首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Molecular cell》2023,83(5):681-697.e7
  1. Download : Download high-res image (126KB)
  2. Download : Download full-size image
  相似文献   

2.
Longerich S  Meira L  Shah D  Samson LD  Storb U 《DNA Repair》2007,6(12):1764-1773
Somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes require the cytosine deaminase AID, which deaminates cytosine to uracil in Ig gene DNA. Paradoxically, proteins involved normally in error-free base excision repair and mismatch repair, seem to be co-opted to facilitate SHM and CSR, by recruiting error-prone translesion polymerases to DNA sequences containing deoxy-uracils created by AID. Major evidence supports at least one mechanism whereby the uracil glycosylase Ung removes AID-generated uracils creating abasic sites which may be used either as uninformative templates for DNA synthesis, or processed to nicks and gaps that prime error-prone DNA synthesis. We investigated the possibility that deamination at adenines also initiates SHM. Adenosine deamination would generate hypoxanthine (Hx), a substrate for the alkyladenine DNA glycosylase (Aag). Aag would generate abasic sites which then are subject to error-prone repair as above for AID-deaminated cytosine processed by Ung. If the action of an adenosine deaminase followed by Aag were responsible for significant numbers of mutations at A, we would find a preponderance of A:T>G:C transition mutations during SHM in an Aag deleted background. However, this was not observed and we found that the frequencies of SHM and CSR were not significantly altered in Aag-/- mice. Paradoxically, we found that Aag is expressed in B lymphocytes undergoing SHM and CSR and that its activity is upregulated in activated B cells. Moreover, we did find a statistically significant, albeit low increase of T:A>C:G transition mutations in Aag-/- animals, suggesting that Aag may be involved in creating the SHM A>T bias seen in wild type mice.  相似文献   

3.
4.
5.
53BP1 participates early in the DNA damage response and is involved in cell cycle checkpoint control. Moreover, the phenotype of mice and cells deficient in 53BP1 suggests a defect in DNA repair (Ward et al., 2003b). Therefore, we asked whether or not 53BP1 would be required for the efficient repair of DNA double strand breaks. Our data indicate that homologous recombination by gene conversion does not depend on 53BP1. Moreover, 53BP1-deficient mice support normal V(D)J recombination, indicating that 53BP1 is not required for "classic" nonhomologous end joining. However, class switch recombination is severely impaired in the absence of 53BP1, suggesting that 53BP1 facilitates DNA end joining in a way that is not required or redundant for the efficient closing of RAG-induced strand breaks. These findings are similar to those observed in mice or cells deficient in the tumor suppressors ATM and H2AX, further suggesting that the functions of ATM, H2AX, and 53BP1 are closely linked.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Role of Runx genes in chondrocyte differentiation   总被引:12,自引:0,他引:12  
Runx2/Cbfa1 plays a central role in skeletal development as demonstrated by the absence of osteoblasts/bone in mice with inactivated Runx2/Cbfa1 alleles. To further investigate the role of Runx2 in cartilage differentiation and to assess the potential of Runx2 to induce bone formation, we cloned chicken Runx2 and overexpressed it in chick embryos using a retroviral system. Infected chick wings showed multiple phenotypes consisting of (1) joint fusions, (2) expansion of carpal elements, and (3) shortening of skeletal elements. In contrast, bone formation was not affected. To investigate the function of Runx2/Cbfa1 during cartilage development, we have generated transgenic mice that express a dominant negative form of Runx2 in cartilage. The selective inactivation of Runx2 in chondrocytes results in a severe shortening of the limbs due to a disturbance in chondrocyte differentiation, vascular invasion, osteoclast differentiation, and periosteal bone formation. Analysis of the growth plates in transgenic mice and in chick limbs shows that Runx2 is a positive regulator of chondrocyte differentiation and vascular invasion. The results further indicate that Runx2 promotes chondrogenesis either by maintaining or by initiating early chondrocyte differentiation. Furthermore, Runx2 is essential but not sufficient to induce osteoblast differentiation. To analyze the role of runx genes in skeletal development, we performed in situ hybridization with Runx2- and Runx3-specific probes. Both genes were coexpressed in cartilaginous condensations, indicating a cooperative role in the regulation of early chondrocyte differentiation and thus explaining the expansion/maintenance of cartilage in the carpus and joints of infected chick limbs.  相似文献   

13.
14.
15.
The boundaries of R-loops are well-documented at immunoglobulin heavy chain loci in mammalian B cells. Within primary B cells or B cell lines, the upstream boundaries of R-loops typically begin early in the repetitive portion of the switch regions. Most R-loops terminate within the switch repetitive zone, but the remainder can extend a few hundred base pairs further, where G-density on the non-template DNA strand gradually drops to the genome average. Whether the G-density determines how far the R-loops extend is an important question. We previously studied the role of G-clusters in initiating R-loop formation, but we did not examine the role of G-density in permitting the elongation of the R-loop, after it had initiated. Here, we vary the G-density of different portions of the switch region in a murine B cell line. We find that both class switch recombination (CSR) and R-loop formation decrease significantly when the overall G-density is reduced from 46% to 29%. Short 50 bp insertions with low G-density within switch regions do not appear to affect either CSR or R-loop elongation, whereas a longer (150 bp) insertion impairs both. These results demonstrate that G-density is an important determinant of the length over which mammalian genomic R-loops extend.  相似文献   

16.
17.
18.
目的:探讨Runx3蛋白在卵巢癌的发生发展、浸润转移和化疗耐药中的作用,为以Runx3作为分子治疗靶点的抗肿瘤基因治疗提供理论依据。方法:运用组织芯片技术联合免疫组化法检测27例卵巢癌、20例正常卵巢组织、30例卵巢良性肿瘤中抑癌基因Runx3的表达情况,分析其与卵巢癌临床病理特征的关系,并进行临床随访分析Runx3基因与卵巢癌化疗耐药的关系。结果:1.Runx3蛋白在卵巢癌组织中的表达明显低于正常卵巢组织及卵巢良性肿瘤中的表达,两两比较,差异有统计学意义(P0.05);Runx3蛋白表达与肿瘤的临床分期和病理学分级有关,差异有显著性(P0.05);与肿瘤的组织学类型、患者年龄、是否绝经、及有无腹水形成无关(P0.05)。2.Runx3蛋白在化疗敏感组中高表达。结论:Runx3蛋白低表达对卵巢癌的发生发展及化疗耐药中起重要作用。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号