首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
目的:研究高浓度葡萄糖抑制MC3T3-E1细胞成骨分化的机理。方法:建立MC3T3-E1细胞成骨分化诱导体系,观察不同浓度葡萄糖(5.5mM和22mM)对MC3T3-E1细胞成骨分化的影响;用不同浓度的p38 MAPK抑制剂Fr167653(0.1μM、1.0μM和10μM)进行药物干预,观察MC3T3-E1细胞在22mM葡萄糖浓度下成骨分化的变化情况。通过钙含量检测、Real time PCR检测相关分化的变化;用Western Blot方法检测MC3T3-E1细胞分化过程中p38 MAPK磷酸化状态、TXNIP表达水平的变化;使用胰岛素二硫键还原法检测细胞内TRX活性水平;使用活性氧检测试剂盒检测细胞内自由氧生成水平。结果:体外诱导条件下,高浓度(22mM)葡萄糖通过升高p38 MAPK磷酸化水平,上调TXNIP表达水平,同时降低TRX活性,使细胞内自由氧生成增加,抑制MC3T3-E1细胞的成骨分化;Fr167653通过抑制p38 MAPK磷酸化,下调TXNIP表达同时升高TRX活性,抑制细胞内自由氧生成,解除高浓度葡萄糖对细胞成骨分化的抑制作用。结论:高浓度葡萄糖通过p38 MAPK-TXNIP/TRX-ROS信号通路抑制MC3T3-E1细胞成骨分化。  相似文献   

2.
Yuan LQ  Liu YS  Luo XH  Guo LJ  Xie H  Lu Y  Wu XP  Liao EY 《Amino acids》2008,35(1):123-127
Tissue inhibitor of metalloproteinases (TIMPs) plays an essential role in the regulation of bone metabolism. Here we report that recombinant tissue metalloproteinase inhibitor-3 (TIMP-3) protein induces the apoptosis of MC3T3-E1 osteoblasts. Cell apoptosis was detected by sandwich-enzyme-immunoassay. Fas and Fasl protein levels were determined by Western blot analysis. The enzyme substrate was used to assess the activation of caspase-3 and caspase-8. The phosphorylation of JNK, p38 and ERK1/2 was examined by Western blot analysis. The ELISA suggested that TIMP-3 promoted MC3T3-E1 cell apoptosis. TIMP-3 treatment induced the expression of Fas and Fasl proteins, and the activation of caspase-8 and caspase-3. TIMP-3 treatment induced p38 and ERK phosphorylation. SB203580 and PD98059, the inhibitor of p38 and ERK, respectively, abolished the TIMP-3 effect on osteoblast apoptosis. In conclusion, the signal pathway through which TIMP-3 induces MC3T3-E1 cell apoptosis, mediated by Fas and involves the p38 and ERK signal transduction pathways.  相似文献   

3.
线粒体途径是细胞凋亡的重要途径之一. 在特定的刺激下,例如高糖条件,可以通过caspase依赖性和非依赖性两种途径诱导多种细胞凋亡.但线粒体凋亡途径在高糖引起成骨细胞凋亡中所起的作用,目前尚不清楚.本研究证明,高糖可以通过线粒体凋亡途径诱导成骨细胞凋亡.Annexin V-FITC/PI流式细胞学检测显示,高糖可诱导MC3T3-E1细胞凋亡.Western印迹检测发现,不同浓度D-葡萄糖(11,22,33 mmol/L)可以引起线粒体中Bax蛋白表达的增加,使Bax蛋白由细胞质中易位到线粒体,激活了线粒体凋亡途径.JC-1荧光探针检测证实,高糖处理成骨细胞后,线粒体膜电位明显降低,表明线粒体途径被激活.而细胞质中的细胞色素c、凋亡诱导因子(AIF)表达增加,细胞色素c和AIF从线粒体中释放到细胞质中,释放到细胞质中的细胞色素c使caspase-3、caspase-9剪切活化,从而激活了caspase依赖性凋亡途径.因此,线粒体凋亡途径可能是高糖诱导成骨细胞凋亡过程中一个重要的途径.  相似文献   

4.
Wang QP  Xie H  Yuan LQ  Luo XH  Li H  Wang D  Meng P  Liao EY 《Amino acids》2009,36(1):57-63
Progesterone (P) has been suggested as a bone-trophic hormone. Previous studies have shown that P promoted bone formation by stimulating the proliferation and differentiation of osteoblasts. But, the effect of P on apoptosis of osteoblast in vitro has not been reported. We propose that P may promote bone formation by suppressing the apoptosis of osteoblast. The present study was performed to investigate the effect of P on apoptosis of murine MC3T3-E1 osteoblastic cells. Cell apoptosis was measured by acidine orange/ethidium bromide (AO/EB) staining and sandwich-enzyme-immunoassay. Progesterone receptor (PR), cytochrome c, caspase-9 and caspase-3 protein levels were determined by Western blot analysis. The enzyme substrate was also used to assess the activation of caspase-3 and caspase-9. Progesterone suppressed MC3T3-E1 cells apoptosis induced by serum deprivation, and this effect was blocked by a PR antagonist RU486. Furthermore, the suppressive effects of P on cytochrome c release and caspase-9 and caspase-3 activation in serum-deprived MC3T3-E1 cells were also reversed by RU486. Our study demonstrated that P protects osteoblast against apoptosis through PR and the downstream mitochondrial pathway. Thus, the data suggest that the effects of P on osteoblast apoptosis may contribute to the mechanisms by which P exerts its action on bone formation.  相似文献   

5.
Chronic excessive fluoride intake is known to be toxic and can lead to fluorosis and bone pathologies. However, the cellular mechanisms underlying NaF-induced cytotoxicity in osteoblasts are not well understood. The objectives of this study were to determine the effects of fluoride treatment on MC3T3-E1 osteoblastic cell viability, cell cycle analysis, apoptosis and the expression levels of bcl-2 family members: bcl-2 and bax. MC3T3-E1 cells were treated with 10−5; 5 × 10−5; 10−4; 5 × 10−4 and 10−3 M NaF for up to 48 h. NaF was found to reduce cell viability in a temporal and concentration dependent manner and promote apoptosis even at low concentrations (10−5 M). This increased apoptosis was due to alterations in the expression of both pro-apoptotic bax and anti-apoptotic bcl-2. The net result was a decrease in the bcl-2/bax ratio which was found at both the mRNA and protein levels. Furthermore, we also noted that NaF-induced S-phase arrest during the cell cycle of MC3T3-E1 cells. These data suggest that fluoride-induced osteoblast apoptosis is mediated by direct effects of fluoride on the expression of bcl-2 family members.  相似文献   

6.
Tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), a member of the TNF family, is a multifunctional cytokine that regulates cell growth, migration, and survival principally through a TWEAK receptor, fibroblast growth factor-inducible 14 (Fn14). However, its physiological roles in bone are largely unknown. We herein report various effects of TWEAK on mouse osteoblastic MC3T3-E1 cells. MC3T3-E1 cells expressed Fn14 and produced RANTES (regulated upon activation, healthy T cell expressed and secreted) upon TWEAK stimulation through PI3K-Akt, but not nuclear factor-kappaB (NF-kappaB), pathway. In addition, TWEAK inhibited bone morphogenetic protein (BMP)-2-induced expression of osteoblast differentiation markers such as alkaline phosphatase through mitogen-activated protein kinase (MAPK) Erk pathway. Furthermore, TWEAK upregulated RANKL (receptor activation of NF-kappaB ligand) expression through MAPK Erk pathway in MC3T3-E1 cells. All these effects of TWEAK on MC3T3-E1 cells were abolished by mouse Fn14-Fc chimera. We also found significant TWEAK mRNA or protein expression in osteoblast- and osteoclast-lineage cell lines or the mouse bone tissue, respectively. Finally, we showed that human osteoblasts expressed Fn14 and induced RANTES and RANKL upon TWEAK stimulation. Collectively, TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in MC3T3-E1 cells. TWEAK may thus be a novel cytokine that regulates several aspects of osteoblast function.  相似文献   

7.
Xie H  Tang SY  Li H  Luo XH  Yuan LQ  Wang D  Liao EY 《Amino acids》2008,35(2):419-423
L-carnitine (LC), an amino acid with a major role in cellular energy metabolism, has positive effects on bone metabolism. However, the effect of LC on apoptosis of osteoblast in vitro has not been reported. The aim of this study was to investigate the action of LC on apoptosis of mouse osteoblastic cell line MC3T3-E1. Cell apoptosis was measured by sandwich-enzyme-immunoassay. Release of cytochrome c from mitochondria into cytosol and Bcl-2, Bax protein levels were determined by Western blot analysis. The enzyme substrate was used to assess the activation of caspase-3 and caspase-9. LC inhibited MC3T3-E1 cell apoptosis induced by serum deprivation. Our study also shows that LC decreased cytochrome c release and caspase-3 and caspase-9 activation in serum-deprived MC3T3-E1 cells. Furthermore, LC protected against MC3T3-E1 cell apoptosis induced by the glucocorticoid (GC) dexamethasone (Dex).  相似文献   

8.
Nitric oxide (NO), reported as an important inducer of apoptosis, plays a considerable role in the pathogenetic mechanisms of articular diseases. This research aimed at investigating the role of p38 MAPK signal transduction pathway on apoptosis induced by NO in rabbit articular chondrocytes. In the present study, NO was produced by a novel NO donor NOC-18. Rabbit articular chondrocytes were cultured as monolayer, and the first passage cells were used for the experiments. We detected apoptosis induced by NO using Annexin V-FITC/PI flow cytometry and TUNEL assay. Measurement of caspase-3 has reflected its activity level. Western blotting was performed to show the protein expressions of p38, NF-kappaB, p53 and caspase-3. Furthermore, we examined the inhibitory effects in the NO pathway with p38-specific inhibitor SB203580. Treatment with NOC-18 caused accelerated apoptosis in a concentration dependent manner. This acceleration was able to be reduced when added to SB203580. Besides, the inhibitor could significantly decrease NO-induced p38, NF-kappaB, p53 and caspase-3 protein expressions, as well as caspase-3 intracellular activity (P<0.05). These results suggest that p38 MAPK signal transduction pathway is critical to NO-induced chondrocyte apoptosis, and p38 plays a role by way of stimulating NF-kappaB, p53 and caspase-3 activation.  相似文献   

9.
The osteoblasts could be lead to the occurrence of apoptosis by oxidative stress. The zinc transporter family SLC30A (ZnTs) plays an important role in the regulation of zinc homeostasis, however, its function in apoptosis of MC3T3-E1 cells remains unknown. This study was aimed to investigate the role of zinc transporters in cell survival, particularly in MC3T3-E1 cells, during oxidative stress, and the molecular mechanism involved. Our study found that hydrogen peroxide can induce zinc-overloaded in the cells. While high concentration of zinc plays an important role in inducing apoptosis of the MC3T3-E1 cells, we demonstrated that ZnT7 can protect MC3T3-E1 cells and reduce the aggregation of intracellular free zinc ions as well as inhibit apoptosis induced by H2O2. Moreover, ZnT7 overexpression enhanced the anti-apoptotic effects. Interestingly, suppression of ZnT7 by siRNA could significantly exacerbate apoptosis in MC3T3-E1 cells. We also found that ZnT7 promotes cell survival via two distinct signaling pathways involving activation of the PI3K/Akt-mediated survival pathway and activation of MAPK/ERK pathway. Collectively, these results suggest that ZnT7 overexpression significantly protects osteoblasts cells from apoptosis induced by H2O2. This effect is mediated, at least in part, through activation of PI3K/Akt and MAPK/ERK pathways.  相似文献   

10.
Polycyclic aromatic hydrocarbons (PAHs) such as 3-methylcholanthrene (MC) cause untoward effects including carcinogenesis. Here we investigated the effect of MC on apoptosis. MC induced apoptosis, preceded by serine 15 phosphorylation and accumulation of p53. MC failed to cause apoptosis in p53-deficient MG63 cells, whereas ectopic expression of p53 in MG63 cells restored the response to MC. Therefore, MC-induced apoptosis was dependent on p53. MC also activated p38 mitogen-activated protein kinase (MAPK) at 16-24 h. Accumulation of p53 and p53 phosphorylated at serine 15 was not changed by SB203580, a specific inhibitor of p38 MAPK or overexpression of a dominant negative mutant of p38 MAPK at 8 h after MC treatment, whereas the accumulation was suppressed at 24 h. These results suggest that MC induces accumulation and phosphorylation of p53 via a p38 MAPK-independent (early) and p38 MAPK-dependent (late) pathway. SB203580 repressed MC-induced apoptosis. MC induced p38 MAPK activation in p53 expressing cells but not in p53-deficient cells, indicating that the p38 MAPK activation was dependent on early p53 activation. The current study shows that both p53 and p38 MAPK activation are required for MC-induced apoptosis and provides a novel model of a functional regulation between p53 and p38 MAPK in chemical stress-induced apoptosis.  相似文献   

11.
High dose glucocorticoid (GC) treatment induces osteoporosis partly via increasing osteoblast apoptosis. However, the mechanism of GC-induced apoptosis has not been fully elucidated. Osteoblast-derived tissue inhibitor of metalloproteinase-1 (TIMP-1) was recently reported to be involved in bone metabolism. Our previous study demonstrated that TIMP-1 suppressed apoptosis of the mouse bone marrow stromal cell line MBA-1 (pre-osteoblast) induced by serum deprivation. Therefore, we tested the effect of the GC dexamethasone (Dex) on TIMP-1 production in murine osteoblastic MC3T3-E1 cells and further determined whether this action is associated with Dex-induced osteoblast apoptosis. Dex decreased TIMP-1 production in MC3T3-E1 cells, and this effect was blocked by the glucocorticoid receptor (GR) antagonists, RU486 and RU40555. Recombinant TIMP-1 protein reduced caspase-3 activation and apoptosis induced by Dex in MC3T3-E1 cells. In addition, the pro-apoptotic effect of the Dex was augmented by suppression of TIMP-1 with siRNA. Furthermore, mutant TIMP-1, which has no inhibitory effects on MMPs, yet protects MC3T3-E1 cells against Dex-induced apoptosis. Our study demonstrates that Dex suppresses TIMP-1 production in osteoblasts through GR, and this effect is associated with its induction of osteoblast apoptosis. The anti-apoptotic action of TIMP-1 is independent of its inhibitory effects on MMPs activities. The decrease in TIMP-1 production caused by Dex may contribute to the mechanisms of Dex-induced bone loss.  相似文献   

12.
In bone, a large proportion of osteoblasts, the cells responsible for deposition of new bone, normally undergo programmed cell death (apoptosis). Because mechanical loading of bone increases the rate of new bone formation, we hypothesized that mechanical stimulation of osteoblasts might increase their survival. To test this hypothesis, we investigated the effects of fluid shear stress (FSS) on osteoblast apoptosis using three osteoblast cell types: primary rat calvarial osteoblasts (RCOB), MC3T3-E1 osteoblastic cells, and UMR106 osteosarcoma cells. Cells were treated with TNF-alpha in the presence of cyclohexamide (CHX) to rapidly induce apoptosis. Osteoblasts showed significant signs of apoptosis within 4-6 h of exposure to TNF-alpha and CHX, and application of FSS (12 dyne/cm(2)) significantly attenuated this TNF-alpha-induced apoptosis. FSS activated PI3-kinase signaling, induced phosphorylation of Akt, and inhibited TNF-alpha-induced activation of caspase-3. Inhibition of PI3-kinase, using LY294002, blocked the ability of FSS to rescue osteoblasts from TNF-alpha-induced apoptosis and blocked FSS-induced inhibition of caspase-3 activation in osteoblasts treated with TNF-alpha. LY294002 did not, however, prevent FSS-induced phosphorylation of Akt suggesting that activation of Akt alone is not sufficient to rescue cells from apoptosis. This result also suggests that FSS can activate Akt via a PI3-kinase-independent pathway. These studies demonstrate for the first time that application of FSS to osteoblasts in vitro results in inhibition of TNF-alpha-induced apoptosis through a mechanism involving activation of PI3-kinase signaling and inhibition of caspases. FSS-induced activation of PI3-kinase may promote cell survival through a mechanism that is distinct from the Akt-mediated survival pathway.  相似文献   

13.
The small GTPase M-Ras is highly expressed in the central nervous system and plays essential roles in neuronal differentiation. However, its other cellular and physiological functions remain to be elucidated. Here, we clarify the novel functions of M-Ras in osteogenesis. M-Ras was prominently expressed in developing mouse bones particularly in osteoblasts and hypertrophic chondrocytes. Its expression was elevated in C3H/10T1/2 (10T1/2) mesenchymal cells and in MC3T3-E1 preosteoblasts during differentiation into osteoblasts. Treatment of C2C12 skeletal muscle myoblasts with bone morphogenetic protein-2 (BMP-2) to bring about transdifferentiation into osteoblasts also induced M-Ras mRNA and protein expression. Moreover, the BMP-2 treatment activated the M-Ras protein. Stable expression of the constitutively active M-Ras(G22V) in 10T1/2 cells facilitated osteoblast differentiation. M-Ras(G22V) also induced transdifferentiation of C2C12 cells into osteoblasts. In contrast, knockdown of endogenous M-Ras by RNAi interfered with osteoblast differentiation in 10T1/2 and MC3T3-E1 cells. Osteoblast differentiation in M-Ras(G22V)-expressing C2C12 cells was inhibited by treatment with inhibitors of p38 MAP kinase (MAPK) and c-Jun N-terminal kinase (JNK) but not by inhibitors of MAPK and ERK kinase (MEK) or phosphatidylinositol 3-kinase. These results imply that M-Ras, induced and activated by BMP-2 signaling, participates in the osteoblastic determination, differentiation, and transdifferentiation under p38 MAPK and JNK regulation.  相似文献   

14.
目的:观察番茄红素(lycopene,LYC)对于血管内皮细胞功能的作用,探讨其作用机制。方法:人脐静脉内皮细胞(HUVECs)处理实验分组:对照组,H2O2组,H2O2+LYC组(1、2、4、8μmolL-1)。MTT法检测HUVECs存活率;免疫印迹法(Western blot)检测p38MAPK蛋白磷酸化水平、抗凋亡蛋白B淋巴细胞/白血病-2(bcl-2)及线粒体凋亡通路相关蛋白bax的表达;细胞黏附能力测定和伤口愈合实验检测HUVECs粘附率和迁移率;TUNEL法检测HUVECs凋亡率;ELASA法测定HUVECs内活性氧(ROS),超氧化物歧化酶(SOD),乳酸盐脱氢酶(LDH)释放量和caspase-3的活性。结果:H2O2损伤后HUVECs存活率显著降低(P0.01),凋亡率显著增加(P0.01),黏附和迁移能力显著降低(P0.01),bax和p-p38MAPK的表达上调,bcl-2的表达下调,并且ROS、LDH的释放和caspase-3的活性增加(P0.01),SOD的释放减少。而LYC的预处理可以明显逆转H2O2以上作用。结论:H2O2氧化应激损伤中,LYC保护内皮细胞可能与其抗过氧化损伤细胞凋亡,抑制异常的p38MAPK信号通路有关。  相似文献   

15.
Expression of oncogenic Bcr-Abl inhibits cell differentiation of hematopoietic stem/progenitor cells in chronic myeloid leukemia (CML). Differentiation therapy is considered to be a new strategy for treating this type of leukemia. Aclacinomycin A (ACM) is an antitumor antibiotic. Previous studies have shown that ACM induced erythroid differentiation of CML cells. In this study, we investigate the effect of ACM on the sensitivity of human CML cell line K562 to Bcr-Abl specific inhibitor imatinib (STI571, Gleevec). We first determined the optimal concentration of ACM for erythroid differentiation but not growth inhibition and apoptosis in K562 cells. Then, pretreatment with this optimal concentration of ACM followed by a minimally toxic concentration of imatinib strongly induced growth inhibition and apoptosis compared to that with simultaneous co-treatment, indicating that ACM-induced erythroid differentiation sensitizes K562 cells to imatinib. Sequential treatment with ACM and imatinib induced Bcr-Abl down-regulation, cytochrome c release into the cytosol, and caspase-3 activation, as well as decreased Mcl-1 and Bcl-xL expressions, but did not affect Fas ligand/Fas death receptor and procaspase-8 expressions. ACM/imatinib sequential treatment-induced apoptosis was suppressed by a caspase-9 inhibitor and a caspase-3 inhibitor, indicating that the caspase cascade is involved in this apoptosis. Furthermore, we demonstrated that ACM induced erythroid differentiation through the p38 mitogen-activated protein kinase (MAPK) pathway. The inhibition of erythroid differentiation by p38MAPK inhibitor SB202190, p38MAPK dominant negative mutant or p38MAPK shRNA knockdown, reduced the ACM/imatinib sequential treatment-mediated growth inhibition and apoptosis. These results suggest that differentiated K562 cells induced by ACM-mediated p38MAPK pathway become more sensitive to imatinib and result in down-regulations of Bcr-Abl and anti-apoptotic proteins, growth inhibition and apoptosis. These results provided a potential management by which ACM might have a crucial impact on increasing sensitivity of CML cells to imatinib in the differentiation therapeutic approaches.  相似文献   

16.
We recently reported that p38 MAPK regulates TNF-induced endothelial apoptosis via phosphorylation and downregulation of Bcl-xL. Here, we describe that such apoptosis includes p38 MAPK-mediated, protein phosphatase 2A (PP2A)-dependent, downregulation of the MEK-ERK pathway. Inhibition of PP2A with fostriecin or calyculin A significantly increased MEK phosphorylation, as did exposure to the p38 MAPK inhibitor SB203580. Inhibition of MEK potentiated TNF-induced caspase-3 activity and cell death, and both those events were suppressed by treatment with fostriecin or calyculin A. Immunoprecipitation experiments revealed an association between p38 MAPK, PP2A and MEK, and the results of a phosphatase assay suggested that PP2A is a downstream target of p38 MAPK. Importantly, phosphorylation of Bad at Ser-112 was found to be regulated by p38 MAPK and PP2A. In summary, the present findings indicate a novel p38 MAPK-mediated apoptosis pathway, involving activation of Bad via PP2A-dependent inhibition of the MEK-ERK pathway.  相似文献   

17.
目的:探讨乳酸堆积和二氯乙酸钠(DCA)对肝癌细胞(HepG2)凋亡和bax、bcl-2 表达及caspase-3 活性的影响。方法:通过体 外培养HepG2,建立稳定的体外培养模型,配制成终浓度分别为0 mmol/L、1.0 mmol/L、2.0 mmol/L、4.0 mmol/L、8.0 mmol/L的乳 酸培养液以及在不同浓度乳酸组中加入终浓度为10-3mmol/L DCA 培养液与HepG2共同培养,其中以0 mmol/L 乳酸组为对照 组。采用MTT法检测乳酸对HepG2 的抑制率,流式细胞仪检测乳酸和DCA 对HepG2的凋亡百分率,用Real-time PCR法测定 bax 及bcl-2 mRNA的表达,用免疫荧光法检测caspase-3 的活性。结果:乳酸对HepG2 的IC50值为13.6 mol/L,与对照组比较,随 着乳酸浓度的增加,HepG2 凋亡率增加,bax mRNA 表达升高,bcl-2 mRNA 的表达降低,caspase-3活性增加,其中1.0 mmol/L 乳 酸组与对照组比较(P>0.05),2.0 mmol/L,4.0 mmol/L 和8.0 mmol/L乳酸组与对照组比较差异有统计学意义(P<0.05)。加入DCA 后,HepG2 凋亡减少,2.0 mmol/L 乳酸+DCA 组、4.0 mmol/L乳酸+DCA 组、8.0 mmol/L乳酸+DCA 组与同浓度的乳酸组比较, bax mRNA 表达减少(P<0.05),bcl-2 mRNA 表达增加(P<0.05),caspase-3 活性减低(P<0.05)。结论:乳酸可诱导HepG2凋亡,且随 着乳酸浓度的增高,HepG2 的凋亡率增加,其机制可能是通过对bcl-2 及bax mRNA 表达的改变以及激活caspase-3 活性而实现, DCA可以降低HepG2 凋亡,对乳酸堆积造成的HepG2凋亡有抑制作用。  相似文献   

18.
Kim do Y  Jung MS  Park YG  Yuan HD  Quan HY  Chung SH 《BMB reports》2011,44(10):659-664
As part of the search for biologically active anti-osteoporotic agents that enhance differentiation and mineralization of osteoblastic MC3T3-E1 cells, we identified the ginsenoside Rh2(S), which is an active component in ginseng. Rh2(S) stimulates osteoblastic differentiation and mineralization, as manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and Alizarin Red staining, respectively. Rh2(S) activates p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and Rh2(S)-induced differentiation and mineralization of osteoblastic cells were totally inhibited in the presence of the p38 MAPK inhibitor, SB203580. In addition, pretreatment with Go6976, a protein kinase D (PKD) inhibitor, significantly reversed the Rh2(S)-induced p38 MAPK activation, indicating that PKD might be an upstream kinase for p38 MAPK in MC3T3-E1 cells. Taken together, these results suggest that Rh2(S) induces the differentiation and mineralization of MC3T3-E1 cells through activation of PKD/p38 MAPK signaling pathways, and these findings provide a molecular basis for the osteogenic effect of Rh2(S).  相似文献   

19.
Zinc has been shown to increase bone mass and promote bone cell proliferation and differentiation. We, therefore, hypothesized that zinc might be cytoprotective for bone cells during oxidative stress. The cells were divided into H(2)O(2), zinc and zinc+H(2)O(2) groups. In the present study, zinc was found to inhibit H(2)O(2)-induced apoptosis in MC3T3-E1 cells, as shown by analysis of Annexin V/PI double staining. Western blot data showed that in zinc+H(2)O(2)-treated cells, zinc decreased the levels of AIF, Bax and active caspase-9 and -3, which are pro-apoptotic factors. And zinc inhibited release of cytochrome c from mitochondria to cytosol in zinc+H(2)O(2)-treated cells. Further investigation shows that protection is via activation of PI3K/Akt/mTor and MAPK /ERK pathways and inhibition of MAPK/P38 and MAPK/JNK pathways. Protecting osteoblast cells from oxidative damage presents a potential application in the treatment of osteoporosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号