共查询到20条相似文献,搜索用时 15 毫秒
1.
Optic nerve degeneration and mitochondrial dysfunction: genetic and acquired optic neuropathies 总被引:12,自引:0,他引:12
Selective degeneration of the smallest fibers (papillo-macular bundle) of the human optic nerve occurs in a large number of optic neuropathies characterized primarily by loss of central vision. The pathophysiology that underlies this peculiar pattern of cell involvement probably reflects different forms of genetic and acquired mitochondrial dysfunction.Maternally inherited Leber's hereditary optic neuropathy (LHON), dominant optic atrophy (Kjer disease), the optic atrophy of Leigh's syndrome, Friedreich ataxia and a variety of other conditions are examples of inherited mitochondrial disorders with different etiologies. Tobacco-alcohol amblyopia (TAA), the Cuban epidemic of optic neuropathy (CEON) and other dietary (Vitamins B, folate deficiencies) optic neuropathies, as well as toxic optic neuropathies such as due to chloramphenicol, ethambutol, or more rarely to carbon monoxide, methanol and cyanide are probably all related forms of acquired mitochondrial dysfunction.Biochemical and cellular studies in LHON point to a partial defect of respiratory chain function that may generate either an ATP synthesis defect and/or a chronic increase of oxidative stress. Histopathological studies in LHON cases and a rat model mimicking CEON revealed a selective loss of retinal ganglion cells (RGCs) and the corresponding axons, particularly in the temporal-central part of the optic nerve. Anatomical peculiarities of optic nerve axons, such as the asymmetric pattern of myelination, may have functional implications on energy dependence and distribution of mitochondrial populations in the different sections of the nerve. Histological evidence suggests impaired axonal transport of mitochondria in LHON and in the CEON-like rat model, indicating a possible common pathophysiology for this category of optic neuropathies. Histological evidence of myelin pathology in LHON also suggests a role for oxidative stress, possibly affecting the oligodendrocytes of the optic nerves. 相似文献
2.
3.
The displacement current was recorded in the Ranvier node membrane ofRana ridibunda. This current was shown to be due to conversion of charges from the initial state in which they were when a high negative voltage was present on the membrane into the final state. The dependence of the displacement charge on the membrane potential and state of activation of the sodium channels suggests that the displacement current is connected with activation of the m gates of the sodium channels. Considering the density of the displaced charges, the density of the sodium channels can be estimated to be 5000 channels/µ2.A. A. Ukhtomskii Institute of Physiology, A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 410–417, July–August, 1976. 相似文献
4.
5.
Myelination organizes axons into distinct domains that allow nerve impulses to propagate in a saltatory manner. The edges of the myelin sheath are sealed at the paranodes by axon-glial junctions that have a crucial role in organizing the axonal cytoskeleton. Here we propose a model in which the myelinated axons depend on the axon-glial junctions to stabilize the cytoskeletal transition at the paranodes. Thus paranodal regions are likely to be particularly susceptible to damage induced by demyelinating diseases such as multiple sclerosis. 相似文献
6.
Mitochondria and other membranous organelles are frequently enriched in the nodes and paranodes of peripheral myelinated axons, particularly those of large caliber. The physiologic role(s) of this organelle enrichment and the rheologic factors that regulate it are not well understood. Previous studies suggest that axonal transport of organelles across the nodal/paranodal region is locally regulated. In this study, we have examined the ultrastructure of myelinated axons in the sciatic nerves of mice deficient in the contactin-associated protein (Caspr), an integral junctional component. These mice, which lack the normal septate-like junctions that promote attachment of the glial (paranodal) loops to the axon, contain aberrant mitochondria in their nodal/paranodal regions. These mitochondria are typically large and swollen and occupy prominent varicosities of the nodal axolemma. In contrast, mitochondria located outside the nodal/paranodal regions of the myelinated axons appear normal. These findings suggest that paranodal junctions regulate mitochondrial transport and function in the axoplasm of the nodal/paranodal region of myelinated axons of peripheral nerves. They further implicate the paranodal junctions in playing a role, either directly or indirectly, in the local regulation of energy metabolism in the nodal region. 相似文献
7.
A motor nerve conduction block is defined as a reduction of either amplitude or area of the compound motor action potential elicited by proximal vs. distal motor nerve stimulation. The pathophysiological mechanisms leading to a figure of conduction block include segmental demyelination, recent axonal interruption, or various axonal excitability abnormalities due to ion channel dysfunction or membrane potential changes. These processes can be related to compressive, ischemic or dysimmune inflammatory causes. The etiologic diagnosis is established on the combination of clinical, electrophysiological, and biological data. Among the neuropathies that feature nerve conduction blocks, there is a group of particular dysimmune multifocal neuropathies characterized by long-term persistent conduction blocks, including pure motor forms and sensori-motor forms. The clinical, electrophysiological, biological, and therapeutic specificities of these two types of neuropathy will be discussed. 相似文献
8.
L.E. Moore 《生物化学与生物物理学报:生物膜》1975,375(1):115-123
Temperature-jump experiments on isolated myelinated nerve fibers were done using a pulsed laser system in the Q switched mode. Voltage-clamp and temperature perturbations were used to measure the relaxing ionic conductances of both the Na+ and K+ systems. It is shown that the T jump can be used to probe the K+ and Na+ conductances during non-steady state conditions and thereby elicit relaxation times for a variety of initial states. Temperature-induced K+ conductance relaxation times were consistent with voltage-clamp measurements. The temperature-perturbation experiments were done as a combination of a temperature step and impulse change due to an adsorption of carbon black particles on the nerve. The experiments support the hypothesis that the relaxation times of the K+ system are independent of the previous history of the axon. It is concluded that the K+ conductance is at least a second-order system whose relaxation spectrum is composed of two exponential terms the magnitudes of which are markedly dependent on the initial conditions. 相似文献
9.
10.
BACKGROUND AND PURPOSE: Peripheral neuropathies, disorders of peripheral nerves, result from genetic alterations or from metabolic, inflammatory, infectious, or chemical insults. Experimental animal models, spontaneous or induced, exist for many of the common human peripheral neuropathies. Recent advances in human genetics have led to identification of several specific gene defects involved in heritable neuropathies and have allowed reproduction of the molecular defects in experimental animals. METHODS: Genetic modifications in mice and rats, similar to those seen in humans, along with animal models of specific gene defects are presented and discussed. RESULTS AND CONCLUSION: Chemotherapeutic agents administered to affected animals mimic the dose-dependent neuropathies similar to those seen in humans. Availability of the experimental animal models has been invaluable to an understanding of the pathogenesis of disease and the development of new treatments. 相似文献
11.
The effect of procaine on generation of the action potential and its derivative in solutions with different pH values was studied in experiments on single Ranvier nodes. Minimal concentrations of procaine depressing the action potential were increased in solutions with low pH and reduced in solutions with high pH. The calculated concentrations of the basic and cationic forms of procaine changed regularly: With an increase in pH of the medium the basic decreased and the cationic increased. Excitability of the membrane (the number of sodium channels capable of excitation) did not change regularly in accordance with a change in pH of the medium: It fell on both a decrease and an increase in the pH of the solution. It was concluded from the results that the two forms of procaine interact with the membrane, but with different effectiveness.A. V. Vishnevskii Institute of Surgery, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 8, No. 2, pp. 161–167, March–April, 1974. 相似文献
12.
《BMJ (Clinical research ed.)》1976,1(6024):1488-1489
13.
Assembly and maintenance of nodes of ranvier rely on distinct sources of proteins and targeting mechanisms 总被引:1,自引:0,他引:1
Zhang Y Bekku Y Dzhashiashvili Y Armenti S Meng X Sasaki Y Milbrandt J Salzer JL 《Neuron》2012,73(1):92-107
We have investigated the source(s) and targeting of components to PNS nodes of Ranvier. We show adhesion molecules are freely diffusible within the axon membrane and accumulate at forming nodes from local sources, whereas ion channels and cytoskeletal components are largely immobile and require transport to the node. We further characterize targeting of NF186, an adhesion molecule that pioneers node formation. NF186 redistributes to nascent nodes from a mobile, surface pool. Its initial accumulation and clearance from the internode require extracellular interactions, whereas targeting to mature nodes, i.e., those flanked by paranodal junctions, requires intracellular interactions. After incorporation into the node, NF186 is immobile, stable, and promotes node integrity. Thus, nodes assemble from two sources: adhesion molecules, which initiate assembly, accumulate by diffusion trapping via interactions with Schwann cells, whereas ion channels and cytoskeletal components accumulate via subsequent transport. In mature nodes, components turnover slowly and are replenished via transport. VIDEO ABSTRACT: 相似文献
14.
15.
16.
Alamethicin channels incorporated into frog node of ranvier: calcium-induced inactivation and membrane surface charges
下载免费PDF全文

Alamethicin, a peptide antibiotic, partitions into artificial lipid bilayer membranes and into frog myelinated nerve membranes, inducing a voltage-dependent conductance. Discrete changes in conductance representing single-channel events with multiple open states can be detected in either frog node or lipid bilayer membranes. In 120 mM salt solution, the average conductance of a single channel is approximately 600 pS. The channel lifetimes are roughly two times longer in the node membrane than in a phosphatidylethanolamine bilayer at the same membrane potential. With 2 or 20 mM external Ca and internal CsCl, the alamethicin-induced conductance of frog nodal membrane inactivates. Inactivation is abolished by internal EGTA, suggesting that internal accumulation of calcium ions is responsible for the inactivation, through binding of Ca to negative internal surface charges. As a probe for both external and internal surface charges, alamethicin indicates a surface potential difference of approximately -20 to -30 mV, with the inner surface more negative. This surface charge asymmetry is opposite to the surface potential distribution near sodium channels. 相似文献
17.
Maertens B Hopkins D Franzke CW Keene DR Bruckner-Tuderman L Greenspan DS Koch M 《The Journal of biological chemistry》2007,282(14):10647-10659
Gliomedin, which has been implicated as a major player in genesis of the nodes of Ranvier, contains two collagenous domains and an olfactomedin-like domain and belongs to the group of type II transmembrane collagens that includes collagens XIII and XVII and ectodysplasin A. One characteristic of this protein family is that constituent proteins can exist in both transmembrane and soluble forms. Recently, gliomedin expressed at the tips of Schwann cell microvilli was found to bind axonal adhesion molecules neurofascin and NrCAM in interactions essential for Na(+)-channel clustering at the nodes of Ranvier in myelinating peripheral nerves. Interestingly, exogenously added olfactomedin domain was found to have the same effect as intact gliomedin. Here we analyze the tissue form of gliomedin and demonstrate that the molecule not only exists as full-length gliomedin but also as a soluble form shed from the cell surface in a furin-dependent manner. In addition, gliomedin can be further proteolytically processed by bone morphogenetic protein 1/Tolloid-like enzymes, resulting in release of the olfactomedin domain from the collagen domains. Interestingly, the later cleavage induces formation of higher order, insoluble molecular aggregates that may play important roles in Na(+)-channel clustering. 相似文献
18.
Effects of different local anesthetics of sodium permeability were studied in single nerve fibres of frog by the method of voltage clamp. Inhibition of sodium current by externally applied tertiary anesthetics, procaine and trimecaine, was the sum of a potentially independent block (reduced ) and slow sodium inactivation with time constants ranging from tens to hundreds of ms depending on membrane potential (at room temperature). Externally applied uncharged benzocaine produced a potentially independent block only. According to dose-response curves both processes are one-to-one reactions. In the case of trimecaine equilibrium constant the reaction responsible for reduction of is about 0.3 mM, while that for slow inactivation is more than ten times less (0.02 mM). Increasing pH from 5.6 to 8.5 markedly accelerated the slow inactivation process at all potential values. Divalent cations Ca2+ and Ni2+ shifted the steady-state slow inactivation curve along the potential axis and simultaneously reduced slow inactivation at the saturation level. Permanently charged quaternary trimecaine was ineffective when applied externally. Internally applied tertiary anesthetics and quaternary trimecaine as well as externally applied quaternary derivative of lidocaine QX-572 produced a progressively irreversible block enhanced by depolarization and inhibition reversibly increased by repetitive short-term depolarization (frequency-dependent inhibition). Inhibition of sodium currents by repetitive stimulation observed also in the case of externally applied tertiary anesthetics is due mainly to slow inactivation. The data suggests the existence of several types of receptor sites through which local anesthetics exert their blocking action on sodium permeability. 相似文献
19.