首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Background

Incidental adrenal masses are commonly detected during imaging for other pathologies. 10% of the elderly population has an ‘adrenal incidentaloma’, up to 20% of these show low-grade autonomous cortisol secretion and 60% of patients with autonomous cortisol secretion have insulin resistance. Cortisol excess is known to cause insulin resistance, an independent cardiovascular risk marker, however in patients with adrenal incidentalomas it is unknown whether their insulin resistance is secondary to the excess cortisol and therefore potentially reversible. In a proof of concept study we examined the short-term effects of glucocorticoid receptor (GR) antagonism in patients with an adrenal incidentaloma to determine whether their insulin resistance was reversible.

Methodology/Principal Findings

In a prospective open-label pilot study, six individuals with adrenal incidentalomas and autonomous cortisol secretion were treated with mifepristone (a GR antagonist) 200 mg twice daily and studied for 4 weeks on a Clinical Research Facility. Insulin resistance at four weeks was assessed by insulin resistance indices, lnHOMA-IR and lnMatsuda, and AUC insulin during a 2-hour glucose tolerance test. Biochemical evidence of GR blockade was shown in all individuals and across the group there was a significant reduction in insulin resistance: lnHOMA-IR (1.0vs0.6; p = 0.03), lnHOMA-%beta (4.8vs4.3; p = 0.03) and lnMatsuda (1.2vs1.6; p = 0.03). Five out of six individuals showed a reduction in insulin AUC >7237 pmol/l.min, and in two patients this showed a clinically significant cardiovascular benefit (as defined by the Helsinki heart study).

Conclusions

Short-term GR antagonism is sufficient to reduce insulin resistance in some individuals with adrenal incidentalomas and mild cortisol excess. Further assessment is required to assess if the responses may be used to stratify therapy as adrenal incidentalomas may be a common remediable cause of increased cardiovascular risk.

Trial Registration

ClinicalTrials.gov NCT00721201  相似文献   

3.

Objective

Stress and increased glucocorticoid levels are associated with many neuropsychiatric disorders including schizophrenia and depression. Recently, the role of vascular endothelial factor receptor-2 (VEGFR2/Flk1) signaling has been implicated in stress-mediated neuroplasticity. However, the mechanism of regulation of VEGF/Flk1 signaling under long-term continuous glucocorticoid exposure has not been elucidated.

Material and Methods

We examined the possible effects of long-term continuous glucocorticoid exposure on VEGF/Flk1 signaling in cultured cortical neurons in vitro, mouse frontal cortex in vivo, and in post mortem human prefrontal cortex of both control and schizophrenia subjects.

Results

We found that long-term continuous exposure to corticosterone (CORT, a natural glucocorticoid) reduced Flk1 protein levels both in vitro and in vivo. CORT treatment resulted in alterations in signaling molecules downstream to Flk1 such as PTEN, Akt and mTOR. We demonstrated that CORT-induced changes in Flk1 levels are mediated through glucocorticoid receptor (GR) and calcium. A significant reduction in Flk1-GR interaction was observed following CORT exposure. Interestingly, VEGF levels were increased in cortex, but decreased in serum following CORT treatment. Moreover, significant reductions in Flk1 and GR protein levels were found in postmortem prefrontal cortex samples from schizophrenia subjects.

Conclusions

The alterations in VEGF/Flk1 signaling following long-term continuous CORT exposure represents a molecular mechanism of the neurobiological effects of chronic stress.  相似文献   

4.

Context

Fetal stress is relevant to newborn outcomes. Corticosterone is rarely quantified in human clinical endocrinology and is found at much lower concentrations than cortisol. However, fetal corticosterone is a candidate hormone as a fetal stress signal.

Objective

Test the hypothesis that preferential fetal corticosterone synthesis occurs in response to fetal intra-partum stress.

Design

Cross-sectional comparison of paired serum corticosteroid concentrations in umbilical artery and vein from 300 women providing consent at admission to a General Hospital Labor and Delivery unit. Pre-term and multiple births were excluded, leaving 265 healthy deliveries.

Main Outcome Measures

Corticosterone and cortisol concentrations determined by LC-MS/MS for umbilical cord venous (V) and arterial (A) samples and used to calculate fetal synthesis (A−V) and proportional fetal synthesis ([A−V]/V). Chart-derived criteria stratified samples by type of delivery, maternal regional analgesia, augmentation of contractions, and clinical rationale for emergent Caesarian delivery.

Results

Cortisol concentrations were higher than corticosterone concentrations; however, the fetus preferentially secretes corticosterone (148% vs 49% proportional increase for cortisol) and differentially secretes corticosterone as fetal stress increases. Fetal corticosterone synthesis is elevated after passage through the birth canal relative to Caesarian deliveries. For vaginal deliveries, augmentation of contractions does not affect corticosteroid concentrations whereas maternal regional analgesia decreases venous (maternal) concentrations and increases fetal synthesis. Fetal corticosterone synthesis is also elevated after C-section indicated by cephalopelvic disproportion after labor, whereas cortisol is not.

Conclusions

The full-term fetus preferentially secretes corticosterone in response to fetal stress during delivery. Fetal corticosterone could serve as a biomarker of fetal stress.  相似文献   

5.

Background

Initiation of ventilation using high tidal volumes in preterm lambs causes lung injury and inflammation. Antenatal corticosteroids mature the lungs of preterm infants and postnatal corticosteroids are used to treat bronchopulmonary dysplasia.

Objective

To test if antenatal or postnatal corticosteroids would decrease resuscitation induced lung injury.

Methods

129 d gestational age lambs (n = 5-8/gp; term = 150 d) were operatively delivered and ventilated after exposure to either 1) no medication, 2) antenatal maternal IM Betamethasone 0.5 mg/kg 24 h prior to delivery, 3) 0.5 mg/kg Dexamethasone IV at delivery or 4) Cortisol 2 mg/kg IV at delivery. Lambs then were ventilated with no PEEP and escalating tidal volumes (VT) to 15 mL/kg for 15 min and then given surfactant. The lambs were ventilated with VT 8 mL/kg and PEEP 5 cmH20 for 2 h 45 min.

Results

High VT ventilation caused a deterioration of lung physiology, lung inflammation and injury. Antenatal betamethasone improved ventilation, decreased inflammatory cytokine mRNA expression and alveolar protein leak, but did not prevent neutrophil influx. Postnatal dexamethasone decreased pro-inflammatory cytokine expression, but had no beneficial effect on ventilation, and postnatal cortisol had no effect. Ventilation increased liver serum amyloid mRNA expression, which was unaffected by corticosteroids.

Conclusions

Antenatal betamethasone decreased lung injury without decreasing lung inflammatory cells or systemic acute phase responses. Postnatal dexamethasone or cortisol, at the doses tested, did not have important effects on lung function or injury, suggesting that corticosteroids given at birth will not decrease resuscitation mediated injury.  相似文献   

6.

Background

Sarcopenia, the loss of muscle mass and function with age, is associated with increased morbidity and mortality. Current understanding of the underlying mechanisms is limited. Glucocorticoids (GC) in excess cause muscle weakness and atrophy. We hypothesized that GC may contribute to sarcopenia through elevated circulating levels or increased glucocorticoid receptor (GR) signaling by increased expression of either GR or the GC-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11βHSD1) in muscle.

Methods

There were 82 participants; group 1 comprised 33 older men (mean age 70.2years, SD 4.4) and 19 younger men (22.2years, 1.7) and group 2 comprised 16 older men (79.1years, 3.4) and 14 older women (80.1years, 3.7). We measured muscle strength, mid-thigh cross-sectional area, fasting morning plasma cortisol, quadriceps muscle GR and 11βHSD1 mRNA, and urinary glucocorticoid metabolites. Data were analysed using multiple linear regression adjusting for age, gender and body size.

Results

Muscle strength and size were not associated with plasma cortisol, total urinary glucocorticoids or the ratio of urinary 5β-tetrahydrocortisol +5α-tetrahydrocortisol to tetrahydrocortisone (an index of systemic 11βHSD activity). Muscle strength was associated with 11βHSD1 mRNA levels (β -0.35, p = 0.04), but GR mRNA levels were not significantly associated with muscle strength or size.

Conclusion

Although circulating levels of GC are not associated with muscle strength or size in either gender, increased cortisol generation within muscle by 11βHSD1 may contribute to loss of muscle strength with age, a key component of sarcopenia. Inhibition of 11βHSD1 may have therapeutic potential in sarcopenia.  相似文献   

7.

Background

Compound A (CpdA) is a dissociating non-steroidal glucocorticoid receptor (GR) ligand which has anti-inflammatory properties exerted by down-modulating proinflammatory gene expression. By favouring GR monomer formation, CpdA does not enhance glucocorticoid (GC) response element-driven gene expression, resulting in a reduced side effect profile as compared to GCs. Considering the importance of Th1/Th2 balance in the final outcome of immune and inflammatory responses, we analyzed how selective GR modulation differentially regulates the activity of T-bet and GATA-3, master drivers of Th1 and Th2 differentiation, respectively.

Results

Using Western analysis and reporter gene assays, we show in murine T cells that, similar to GCs, CpdA inhibits T-bet activity via a transrepressive mechanism. Different from GCs, CpdA induces GATA-3 activity by p38 MAPK-induction of GATA-3 phosphorylation and nuclear translocation. CpdA effects are reversed by the GR antagonist RU38486, proving the involvement of GR in these actions. ELISA assays demonstrate that modulation of T-bet and GATA-3 impacts on cytokine production shown by a decrease in IFN-γ and an increase in IL-5 production, respectively.

Conclusions

Taken together, through their effect favoring Th2 over Th1 responses, particular dissociated GR ligands, for which CpdA represents a paradigm, hold potential for the application in Th1-mediated immune disorders.  相似文献   

8.

Background

Gonadal fate in many reptiles, fish, and amphibians is modulated by the temperature experienced during a critical period early in life (temperature-dependent sex determination; TSD). Several molecular processes involved in TSD have been described but how the animals “sense” environmental temperature remains unknown. We examined whether the stress-related hormone cortisol mediates between temperature and sex differentiation of pejerrey, a gonochoristic teleost fish with marked TSD, and the possibility that it involves glucocorticoid receptor- and/or steroid biosynthesis-modulation.

Methodology/Principal Findings

Larvae maintained during the period of gonadal sex differentiation at a masculinizing temperature (29°C; 100% males) consistently had higher cortisol, 11-ketotestoterone (11-KT), and testosterone (T) titres than those at a feminizing temperature (17°C; 100% females). Cortisol-treated animals had elevated 11-KT and T, and showed a typical molecular signature of masculinization including amh upregulation, cyp19a1a downregulation, and higher incidence of gonadal apoptosis during sex differentiation. Administration of cortisol and a non-metabolizable glucocorticoid receptor (GR) agonist (Dexamethasone) to larvae at a “sexually neutral” temperature (24°C) caused significant increases in the proportion of males.

Conclusions/Significance

Our results suggest a role of cortisol in the masculinization of pejerrey and provide a possible link between stress and testicular differentiation in this gonochoristic TSD species. Cortisol role or roles during TSD of pejerrey seem(s) to involve both androgen biosynthesis- and GR-mediated processes. These findings and recent reports of cortisol effects on sex determination of sequential hermaphroditic fishes, TSD reptiles, and birds provide support to the notion that stress responses might be involved in various forms of environmental sex determination.  相似文献   

9.

Background

Glucocorticoids (GCs) are widely used to treat sudden sensorineural hearing loss (SSNHL) and significantly improve hearing. However, GC insensitivity has been observed in some patients of SSNHL.

Objective

To study the correlation between GR expression in peripheral blood mononuclear cells (PBMCs) and in the cochlea of guinea pigs at mRNA and protein levels.

Methods

One group of guinea pigs received dexamethasone (10 mg/kg/day) intraperitoneally for 7 consecutive days (dexamethasone group), and another group of guinea pigs received normal saline (control group). Real time PCR and Western blotting were used to detect the expression of GR mRNA and GR protein in PBMCs and the cochleae.

Results

The GR mRNA and GR protein were detected in both PBMCs and the cochlear tissue of guinea pigs. GR mRNA and GR protein levels in PBMCs were positively correlated with those in the cochlea. The expression of GR mRNA and GR protein was significantly increased in the dexamethasone group compared to the control group.

Conclusions

Levels of GR mRNA and GR protein in the PBMCs were positively correlated with those in the cochlea of guinea pigs. Systemic dexamethasone treatment can significantly up-regulate GR expression in PBMCs and in the cochlea. Measurement of the GR level in PBMCs could be used as an indicator of GR level in the cochlea.  相似文献   

10.
11.
12.

Objective

Several studies have emphasized the association between socioeconomic status (SES) and inadequate response of the biological stress system. However, other factors related to SES are rarely considered, such as cultural values, social norms, organization, language and communication skills, which raises the need to investigate cross-country differences in stress response. Although some studies have shown differences in cortisol levels between immigrants and natives, there is no cross-country evidence regarding cortisol levels in country-native elders. This is particularly important given the high prevalence of stress-related disorders across nations during aging. The current study examined basal diurnal and reactive cortisol levels in healthy older adults living in two different countries.

Methods

Salivary cortisol of 260 older adults from Canada and Brazil were nalyzed. Diurnal cortisol was measured in saliva samples collected at home throughout two working days at awakening, 30 min after waking, 1400 h, 1600 h and before bedtime. Cortisol reactivity was assessed in response to the Trier Social Stress Test (TSST) in both populations.

Results

Our results showed that even under similar health status, psychological and cognitive characteristics, Brazilian elders exhibited higher basal and stress-induced cortisol secretion compared to the Canadian participants.

Conclusion

These findings suggest that country context may modulate cortisol secretion and could impact the population health.  相似文献   

13.

Background

A history of early adverse experiences is an important risk factor for adult psychopathology. Changes in stress sensitivity and functioning of the hypothalamic-pituitary-adrenal (HPA) axis may underlie the association between stress and risk for psychiatric disorders. Preclinical work in rodents has linked low levels of maternal care to increased methylation of the promoter region of the glucocorticoid receptor (GR) gene, as well as to exaggerated hormonal and behavioral responses to stress. Recent studies have begun to examine whether early-life stress leads to epigenetic modifications of the GR gene in humans.

Methods

We examined the degree of methylation of a region of the promoter of the human GR gene (NR3C1) in leukocyte DNA from 99 healthy adults. Participants reported on their childhood experiences of parental behavior, parental death or desertion, and childhood maltreatment. On a separate day, participants completed the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test, a standardized neuroendocrine challenge test.

Results

Disruption or lack of adequate nurturing, as measured by parental loss, childhood maltreatment, and parental care, was associated with increased NR3C1 promoter methylation (p<.05). In addition, NR3C1 promoter methylation was linked to attenuated cortisol responses to the Dex/CRH test (p<.05).

Conclusions

These findings suggest that childhood maltreatment or adversity may lead to epigenetic modifications of the human GR gene. Alterations in methylation of this gene could underlie the associations between childhood adversity, alterations in stress reactivity, and risk for psychopathology.  相似文献   

14.
15.

Background

Dissociating glucocorticoid receptor (GR) ligands hold great promise for treating inflammatory disorders since it is assumed that they exert beneficial activities mediated by transrepression but avoid adverse effects of GR action requiring transactivation. Here we challenged this paradigm by investigating 2-(4-acetoxyphenyl)-2-chloro-N-methyl-ethylammonium chloride (CpdA), a dissociating non-steroidal GR ligand, in the context of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS).

Methodology/Principal Findings

CpdA inhibited pro-inflammatory mediators in myelin-specific T cells and fibroblasts in a GR-dependent manner while gene activation was abolished. However, it also induced massive apoptosis in various cell types even in the absence of the GR by engaging a Bcl-2- and caspase-dependent pathway. 1H NMR spectroscopy corroborated these findings by revealing that CpdA dissolved in buffered solutions rapidly decomposes into aziridine intermediates known to act as alkylating pro-apoptotic agents. Importantly, the dichotomy of CpdA action also became evident in vivo. Administration of high-dose CpdA to mice was lethal while treatment of EAE with low to intermediate amounts of CpdA dissolved in water significantly ameliorated the disease. The beneficial effect of CpdA required expression of the GR in T cells and was achieved by down regulating LFA-1 and CD44 on peripheral Th cells and by repressing IL-17 production.

Conclusions/Significance

CpdA has significant therapeutic potential although adverse effects severely compromise its application in vivo. Hence, non-steroidal GR ligands require careful analysis prior to their translation into new therapeutic concepts.  相似文献   

16.
17.

Background

Chronic stress has been found to be a major risk factor for various human pathologies. Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, which is tightly regulated via, among others, the glucocorticoid receptor (GR). The activity of the GR is modulated by a variety of proteins, including the co-chaperone FK506 binding protein 51 (FKBP5). Although FKBP5 has been associated with risk for affective disorders and has been implicated in GR sensitivity, previous studies focused mainly on peripheral blood, while information about basal distribution and induction in the central nervous system are sparse.

Methodology/Principal Findings

In the present study, we describe the basal expression pattern of Fkbp5 mRNA in the brain of adult male mice and show the induction of Fkbp5 mRNA via dexamethasone treatment or different stress paradigms. We could show that Fkbp5 is often, but not exclusively, expressed in regions also known for GR expression, for example the hippocampus. Furthermore, we were able to induce Fkbp5 expression via dexamethasone in the CA1 and DG subregions of the hippocampus, the paraventricular nucleus (PVN) and the central amygdala (CeA). Increase of Fkbp5 mRNA was also found after restrained stress and 24 hours of food deprivation in the PVN and the CeA, while in the hippocampus only food deprivation caused an increase in Fkbp5 mRNA.

Conclusions/Significance

Interestingly, regions with a low basal expression showed higher increase in Fkbp5 mRNA following induction than regions with high basal expression, supporting the hypothesis that GR sensitivity is, at least partly, mediated via Fkbp5. In addition, this also supports the use of Fkbp5 gene expression as a marker for GR sensitivity. In summary, we were able to give an overview of the basal expression of fkbp5 mRNA as well as to extend the findings of induction of Fkbp5 and its regulatory influence on GR sensitivity from peripheral blood to the brain.  相似文献   

18.
19.

Background

Glucocorticoid hormones play a major role in fetal organ maturation. Yet, excessive glucocorticoid exposure in utero can result in a variety of detrimental effects, such as growth retardation and increased susceptibility to the development of hypertension. To protect the fetus, maternal glucocorticoids are metabolized into inactive compounds by placental 11beta-hydroxysteroid dehydrogenase type2 (11βHSD2). This enzyme is also expressed in the kidney, where it prevents illicit occupation of the mineralocorticoid receptor by glucocorticoids. We investigated the role of renal 11βHSD2 in the control of neonatal glucocorticoid metabolism in the human and mouse.

Methods

Cortisol (F) and cortisone (E) concentrations were measured in maternal plasma, umbilical cord blood and human newborn urine using HPLC. 11βHSD2 activity was indirectly assessed by comparing the F/E ratio between maternal and neonatal plasma (placental activity) and between plasma and urine in newborns (renal activity). Direct measurement of renal 11βHSD2 activity was subsequently evaluated in mice at various developmental stages. Renal 11βHSD2 mRNA and protein expression were analyzed by quantitative RT-PCR and immunohistochemistry during the perinatal period in both species.

Results

We demonstrate that, at variance with placental 11βHSD2 activity, renal 11βHSD2 activity is weak in newborn human and mouse and correlates with low renal mRNA levels and absence of detectable 11βHSD2 protein.

Conclusions

We provide evidence for a weak or absent expression of neonatal renal 11βHSD2 that is conserved among species. This temporal and tissue-specific 11βHSD2 expression could represent a physiological window for glucocorticoid action yet may constitute an important predictive factor for adverse outcomes of glucocorticoid excess through fetal programming.  相似文献   

20.

Introduction

The mechanism underlying the spontaneous improvement of rheumatoid arthritis (RA) during pregnancy and the subsequent postpartum flare is incompletely understood, and the disease course varies widely between pregnant RA patients. In pregnancy, total and free levels of cortisol increase gradually, followed by a postpartum decrease to prepregnancy values. The glucocorticoid receptor (GR) polymorphisms BclI and N363S are associated with relatively increased glucocorticoid (GC) sensitivity, whereas the 9β and ER22/23EK polymorphisms of the GR gene are associated with a relatively decreased GC sensitivity. We examined the relation between the presence of these GR polymorphisms and level of disease activity and disease course of RA during pregnancy and postpartum.

Methods

We studied 147 participants of the PARA study (Pregnancy-Induced Amelioration of Rheumatoid Arthritis study), a prospective study investigating the natural improvement during pregnancy and the postpartum flare in women with RA. Patients were visited, preferably before pregnancy, at each trimester and at three postpartum time points. On all occasions, disease activity was scored by using DAS28. All patients were genotyped for the GR polymorphisms BclI, N363S, 9β, and ER22/23EK and divided in groups harboring either polymorphisms conferring increased GC sensitivity (BclI and N363S; GC-S patients) or polymorphisms conferring decreased GC sensitivity (9β or 9β + ER22/23EK; GC-I patients). Data were analyzed by using a mixed linear model, comparing GC-S patients with GC-I patients with respect to improvement during pregnancy and the postpartum flare. The cumulative disease activity was calculated by using time-integrated values (area under the curve, AUC) of DAS28 in GC-I patients versus GC-S patients. Separate analyses were performed according to the state of GC use.

Results

GC-S patients treated with GC had a significantly lower AUC of DAS28 in the postpartum period than did GC-I patients. This difference was not observed in patients who were not treated with GCs. During pregnancy, GC-S and GC-I patients had comparable levels of disease activity and course of disease.

Conclusions

Differences in relative GC sensitivity, as determined by GR polymorphisms, are associated with the level of disease activity in the postpartum period in GC-treated patients, but they do not seem to influence the course of the disease per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号