin sheath to axonal expansion during development probably occurs by uneven gliding of the paranodal myelin loops simultaneously with internodal slippage of myelin lamellae. Since mechanically stabilizing structures (tight junctions and desmosomes between adjacent paranodal myelin processes; transverse bands between myelin loops and paranodal axolemma) are unevenly arranged, especially during rapid axonal growth, paranodal axonal growth with simultaneous adaptation of the myelin sheath is probably discontinuous with time.Presented in part at the 10th Biennial Meeting of the Peripheral Nerve Study Group at Arden House, Harriman, New York, USA, June 30th–July 3rd, 1991, and as a doctoral thesis (M. Bertram) at the RWTH Aachen in 1991  相似文献   

16.
The intercellular cell adhesion molecule-1 (ICAM-1) has been implicated in the recruitment of immune cells during inflammatory processes. Previous studies investigating its involvement in the process of Wallerian degeneration and focusing on its potential role in macrophage recruitement have come to controversial conclusions. To examine whether Wallerian degeneration is altered in the absence of ICAM-1, we have analyzed changes in the expression of axonal and Schwann cell markers following sciatic nerve crush in wildtype and ICAM-1-deficient mice. We report that the lack of ICAM-1 leads to impaired axonal degeneration and regeneration and to alterations in Schwann cell responses following sciatic nerve crush. Degradation of neurofilament protein, the collapse of axonal profiles, and the re-expression of neurofilament proteins are substantially delayed in the distal nerve segment of ICAM-1-/- mice. In contrast, the degradation of myelin, as determined by immunostaining for myelin protein zero, is unaltered in the mutants. Upregulation of GAP-43 and p75 neurotrophin receptor (p75NTR) expression, characteristic for Schwann cells dedifferentiating in response to nerve injury, is differentially altered in the mutant animals. These results indicate that ICAM-1 is essential for the normal progression of axonal degeneration and regeneration in distal segments of injured peripheral nerves.  相似文献   

17.
We have examined the localization of contactin-associated protein (Caspr), the Shaker-type potassium channels, Kv1.1 and Kv1.2, their associated beta subunit, Kvbeta2, and Caspr2 in the myelinated fibers of the CNS. Caspr is localized to the paranodal axonal membrane, and Kv1.1, Kv1.2, Kvbeta2 and Caspr2 to the juxtaparanodal membrane. In addition to the paranodal staining, an internodal strand of Caspr staining apposes the inner mesaxon of the myelin sheath. Unlike myelinated axons in the peripheral nervous system, there was no internodal strand of Kv1.1, Kv1.2, Kvbeta2, or Caspr2. Thus, the organization of the nodal, paranodal, and juxtaparanodal axonal membrane is similar in the central and peripheral nervous systems, but the lack of Kv1.1/Kv1.2/Kvbeta2/Caspr2 internodal strands indicates that the oligodendrocyte myelin sheaths lack a trans molecular interaction with axons, an interaction that is present in Schwann cell myelin sheaths.  相似文献   

18.
Myelination allows the fast propagation of action potentials at a low energetic cost. It provides an insulating myelin sheath regularly interrupted at nodes of Ranvier where voltage-gated Na+ channels are concentrated. In the peripheral nervous system, the normal function of myelinated fibers requires the formation of highly differentiated and organized contacts between the myelinating Schwann cells, the axons and the extracellular matrix. Some of the major molecular complexes that underlie these contacts have been identified. Compact myelin which forms the bulk of the myelin sheath results from the fusion of the Schwann cell membranes through the proteins P0, PMP22 and MBP. The basal lamina of myelinating Schwann cells contains laminin-2 which associates with the glial complex dystroglycan/DPR2/L-periaxin. Non compact myelin, found in paranodal loops, periaxonal and abaxonal regions, and Schmidt-Lanterman incisures, presents reflexive adherens junctions, tight junctions and gap junctions, which contain cadherins, claudins and connexins, respectively. Axo-glial contacts determine the formation of distinct domains on the axon, the node, the paranode, and the juxtaparanode. At the paranodes, the glial membrane is tightly attached to the axolemma by septate-like junctions. Paranodal and juxtaparanodal axoglial complexes comprise an axonal transmembrane protein of the NCP family associated in cis and in trans with cell adhesion molecules of the immunoglobulin superfamily (IgSF-CAM). At nodes, axonal complexes are composed of Na+ channels and IgSF-CAMs. Schwann cell microvilli, which loosely cover the node, contain ERM proteins and the proteoglycans syndecan-3 and -4. The fundamental role of the cellular contacts in the normal function of myelinated fibers has been supported by rodent models and the detection of genetic alterations in patients with peripheral demyelinating neuropathies such as Charcot-Marie-Tooth diseases. Understanding more precisely their molecular basis now appears essential as a requisite step to further examine their involvement in the pathogenesis of peripheral neuropathies in general.  相似文献   

19.
During myelination, membrane-specialized domains are generated by complex interactions between axon and glial cells. The cell adhesion molecules caspr/paranodin and F3/contactin play a crucial role in the generation of functional septate-like junctions at paranodes. We have previously demonstrated that association with the glycosylphosphatidylinositol-linked F3/contactin is required for the recruitment of caspr/paranodin into the lipid rafts and its targeting to the cell surface. When transfected alone in neuroblastoma N2a cells, caspr/paranodin is retained in the endoplasmic reticulum (ER). Using chimerical constructs, we show that the cytoplasmic region does not contain any ER retention signal, whereas the ectodomain plays a crucial role in caspr/paranodin trafficking. A series of truncations encompassing the extracellular region of caspr/paranodin was unable to abolish ER retention. We show that N-glycosylation and quality control by the lectin-chaperone calnexin are required for the cell surface delivery of caspr/paranodin. Cell surface transport of F3/contactin and caspr/paranodin is insensitive to brefeldin A and the two glycoproteins are endoglycosidase H-sensitive when associated in complex, recruited into the lipid rafts, and expressed on the cell surface. Our results indicate a Golgi-independent pathway for the paranodal cell adhesion complex that may be implicated in the segregation of axonal subdomains.  相似文献   

20.
Myelin damage can lead to the loss of axonal conduction and paralysis in multiple sclerosis and spinal cord injury. Here, we show that acrolein, a lipid peroxidation product, can cause significant myelin damage in isolated guinea pig spinal cord segments. Acrolein-mediated myelin damage is particularly conspicuous in the paranodal region in both a calcium dependent (nodal lengthening) and a calcium-independent manner (paranodal myelin splitting). In addition, paranodal protein complexes can dissociate with acrolein incubation. Degraded myelin basic protein is also detected at the paranodal region. Acrolein-induced exposure and redistribution of paranodal potassium channels and the resulting axonal conduction failure can be partially reversed by 4-AP, a potassium channel blocker. From this data, it is clear that acrolein is capable of inflicting myelin damage as well as axonal degeneration, and may represent an important factor in the pathogenesis in multiple sclerosis and spinal cord injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号