首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chick limb-bud mesenchymal cells, plated in micromass culture, differentiate in vitro to form a cartilaginous structure analogous to the epiphyseal growth plate. When inorganic phosphate, Pi, is included in the medium such that the total Pi concentration is 4 mM, apatite mineral precipitates around the "hypertrophic" chondrocytes. These hypertrophic chondrocytes are characterized by their increased expression of type X collagen, alkaline phosphatase activity, and apoptosis, as well as by the ability of their extracellular matrices to support mineral deposition. Under standard mineralizing conditions (0.8 x 10(6)cells/micromass; 4 mM Pi, 1.3 mM Ca(2+), 10% FCS, and antibiotics) mineralization does not commence until day 14-16. Based on the ability of bone morphogenic protein 6 (BMP-6) to stimulate chondrocyte maturation in other systems, 100 ng/ml BMP-6 was added to chick limb-bud mesenchymal cell cultures 2 and 5 days after plating, and the effects of this addition on mineral accretion and the characteristics of the mineral and matrix determined. Addition of BMP-6 accelerated the differentiation of the mesenchymal cells to hypertrophic chondrocytes. In the presence of BMP-6 added on both days 2 and 5, mineralization (assessed on basis of (45)Ca uptake) commenced by day 12. Fourier transform infrared imaging (FTIRI) was used to monitor the mineral content and mineral crystallinity as a function of time from day 9 to 21 in cultures with and without exogenous BMP-6. While BMP-6 accelerated the rate of mineral accretion, and the crystals that were formed in the BMP-6 cultures were initially more mature, by day 21 the crystal size distribution in experimental and control cultures were not significantly different. This study, the first to report the detailed application of FTIRI to cell cultures, indicates the importance of the extracellular matrix in the control of crystal maturation.  相似文献   

2.
The murine mesenchymal cell line, C3H10T1/2 in micromass culture undergoes chondrogenic differentiation with the addition of BMP-2. This study compares the use of BMP-2 vs. insulin, transferrin, and sodium selenite (ITS) to create a chondrogenic micromass cell culture system that models cartilage calcification in the presence of 4 mM inorganic phosphate. BMP-2 treated cultures showed more intense alcian blue staining for proteoglycans than ITS treated cultures at early time points. Both ITS and BMP-2 treated cultures showed similar mineral deposition in cultures treated with 4 mM phosphate via von Kossa staining, however FTIR spectroscopy of cultures showed different matrix properties. ITS treated cultures produced matrix that more closely resembled mouse calcified cartilage by FTIR analysis. 45Ca uptake curves showed delayed onset of mineralization in cultures treated with BMP-2, however they had an increased rate of mineralization (initial slope of 45Ca uptake curve) when compared to the cultures treated with ITS. Immunohistochemistry showed the presence of both collagens type I and type II in BMP-2 and ITS treated control (1 mM inorganic phosphate) and mineralizing cultures. BMP-2 treated mineralizing cultures displayed more intense staining for collagen type II than all other cultures. Collagen type X staining was detected at Day 9 only in mineralizing cultures treated with ITS. Western blotting of Day 9 cultures confirmed the presence of collagen type X in the mineralizing ITS cultures, and also showed very small amounts of collagen type X in BMP-2 treated cultures and control ITS cultures. By Day 16 all cultures stained positive for collagen type X. These data suggest that BMP-2 induces a more chondrogenic phenotype, while ITS treatment favors maturation and hypertrophy of the chondrocytes in the murine micromass cultures.  相似文献   

3.
Mineralization of growth plate cartilage is a critical event during endochondral bone formation, which allows replacement of cartilage by bone. Ankylosis protein (Ank), which transports intracellular inorganic pyrophosphate (PP(i)) to the extracellular milieu, is expressed by hypertrophic and, especially highly, by terminally differentiated mineralizing growth plate chondrocytes. Blocking Ank transport activity or ank expression in terminally differentiated mineralizing growth plate chondrocytes led to increases of intra- and extracellular PP(i) concentrations, decreases of alkaline phosphatase (APase) expression and activity, and inhibition of mineralization, whereas treatment of these cells with the APase inhibitor levamisole led to an increase of extracellular PP(i) concentration and inhibition of mineralization. Ank-overexpressing hypertrophic nonmineralizing growth plate chondrocytes showed decreased intra- and extracellular PP(i) levels; increased mineralization-related gene expression of APase, type I collagen, and osteocalcin; increased APase activity; and mineralization. Treatment of Ank-expressing growth plate chondrocytes with a phosphate transport blocker (phosphonoformic acid [PFA]) inhibited uptake of inorganic phosphate (P(i)) and gene expression of the type III Na(+)/P(i) cotransporters Pit-1 and Pit-2. Furthermore, PFA or levamisole treatment of Ank-overexpressing hypertrophic chondrocytes inhibited APase expression and activity and subsequent mineralization. In conclusion, increased Ank activity results in elevated intracellular PP(i) transport to the extracellular milieu, initial hydrolysis of PP(i) to P(i), P(i)-mediated upregulation of APase gene expression and activity, further hydrolysis and removal of the mineralization inhibitor PP(i), and subsequent mineralization.  相似文献   

4.
Chick limb-bud mesenchymal cells, plated in high-density micro-mass culture, differentiate and form a matrix resembling chick epiphyseal cartilage. In the presence of 4 mM inorganic phosphate or 2.5 mM beta-glycerophosphate mineral deposits upon this matrix forming a mineralized tissue that, based on electron microscopy, x-ray diffraction and Fourier Transform Infrared microspectoscopy, is like that of chick calcified cartilage. In this culture system the initial mineral deposits are found on the periphery of the chondrocyte nodules. During differentiation of the cells in the high-density micro-mass cultures there is a switch from expression of type I collagen to type II, and then to type X collagen. However, type I collagen persists in the matrix. Because there is some debate about whether type I collagen influences cartilage calcification, an immunoblocking technique was used to determine the importance of type I collagen on the mineralization process in this system. Studies using nonspecific goat anti-chick IgG demonstrated that 1-100 ng/ml antibody added with the media after the cartilage nodules had developed (day 7) had no effect on the accumulation of mineral in the cultures. Nonspecific antibody added before day 7 blocked development of the cultures. Parallel solution based cell-free studies showed that IgG did not have a strong affinity for apatite crystals, and had no significant effect on apatite crystal growth. Type I collagen antibodies (1-200 ng/ml) added to cultures one time on day 9 (before mineralization started), or on day 11 (at the start of mineralization), slightly inhibited the accumulation of mineral. There was a statistically significant decrease in mineral accretion with 100 or 200 ng/ml collagen antibody addition continuously after these times. Fab' fragments of nonspecific and type I collagen antibodies had effects parallel to those of the intact antibodies, indicating that the decreased mineralization was not attributable to the presence of the larger, bulkier antibodies. The altered accumulation of mineral was not associated with cell death in the presence of antibody (demonstrated by fluorescent labeling of DNA) or with increased apoptosis (TUNEL-stain). In the immunoblocked cultures, EM analysis demonstrated that mineral continued to deposit on collagen fibrils, but there appeared to be fewer deposits. The data demonstrate that type I collagen is important for the mineralization of these cultures.  相似文献   

5.
In the presence of 4 mM inorganic phosphate, differentiating chick limb-bud mesenchymal cells plated in micromass cultures form a mineralized matrix resembling that of chick calcified cartilage. To test the hypothesis that cartilage proteoglycans are inhibitors of cell mediated mineralization, the synthesis, content, and turnover of proteoglycans were altered in this system, and the extent of mineralization and properties of the mineral crystals examined. In all cases where the proteoglycan synthesis or proteoglycans present were modified to provide fewer or smaller molecules, mineralization was enhanced. Specifically, when proteoglycan synthesis was blocked by treatment with 10−10 M retinoic acid, extensive mineral deposition occurred on a matrix devoid of both proteoglycans and cartilage nodules. The crystals, which formed rapidly, were relatively large in size based on analysis by X-ray diffraction or FT-IR microspectroscopy, and were more abundant than in controls. When 2.5 or 5 mM xylosides were used to cause the synthesis of smaller proteoglycans, the extent of mineral accretion was also increased relative to controls; however, the matrix was less affected, and the extent of mineral deposition and the size of the crystals were not as markedly altered as in the case of retinoic acid. Modification of existing proteoglycans by either chondroinase ABC or hyaluronidase treatment similarly resulted in increased mineral accretion (based on 45Ca uptake or total Ca uptake) relative to cultures in which the proteoglycan content was not manipulated. Crystals were more abundant and larger than in control mineralizing cultures. In contrast, when proteoglycan degradation by metalloproteases was inhibited by metal chelation with o-phenanthroline, the Ca accretion at early time points was increased, but as mineralization progressed, Ca accumulation decreased. These data provide evidence that in this culture system, proteoglycans are inhibitors of mineralization. J. Cell. Biochem. 64:632–643. © 1997 Wiley-Liss, Inc.  相似文献   

6.
7.
Chondrocyte apoptosis is thought to be an important step in the calcification of cartilage in vivo; however, there are conflicting reports as to whether or not this apoptosis is a necessary precursor to mineralization. The goal of this study was to determine whether or not apoptosis is necessary for mineralization in an in vitro murine micromass model of endochondral ossification. C3H10T1/2 murine mesenchymal stem cells were plated in micromass culture in the presence of 4 mM inorganic phosphate with the addition of the apoptogens, camptothecin, or staurosporine, to induce apoptosis. The rate and total accumulation of mineralization was measured with 45Ca uptake. In these studies, both apoptogens increased the rate of mineralization, with staurosporine increasing 45Ca accumulation by about 2.5 times that of controls and camptothecin increasing total amounts of mineralization about 1.5 times that of controls. Inhibiting cell apoptosis with the caspase inhibitor, ZVAD‐fmk, to prevent apoptosis, caused slower rates of 45Ca uptake; however, total amounts of 45Ca accumulation reached the same values by day 30 of culture. FTIR data showed mineralization in all samples treated with 4 mM inorganic phosphate, with the highest mineral to matrix ratios in the camptothecin treated samples. J. Cell. Biochem. 111: 653–658, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Matrix vesicles have a critical role in the initiation of mineral deposition in skeletal tissues, but the ways in which they exert this key function remain poorly understood. This issue is made even more intriguing by the fact that matrix vesicles are also present in nonmineralizing tissues. Thus, we tested the novel hypothesis that matrix vesicles produced and released by mineralizing cells are structurally and functionally different from those released by nonmineralizing cells. To test this hypothesis, we made use of cultures of chick embryonic hypertrophic chondrocytes in which mineralization was triggered by treatment with vitamin C and phosphate. Ultrastructural analysis revealed that both control nonmineralizing and vitamin C/phosphatetreated mineralizing chondrocytes produced and released matrix vesicles that exhibited similar round shape, smooth contour, and average size. However, unlike control vesicles, those produced by mineralizing chondrocytes had very strong alkaline phosphatase activity and contained annexin V, a membrane-associated protein known to mediate Ca2+ influx into matrix vesicles. Strikingly, these vesicles also formed numerous apatite-like crystals upon incubation with synthetic cartilage lymph, while control vesicles failed to do so. Northern blot and immunohistochemical analyses showed that the production and release of annexin V-rich matrix vesicles by mineralizing chondrocytes were accompanied by a marked increase in annexin V expression and, interestingly, were followed by increased expression of type I collagen. Studies on embryonic cartilages demonstrated a similar sequence of phenotypic changes during the mineralization process in vivo. Thus, chondrocytes located in the hypertrophic zone of chick embryo tibial growth plate were characterized by strong annexin V expression, and those located at the chondro–osseous mineralizing border exhibited expression of both annexin V and type I collagen. These findings reveal that hypertrophic chondrocytes can qualitatively modulate their production of matrix vesicles and only when induced to initiate mineralization, will release mineralization-competent matrix vesicles rich in annexin V and alkaline phosphatase. The occurrence of type I collagen in concert with cartilage matrix calcification suggests that the protein may facilitate crystal growth after rupture of the matrix vesicle membrane; it may also offer a smooth transition from mineralized type II/type X collagen-rich cartilage matrix to type I collagen-rich bone matrix.  相似文献   

9.
The spatial and temporal coordination of the many events required for osteogenic cells to create a mineralized matrix are only partially understood. The complexity of this process, and the nature of the final product, demand that these cells have mechanisms to carefully monitor events in the extracellular environment and have the ability to respond through cellular and molecular changes. The generation of inorganic phosphate during the process of differentiation may be one such signal. In addition to the requirement of inorganic phosphate as a component of hydroxyapatite mineral, Ca(10)(PO(4))(6)(OH)(2), a number of studies have also suggested it is required in the events preceding mineralization. However, contrasting results, physiological relevance, and the lack of a clear mechanism(s) have created some debate as to the significance of elevated phosphate in the differentiation process. More recently, a number of studies have begun to shed light on possible cellular and molecular consequences of elevated intracellular inorganic phosphate. These results suggest a model in which the generation of inorganic phosphate during osteoblast differentiation may in and of itself represent a signal capable of facilitating the temporal coordination of expression and regulation of multiple factors necessary for mineralization. The regulation of protein function and gene expression by elevated inorganic phosphate during osteoblast differentiation may represent a mechanism by which mineralizing cells monitor and respond to the changing extracellular environment.  相似文献   

10.
During calcification of bone, large amounts of phosphate (P(i)) must be transported from the circulation to the osteoid. Likely candidates for osteoblast P(i) transport are the type II sodium-phosphate cotransporters NaPi-IIa and NaPi-IIb that facilitate transcellular P(i) flux in kidney and intestine, respectively. We have therefore determined the 'cotransporters' expression in osteoblast-like cells. We have also studied the 'cotransporters' regulation by P(i) and during mineralization in vitro. Phosphate uptake and cotransporter protein expression was investigated at early, late and mineralizing culture stages of mouse (MC3T3-E1) and rat (UMR-106) osteoblast-like cells. Both NaPi-IIa and NaPi-IIb were expressed by both osteoblast-like cell lines. NaPi-IIa was upregulated in both cell lines one week after confluency. After 7 days in 3mM P(i) NaPi-IIa was strongly upregulated in both cell lines. NaPi-IIb expression was unaffected by both culture stage and P(i) supplementation. The expression of both cotransporters was unaffected by P(i) deprivation. In vitro mineralization at 1.5mM P(i) was preceded by a three-fold increase in osteoblast sodium-dependent P(i) uptake and a corresponding upregulation of both NaPi-IIa and NaPi-IIb. Their expression thus seem regulated by phosphate in a manner consistent with their playing a role in transcellular P(i) flux during mineralization.  相似文献   

11.
The onset of mineralization in embryonic chick femurs was studied as a model for the initiation of biological calcification. Electron microscopy confirmed the presence of calcifying matrix vesicles within newly formed bone, and showed that these vesicles were the initial site of crystal deposition. Matrix vesicles were first seen on day 6 of embryonic development, and already were present in considerable numbers on day 7, at which time mineral deposition was just beginning. As a reflection of initial mineralization the uptake of 45Ca and 40Ca into 7-day-old bones was studied during 2 days in organ culture. A control level of uptake was established using a defined culture medium, P-6. Addition of inorganic pyrophosphate (PPi) to this medium caused a marked increase in calcium uptake into areas of matrix which normally calcify in vivo. The maximal 45Ca uptake, greater than 4-fold, was achieved with 4 μg of P per milliliter of PPi and was partially heat-inhibitable. Since the matrix vesicles are known to be rich in inorganic pyrophosphatase, it is proposed that mineralization is promoted in vesicles by the enzymatic hydrolysis of pyrophosphate. The membrane-bounded matrix vesicles appear to provide the necessary enzymes and environment to concentrate calcium and phosphate for initiating crystal formation.  相似文献   

12.
For in vitro differentiation of bone marrow-derived mesenchymal stem cells/mesenchymal stromal cells into osteoblasts by 2-dimensional cell culture a variety of protocols have been used and evaluated in the past. Especially the external phosphate source used to induce mineralization varies considerably both in respect to chemical composition and concentration. In light of the recent findings that inorganic phosphate directs gene expression of genes crucial for bone development, the need for a standardized phosphate source in in vitro differentiation becomes apparent. We show that chemical composition (inorganic versus organic phosphate origin) and concentration of phosphate supplementation exert a severe impact on the results of gene expression for the genes commonly used as markers for osteoblast formation as well as on the composition of the mineral formed. Specifically, the intensity of gene expression does not necessarily correlate with a high quality mineralized matrix. Our study demonstrates advantages of using inorganic phosphate instead of β-glycerophosphate and propose colorimetric quantification methods for calcium and phosphate ions as cost- and time-effective alternatives to X-ray diffraction and Fourier-transform infrared spectroscopy for determination of the calcium phosphate ratio and concentration of mineral matrix formed under in vitro-conditions. We critically discuss the different assays used to assess in vitro bone formation in respect to specificity and provide a detailed in vitro protocol that could help to avoid contradictory results due to variances in experimental design.  相似文献   

13.
14.
Teleost fish have recently been implemented as suitable model organisms to study vertebrate development, in particular skeletogenesis. In vitro cell systems derived from fish bone have been successfully established, although their development has been hampered by the limited availability of fish serum to supplement culture medium. Commercially available sera are mostly of mammalian origin and thus not necessarily adequate to fish cell growth. The main objective of this work was to compare proliferative and mineralogenic potential of bovine and fish sera using fish bone‐derived cell lines VSa13 and VSa16. Fish serum was shown to (i) strongly stimulate cell proliferation in an apparent dose‐dependent and cell type‐specific manner, (ii) induce morphological changes, and (iii) enhance extracellular matrix mineralization of bone cells, although cytotoxic for fish osteoblast‐like cells at the concentration tested. To better understand mechanisms underlying mineralogenic effect of fish serum in fish chondrocytes, expression of several mineralization‐related genes was evaluated by qPCR. Regulation of matrix Gla protein (MGP) and bone morphogenetic protein 2 (BMP2) gene expression was modified upon culture with fish serum in a way compatible with an early onset and an increase in mineralization. In conclusion, fish serum was shown to be more adequate to proliferation and differentiation/mineralization of fish bone‐derived cells.  相似文献   

15.
The calcification of cartilage is an essential step in the process of normal bone growth through endochondral ossification. Chondrocyte apoptosis is generally observed prior to the transition of calcified cartilage to bone. There are, however, contradictory reports in the literature as to whether chondrocyte apoptosis is a precursor to cartilage calcification, a co-event, or occurs after calcification. The purpose of this study was to test the hypothesis that chondrocyte apoptosis is not a requirement for initial calcification using a cell culture system that mimics endochondral ossification. Mesenchymal stem cells harvested from Stages 21-23 chick limb buds were plated as micro-mass cultures in the presence of 4 mM inorganic phosphate (mineralizing conditions). The cultures were treated with either an apoptosis inhibitor or stimulator and compared to un-treated controls before the start of calcification on day 7. Inhibition of apoptosis with the caspase inhibitor Z-Val-Ala-Asp (O-Me)-fluoromethylketone (Z-VAD-fmk) caused no decreases in calcification as indicated by radioactive calcium uptake or Fourier transform infrared (FT-IR) analysis of mineral properties. When apoptosis was inhibited, the cultures showed more robust histological features (including more intense staining for proteoglycans, and more intact cells within the nodules as well as along the periphery of the cells as compared to untreated controls), more proliferation as noted by bromo-deoxyuridine (BrdU) labeling, decreases in terminal deoxynucleotidyl transferase (Tdt)-mediated dUTP nick-end labeling (TUNEL) staining, and fewer apoptotic bodies in electron microscopy. Stimulation of apoptosis with 40-120 nM staurosporine prior to the onset of calcification resulted in inhibition of calcium accretion, with the extent of total calcium uptake significantly decreased, the amount of matrix deposition impaired, and the formation of abnormal mineral crystals. These results indicate that chondrocyte apoptosis is not a pre-requisite for calcification in this culture system.  相似文献   

16.
Bone formation requires synthesis, secretion, and mineralization of matrix. Deficiencies in these processes produce bone defects. The absence of the PDZ domain protein Na+/H+ exchange regulatory factor 1 (NHERF1) in mice, or its mutation in humans, causes osteomalacia believed to reflect renal phosphate wasting. We show that NHERF1 is expressed by mineralizing osteoblasts and organizes Na+/H+ exchangers (NHEs) and the PTH receptor. NHERF1-null mice display reduced bone formation and wide mineralizing fronts despite elimination of phosphate wasting by dietary supplementation. Bone mass was normal, reflecting coordinated reduction of bone resorption and formation. NHERF1-null bone had decreased strength, consistent with compromised matrix quality. Mesenchymal stem cells from NHERF1-null mice showed limited osteoblast differentiation but enhanced adipocyte differentiation. PTH signaling and Na+/H+ exchange were dysregulated in these cells. Osteoclast differentiation from monocytes was unaffected. Thus, NHERF1 is required for normal osteoblast differentiation and matrix synthesis. In its absence, compensatory mechanisms maintain bone mass, but bone strength is reduced.  相似文献   

17.
18.
Sturgeons are representative of an ancient fish group, and present mainly an internal cartilaginous skeleton, with bone found essentially in the ganoid plaques forming the exogenous skeleton. Because of its archaic genetics, sturgeon represents an important model organism to understand the role of bone and cartilage‐related Gla proteins and determine if their molecular mechanisms of action were maintained throughout evolution. Of particular relevance is understanding the regulation, in sturgeon, of those proteins known to be involved in tissue mineralization in mammals, as well as unveiling the function of newly identified calcification‐related genes such as the one encoding the recently discovered Gla‐rich protein (GRP), thus contributing to understand the poor calcification observed in sturgeon endoskeleton. However, regulation of gene expression and promoter functional analysis of sturgeon cartilage and bone‐specific genes has been hampered by lack of suitable in vitro cell systems. We have recently developed the first sturgeon vertebra (VAn2H) and branchial arches (BAAn1F) derived cell cultures, and here we report their inability to mineralize their ECM under mineralizing culture conditions, as detected by von Kossa staining. Although a more extensive characterization of these systems is ongoing, our first data indicate that these cells represent a valuable tool for expression analysis of sturgeon bone and cartilage genes.  相似文献   

19.
Lumican is a major proteoglycan component of the bone matrix.   总被引:2,自引:0,他引:2  
MC3T3-E1 mouse calvaria cells are a clonal population of committed osteoprogenitors that in the presence of appropriate supplements form a mineralized bone matrix. The development of the MC3T3-E1 cells can be divided into three major stages, namely, proliferation, differentiation, and mineralization. Recently, using the cDNA microarray technology we found lumican to be abundantly expressed during the mineralization and differentiation stages of the MC3T3-E1 development and not during the proliferation stage. Lumican has been shown to play essential roles in regulating collagen fibril formation in different extracellular matrices but its expression in the developing bone matrix remains elusive. By examining the expression profile of this gene during the different stages of MC3T3-E1 development, utilizing the 'real-time' PCR technology, we observed that the expression of lumican increases as the osteoblast culture differentiates and matures, suggesting that lumican may be involved in regulating collagen fibrillogenesis in bone matrices. Using immunostaining, we observed that during the early embryonic development of mouse (E11 to E13), lumican is mainly expressed in the cartilaginous matrices. However, in the older embryos (E14 to E16), the expression of lumican is more prominent in the developing bone matrices. Our data suggest that lumican is a significant proteoglycan component of bone matrix, which is secreted by differentiating and mature osteoblasts only and therefore it can be used as a marker to distinguish proliferating pre-osteoblasts from the differentiating osteoblasts.  相似文献   

20.
At the tissue level it is well established that the rate of remodeling is related to the degree of mineralization. However, it is unknown how long it takes for an individual bone structural unit (BSU) to become fully mineralized during secondary mineralization. Using synchrotron Fourier transform infrared microspectroscopy (FTIRM) we examined the time required for newly formed bone matrix to reach a physiological mineralization limit. Twenty-six, four-month old female New Zealand white rabbits were administered up to four different fluorochrome labels at specific time points to evaluate the chemical composition of labeled osteons from the tibial diaphysis that had mineralized for 1, 8, 18, 35, 70, 105, 140, 175, 210, 245, 280, 315, 350, and 385 days. Interstitial bone from 505 day old rabbits was used as a reference value for the physiological limit to which bone mineralizes. Using synchrotron FTIRM, area integrations were carried out on protein (Amide I: 1688-1623 cm(-1)), carbonate (v(2)CO(3)(2-): 905-825 cm(-1)), and phosphate (v(4)PO(4)(3-): 650-500 cm(-1)) IR bands. IR spectral data are presented as ratios of phosphate/protein (overall matrix mineralization) and carbonate/protein. The rate of mineralization of osteonal bone proceeded rapidly between day 1 and 18, reaching 67% of interstitial bone levels. This was followed by a slower, more progressive accumulation of mineral up to day 350. By 350 days the rate of increase plateaued. The ratio of carbonate/protein also increased rapidly during the first 18 days, reaching 73% of interstitial bone levels. The ratio of carbonate/protein plateaued by day 315, reaching levels not significantly different to interstitial bone levels. In conclusion, our data demonstrate that bone accumulates mineral rapidly during the first 18 days (primary mineralization), followed by a more gradual increase in the accumulation of mineral (secondary mineralization) which we found to be completed in 350 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号