首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Forager honey bees have high circulating levels of juvenile hormone (JH) and high brain levels of octopamine, especially in the antennal lobes, and treatment with either of these compounds induces foraging. Experiments were performed to determine whether octopamine acts more proximally than JH to affect the initiation of foraging behavior. Bees treated with octopamine became foragers more rapidly than bees treated with the JH analog methoprene. Bees treated with methoprene showed an increase in antennal lobe levels of octopamine, especially after 12 days. Bees with no circulating JH (corpora allata glands removed) treated with octopamine became foragers in similar numbers to bees with intact corpora allata. These results suggest that JH affects the initiation of foraging at least in part by increasing brain levels of octopamine, but octopamine can act independently of JH. Effects of JH that are not related to octopamine also are possible, as bees treated with both octopamine and methoprene were more likely to become foragers than bees treated with only octopamine or methoprene.  相似文献   

2.
Changes in the levels of binding of 3H-SCH-23390, a vertebrate D1 dopamine receptor ligand, and 3H-spiperone, a vertebrate D2 dopamine receptor ligand were investigated in the brain of the worker honey bee during metamorphic adult development and during the lifetime of the adult bee. Age-related fluctuations in binding levels were markedly different for these two ligands. 3H-SCH-23390 and 3H-spiperone binding sites were present at low levels during metamorphic adult development. After adult emergence, however, 3H-SCH-23390 binding levels, in contrast to those of 3H-spiperone, increased significantly. Within the first 48 h of adult life 3H-SCH-23390 binding reached a level not significantly different from that detected in forager bees. No significant fluctuations in the levels of 3H-spiperone binding were observed during the adult lifetime of the bee. Measurements of dopamine levels in the brains of pupal and adult bees revealed no direct correlation between fluctuations in endogenous amine levels and the amount of binding of either 3H-SCH-23390 or 3H-spiperone. These results provide evidence for subtype-specific patterns of expression of dopamine receptors in the insect brain and show that D1- and D2-like receptors are expressed not only in the adult CNS, but also in the developing brain of the bee. Accepted: 4 June 1997  相似文献   

3.
Honey bees, Apis mellifera, which perform hygienic behavior, quickly detect, uncap and remove diseased brood from the nest. This behavior, performed by bees 15-20 days old and prior to foraging, is likely mediated by olfactory cues. Because the neuromodulator octopamine (OA) plays a pivotal role in olfactory-based behaviors of honey bees, we examined whether bees bred for hygienic and nonhygienic behavior differed with regard to their OA expression and physiology. We compared the staining intensity of octopamine-immunoreactive (OA-ir) neurons in the deutocerebral region of the brain, medial to the antennal lobes, between hygienic and nonhygienic bees (based on genotype and phenotype). We also tested how the olfactory responses of the two lines, based on electroantennograms (EAGs), were affected by oral administration of OA and of epinastine, a highly specific OA antagonist. Our results revealed that bees expressing hygienic behavior (irrespective of genotype) possessed OA-ir neurons that exhibited more intense labeling than same-aged bees not performing the behavior. In bees bred for nonhygienic behavior, OA significantly increased the EAG response to low concentrations of diseased brood odor. Conversely, in bees bred for hygienic behavior, epinastine significantly reduced the magnitude of the EAG response, a reduction not observed in nonhygienic bees. Our results provide two lines of evidence that OA has the potential to facilitate the detection and response of honey bees to diseased brood. We discuss the contributions of OA for behavioral shaping and its ability to bias the nervous system to express one form of behavior over another.  相似文献   

4.
Pheromones cause dramatic changes in behavior and physiology, and are critical for honey bee colony organization. Queen mandibular pheromone (QMP) regulates multiple behaviors in worker bees (Slessor et al. in J Chem Ecol 31(11):2731–2745, 2005). We also identified genes whose brain expression levels were altered by exposure to QMP (Grozinger et al. in Proc Natl Acad Sci USA 100(Suppl 2):14519–14525, 2003). Krüppel-homolog 1 (Kr-h1) RNA levels were significantly downregulated by QMP, and were higher in foragers than in nurses (Whitfield et al. in Science 302(5643):296–299, 2003). Here we report on results of behavioral and pharmacological experiments that characterize factors regulating expression of Kr-h1. Foragers have higher brain levels of Kr-h1 than in-hive bees, regardless of age and pheromone exposure. Furthermore, forager Kr-h1 levels were not affected by QMP. Since the onset of foraging is caused, in part, by increasing juvenile hormone blood titers and brain octopamine levels, we investigated the effects of octopamine and methoprene (a juvenile hormone analog) on Kr-h1 expression. Methoprene produced a marginal (not significant) increase in Kr-h1 expression, but Kr-h1 brain levels in methoprene-treated bees were no longer downregulated by QMP. Octopamine did not modulate Kr-h1 expression. Our results demonstrate that the gene expression response to QMP is not hard-wired in the brain but is instead dependent on worker behavioral state.  相似文献   

5.
6.
Using uniplex RT-PCR we screened honey bee colonies for the presence of several bee viruses, including black queen cell virus (BQCV), deformed wing virus (DWV), Kashmir bee virus (KBV), and sacbrood virus (SBV), and described the detection of mixed virus infections in bees from these colonies. We report for the first time that individual bees can harbor four viruses simultaneously. We also developed a multiplex RT-PCR assay for the simultaneous detection of multiple bee viruses. The feasibility and specificity of the multiplex RT-PCR assay suggests that this assay is an effective tool for simultaneous examination of mixed virus infections in bee colonies and would be useful for the diagnosis and surveillance of honey bee viral diseases in the field and laboratory. Phylogenetic analysis of putative helicase and RNA-dependent RNA polymerase (RdRp) encoded by viruses reveal that DWV and SBV fall into a same clade, whereas KBV and BQCV belong to a distinct lineage with other picorna-like viruses that infect plants, insects and vertebrates. Results from field surveys of these viruses indicate that mixed infections of BQCV, DWV, KBV, and SBV in the honey bee probably arise due to broad geographic distribution of viruses.  相似文献   

7.
1.  The effects of the biogenic amines serotonin and octopamine on motion-sensitive neurons in the lobula of the honey bee were analysed electrophysiologically. Single cell activity was recorded intracellularly during application of amines. Field potentials in the lobula were recorded to measure the effects on populations of motion-sensitive neurons.
2.  Serotonin and octopamine modulate the response properties of motion-sensitive neurons in the lobula in a functionally antagonistic way.
3.  The application of serotonin, in most cases, reduces background activity as well as responses to moving stripe patterns by motion-sensitive lobula neurons. The direction specificity can also decrease after serotonin application. In accordance with the single cell recordings, the amplitudes of lobula field potentials evoked by moving stripe patterns are also reduced by application of serotonin.
4.  Octopamine leads to an increase in the amplitude and the initial slope of field potentials evoked by moving stripe patterns. However, there were no uniform effects at the single cell level after octopamine application.
5.  The modulatory effects of serotonin and octopamine on motion-sensitive neurons correlate well with some behavioral modifications elicited by these substances (Erber et al. 1991; Erber and Kloppenburg, companion paper).
  相似文献   

8.
The behavioral maturation of adult worker honey bees is influenced by a rising titer of juvenile hormone (JH), and is temporally correlated with an increase in the volume of the neuropil of the mushroom bodies, a brain region involved in learning and memory. We explored the stability of this neuropil expansion and its possible dependence on JH. We studied the volume of the mushroom bodies in adult bees deprived of JH by surgical removal of the source glands, the corpora allata. We also asked if the neuropil expansion detected in foragers persists when bees no longer engage in foraging, either because of the onset of winter or because colony social structure was experimentally manipulated to cause some bees to revert from foraging to tending brood (nursing). Results show that adult exposure to JH is not necessary for growth of the mushroom body neuropil, and that the volume of the mushroom body neuropil in adult bees is not reduced if foraging stops. These results are interpreted in the context of a qualitative model that posits that mushroom body neuropil volume enlargement in the honey bee has both experience-independent and experience-dependent components.  相似文献   

9.
Insects have excellent color vision based on the expression of different opsins in specific sets of photoreceptive cells. Opsins are members of the rhodopsin superfamily of G-protein coupled receptors, and are transmembrane proteins found coupled to light-sensitive chromophores in animal photoreceptors. Diversification of opsins during animal evolution provided the basis for the development of wavelength-specific behavior and color vision, but with the exception of the recently discovered non-visual melanopsins, vertebrate and invertebrate opsins have generally been viewed as representing distinct lineages. We report a novel lineage of insect opsins, designated pteropsins. On the basis of sequence analysis and intron location, pteropsins are more closely related to vertebrate visual opsins than to invertebrate opsins. Of note is that the pteropsins are missing entirely from the genome of drosophilid flies. In situ hybridization studies of the honey bee, Apis mellifera, revealed that pteropsin is expressed in the brain of this species and not in either the simple or compound eyes. It was also possible, on the basis of in situ hybridization studies, to assign different long wavelength opsins to the compound eyes (AmLop1) and ocelli (AmLop2). Insect pteropsin might be orthologous to a ciliary opsin recently described from the annelid Platynereis, and therefore represents the presence of this vertebrate-like light-detecting system in insects.  相似文献   

10.
Summary Using manometric and gas analytical methods oxygen consumption , carbon dioxide production , respiratory quotientRQ, (Fig. 1A-C) and thorax surface temperature difference T ts (Fig. 3) were determined in single bees. The animals were either sitting in respiratory chambers or were suspended by the scutum, in which case they were resting, walking (turning a small polystyrene ball) or flying in a closed miniature wind tunnel.During resting (sitting in Warburg vessels) at an ambient temperatureT a=10°C,RQ was 1.01±0.2 (n=905) with variations due to method (Fig. 1D, E).RQ values during walking were determined in single cases. In no case were they significantly different from 1.00. After the first 10 min of flight meanRQ was 1.00±0.04. It was significantly smaller than 1.00 (RQ=0.97) only during the last 5% of long-time flights (mean flight duration 58.8±28.8 min). With the exception of near-exhaustion conditions no signs of fuels other than carbohydrates were found.Metabolic rateP m was 19.71±21.38 mW g–1 during resting at 20°CT a30°C indicating that many resting bees actively thermoregulate at higherT a. After excluding bees which were actively thermoregulating, by an approximationP m was 5.65±2.44 mW g–1 at 20°CT a30°C. True resting metabolic rate for sitting bees atT a=10°C was 1.31±0.53 mW g–1 (Fig. 2A, B).A significant negative correlation was found between relative (specific) oxygen consumption rel and body massM b at 85 mgM b150 mg.At 0°CT ts16.5°C a significant (-0.01) positive correlation was found between and T ts in single resting bees: T Ts+0.099, or betweenP m and T ts:P m=1.343 T ts+0.581 (Fig. 3D) in ml h–1,P m in mW,T in °C).During walking (duration 13.15±5.71 min,n=13) at 12.5°CT a21°C a stable T ts of 11.41±3.37°C, corresponding to 167 mW g–1, was reached for 80 to 90% of the walking time (Fig. 4B).During wind tunnel flights of tethered animals the minimal metabolic power measured in exhaustion experiments was 240 mW g–1. Calculation of factors of increase inP m is of limited value in poikilotherms, in which true resting conditions are not exactly defined.  相似文献   

11.
12.
13.
Honey bees have brain structures with specialized and developed systems of communication that account for memory, learning capacity and behavioral organization with a set of genes homologous to vertebrate genes. Many microtubule- and actin-based molecular motors are involved in axonal/dendritic transport. Myosin-Va is present in the honey bee Apis mellifera nervous system of the larvae and adult castes and subcastes. DYNLL1/LC8 and myosin-IIb, -VI and -IXb have also been detected in the adult brain. SNARE proteins, such as CaMKII, clathrin, syntaxin, SNAP25, munc18, synaptophysin and synaptotagmin, are also expressed in the honey bee brain. Honey bee myosin-Va displayed ATP-dependent solubility and was associated with DYNLL1/LC8 and SNARE proteins in the membrane vesicle-enriched fraction. Myosin-Va expression was also decreased after the intracerebral injection of melittin and NMDA. The immunolocalization of myosin-Va and -IV, DYNLL1/LC8, and synaptophysin in mushroom bodies, and optical and antennal lobes was compared with the brain morphology based on Neo-Timm histochemistry and revealed a distinct and punctate distribution. This result suggested that the pattern of localization is associated with neuron function. Therefore, our data indicated that the roles of myosins, DYNLL1/LC8, and SNARE proteins in the nervous and visual systems of honey bees should be further studied under different developmental, caste and behavioral conditions.  相似文献   

14.
15.
Determining the specific molecular pathways through which dopamine affects behavior has been complicated by the presence of multiple dopamine receptor subtypes that couple to different second messenger pathways. The observation of freely moving adult bees in an arena was used to investigate the role of dopamine signaling in regulating the behavior of the honey bee. Dopamine or the dopamine receptor antagonist flupenthixol was injected into the hemolymph of worker honey bees. Significant differences between treated and control bees were seen for all behaviors (walking, stopped, upside down, grooming, flying and fanning), and behavioral shifts were dependent on drug dosage and time after injection. To examine the role of dopamine signaling through a specific dopamine receptor in the brain, RNA interference was used to reduce expression levels of a D1-like receptor, AmDOP2. Injection of Amdop2 dsRNA into the mushroom bodies reduced the levels of Amdop2 mRNA and produced significant changes in the amount of time honey bees spent performing specific behaviors with reductions in time spent walking offset by increases in grooming or time spent stopped. Taken together these results establish that dopamine plays an important role in regulating motor behavior of the honey bee.  相似文献   

16.
Left–right asymmetries are common properties of nervous systems. Although lateralized sensory processing has been well studied, information is lacking about how asymmetries are represented at the level of neural coding. Using in vivo functional imaging, we identified a population-level left–right asymmetry in the honey bee''s primary olfactory centre, the antennal lobe (AL). When both antennae were stimulated via a frontal odour source, the inter-odour distances between neural response patterns were higher in the right than in the left AL. Behavioural data correlated with the brain imaging results: bees with only their right antenna were better in discriminating a target odour in a cross-adaptation paradigm. We hypothesize that the differences in neural odour representations in the two brain sides serve to increase coding capacity by parallel processing.  相似文献   

17.
18.
Peroxisomes are ubiquitous organelles that contain catalase (CAT) and an array of inducible enzymes that regulate aspects of lipid, purine, xenobiotic, eicosanoid, and phospholipid metabolism. Although peroxisomes are recognized as essential components in the cellular economy of microorganisms, plants, and mammals, little is known about their specialized functions in insect metabolism. Peroxisomal acyl-CoA oxidase (ACO) is a flavin-linked, H2O2-producing enzyme that regulates the β-oxidation of long chain fatty acids. We measured ACO and CAT activity in midgut tissues from worker honey bees, Apis mellifera, of known ages from free-flying colonies. The ACO activity peaked in young worker bees that digest and assimilate nutrients from pollen and from trophallaxis. As the bees aged, ACO activity declined. Conversely, CAT activity increased as the bees aged and reached its highest level in the oldest bees that were assayed. Isolated honey bee midguts were then fractionated using sucrose and Metrizamide (MET) density gradient centrifugation. Organelle-bound CAT activity equilibrated in sucrose at densities between 1.19 and 1.22, which are typical of spherical 1 μm peroxisomes. In the MET gradients, the organelle-bound CAT separated into two distinct fractions. The heavier fraction equilibrated at 1.21 and the lighter fraction at 1.15, a density commonly associated with microperoxisomes. These results support our ultrastructural and cytochemical data and suggest that the diverse functions of regionally specialized midgut epithelial cells lead to a heterogeneous population of peroxisomal organelles. ACO activity confirms the role of midgut peroxisomes in the intermediary metabolism of lipids and the increasing CAT activity suggests that the midgut epithelium may metabolize deleterious pro-oxidants of aerobic metabolism associated with foraging and senescence. © 1996 Wiley-Liss, Inc.  相似文献   

19.
20.
The social environment plays an essential role in shaping behavior for most animals. Social effects on behavior are often linked to changes in brain gene expression. In the honey bee (Apis mellifera L.), social modulation of individual aggression allows colonies to adjust the intensity with which they defend their hive in response to predation threat. Previous research has showed social effects on both aggression and aggression‐related brain gene expression in honey bees, caused by alarm pheromone and unknown factors related to colony genotype. For example, some bees from less aggressive genetic stock reared in colonies with genetic predispositions toward increased aggression show both increased aggression and more aggressive‐like brain gene expression profiles. We tested the hypothesis that exposure to a colony environment influenced by high levels of predation threat results in increased aggression and aggressive‐like gene expression patterns in individual bees. We assessed gene expression using four marker genes. Experimentally induced predation threats modified behavior, but the effect was opposite of our predictions: disturbed colonies showed decreased aggression. Disturbed colonies also decreased foraging activity, suggesting that they did not habituate to threats; other explanations for this finding are discussed. Bees in disturbed colonies also showed changes in brain gene expression, some of which paralleled behavioral findings. These results show that bee aggression and associated molecular processes are subject to complex social influences .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号