首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein-bound duplex DNA is often bent or kinked. Yet, quantification of intrinsic DNA bending that might lead to such protein interactions remains enigmatic. DNA cyclization experiments have indicated that DNA may form sharp bends more easily than predicted by the established worm-like chain (WLC) model. One proposed explanation suggests that local melting of a few base pairs introduces flexible hinges. We have expanded this model to incorporate sequence and temperature dependence of the local melting, and tested it for three sequences at temperatures from 23°C to 42°C. We find that small melted bubbles are significantly more flexible than double-stranded DNA and can alter DNA flexibility at physiological temperatures. However, these bubbles are not flexible enough to explain the recently observed very sharp bends in DNA.  相似文献   

2.
The apparently anomalous flexibility of DNA on short length scales has attracted a lot of attention in recent years. We use atomic force microscopy (AFM) in solution to directly study the DNA bending statistics for small lengths down to one helical turn. The accuracy of experimental estimates could be improved due to a large data volume and a refined algorithm for image processing and measuring bend angles. It is found that, at length scales beyond two helical turns (7 nm), DNA is well described by the harmonic worm-like chain (WLC) model with the bending persistence length of 56 nm. Below this threshold, the AFM data are also described by the WLC model assuming that the accuracy of measured bend angles is limited by the physical width of the double helix. We conclude that the double helical DNA behaves as a uniform elastic rod even at very short length scales. Strong bends due to kinks, melting bubbles and other deviations from the WLC model are statistically negligible.  相似文献   

3.
4.
Biological organisms exist over a broad temperature range of −15°C to +120°C, where many molecular processes involving DNA depend on the nanoscale properties of the double helix. Here, we present results of extensive molecular dynamics simulations of DNA oligomers at different temperatures. We show that internal basepair conformations are strongly temperature-dependent, particularly in the stretch and opening degrees of freedom whose harmonic fluctuations can be considered the initial steps of the DNA melting pathway. The basepair step elasticity contains a weaker, but detectable, entropic contribution in the roll, tilt, and rise degrees of freedom. To extend the validity of our results to the temperature interval beyond the standard melting transition relevant to extremophiles, we estimate the effects of superhelical stress on the stability of the basepair steps, as computed from the Benham model. We predict that although the average twist decreases with temperature in vitro, the stabilizing external torque in vivo results in an increase of ∼1°/bp (or a superhelical density of Δσ ?  + 0.03) in the interval 0–100°C. In the final step, we show that the experimentally observed apparent bending persistence length of torsionally unconstrained DNA can be calculated from a hybrid model that accounts for the softening of the double helix and the presence of transient denaturation bubbles. Although the latter dominate the behavior close to the melting transition, the inclusion of helix softening is important around standard physiological temperatures.  相似文献   

5.
The metabolism of DNA in cells relies on the balance between hybridized double-stranded DNA (dsDNA) and local de-hybridized regions of ssDNA that provide access to binding proteins. Traditional melting experiments, in which short pieces of dsDNA are heated up until the point of melting into ssDNA, have determined that AT-rich sequences have a lower binding energy than GC-rich sequences. In cells, however, the double-stranded backbone of DNA is destabilized by negative supercoiling, and not by temperature. To investigate what the effect of GC content is on DNA melting induced by negative supercoiling, we studied DNA molecules with a GC content ranging from 38% to 77%, using single-molecule magnetic tweezer measurements in which the length of a single DNA molecule is measured as a function of applied stretching force and supercoiling density. At low force (<0.5pN), supercoiling results into twisting of the dsDNA backbone and loop formation (plectonemes), without inducing any DNA melting. This process was not influenced by the DNA sequence. When negative supercoiling is introduced at increasing force, local melting of DNA is introduced. We measured for the different DNA molecules a characteristic force F char, at which negative supercoiling induces local melting of the dsDNA. Surprisingly, GC-rich sequences melt at lower forces than AT-rich sequences: F char = 0.56pN for 77% GC but 0.73pN for 38% GC. An explanation for this counterintuitive effect is provided by the realization that supercoiling densities of a few percent only induce melting of a few percent of the base pairs. As a consequence, denaturation bubbles occur in local AT-rich regions and the sequence-dependent effect arises from an increased DNA bending/torsional energy associated with the plectonemes. This new insight indicates that an increased GC-content adjacent to AT-rich DNA regions will enhance local opening of the double-stranded DNA helix.  相似文献   

6.
We wish to understand the role of electrostatics in DNA stiffness and bending. The DNA charge collapse model suggests that mutual electrostatic repulsions between neighboring phosphates significantly contribute to DNA stiffness. According to this model, placement of fixed charges near the negatively charged DNA surface should induce bending through asymmetric reduction or enhancement of these inter-phosphate repulsive forces. We have reported previously that charged variants of the elongated basic-leucine zipper (bZIP) domain of Gcn4p bend DNA in a manner consistent with this charge collapse model. To extend this result to a more globular protein, we present an investigation of the dimeric basic-helix–loop–helix (bHLH) domain of Pho4p. The 62 amino acid bHLH domain has been modified to position charged amino acid residues near one face of the DNA double helix. As observed for bZIP charge variants, DNA bending toward appended cations (away from the protein:DNA interface) is observed. However, unlike bZIP proteins, DNA is not bent away from bHLH anionic charges. This finding can be explained by the structure of the more globular bHLH domain which, in contrast to bZIP proteins, makes extensive DNA contacts along the binding face.  相似文献   

7.
8.
The decrease in threshold shown by the eye during dark adaptation proceeds in two steps. The first is rapid, short in duration, and small in extent. The second is slow, prolonged, and large. The first is probably due to cone function; the second to rod function. In centrally located fields the two parts of adaptation change differently with area. With small, foveal fields the first part dominates and only traces of the second part appear. As the area increases the first part changes a little, while the second part covers an increasing range of intensities and appears sooner in time. Measurements with an annulus field covering only the circumference of a 20° circle show most of the characteristics of a 20° whole field centrally located. Similarly a 2° field located at different distances from the center shows dark adaptation characteristics essentially like those of large centrally located fields whose edges correspond to the position of the central field. Evidently the behavior in dark adaptation of centrally located fields of different size is determined in the main not by area as area, but by the fact that the retina gradually changes in sensitivity from center to periphery, and therefore the larger the field the farther it reaches into peripheral regions of permanently greater sensibility.  相似文献   

9.
Although DNA is frequently bent and supercoiled in the cell, much of the available information on DNA structure at the atomistic level is restricted to short linear sequences. We report atomistic molecular dynamics (MD) simulations of a series of DNA minicircles containing between 65 and 110 bp which we compare with a recent biochemical study of structural distortions in these tight DNA loops. We have observed a wealth of non-canonical DNA structures such as kinks, denaturation bubbles and wrinkled conformations that form in response to bending and torsional stress. The simulations show that bending alone is sufficient to induce the formation of kinks in circles containing only 65 bp, but we did not observe any defects in simulations of larger torsionally relaxed circles containing 110 bp over the same MD timescales. We also observed that under-winding in minicircles ranging in size from 65 to 110 bp leads to the formation of single stranded bubbles and wrinkles. These calculations are used to assess the ability of atomistic MD simulations to determine the structure of bent and supercoiled DNA.  相似文献   

10.
We have used circular permutation analysis to determine whether binding of purified Xenopus laevis estrogen receptor DNA-binding domain (DBD) to a DNA fragment containing an estrogen response element (ERE) causes the DNA to bend. Gel mobility shift assays showed that DBD-DNA complexes formed with fragments containing more centrally located EREs migrated more slowly than complexes formed with fragments containing EREs near the ends of the DNA. DNA bending standards were used to determine that the degree of bending induced by binding of the DBD to an ERE was approximately 34 degrees. A 1.55-fold increase in the degree of bending was observed when two EREs were present in the DNA fragment. These in vitro studies suggest that interaction of nuclear receptors with their hormone response elements in vivo may result in an altered DNA conformation.  相似文献   

11.
Mammalian replication origins appear paradoxical. While some studies conclude that initiation occurs bidirectionally from specific loci, others conclude that initiation occurs at many sites distributed throughout large DNA regions. To clarify this issue, the relative number of early replication bubbles was determined at 26 sites in a 110-kb locus containing the dihydrofolate reductase (DHFR)-encoding gene in CHO cells; 19 sites were located within an 11-kb sequence containing ori-β. The ratio of ~0.8-kb nascent DNA strands to nonreplicated DNA at each site was quantified by competitive PCR. Nascent DNA was defined either as DNA that was labeled by incorporation of bromodeoxyuridine in vivo or as RNA-primed DNA that was resistant to λ-exonuclease. Two primary initiation sites were identified within the 12-kb region, where two-dimensional gel electrophoresis previously detected a high frequency of replication bubbles. A sharp peak of nascent DNA occurred at the ori-β origin of bidirectional replication where initiation events were 12 times more frequent than at distal sequences. A second peak occurred 5 kb downstream at a previously unrecognized origin (ori-β′). Thus, the DHFR gene initiation zone contains at least three primary initiation sites (ori-β, ori-β′, and ori-γ), suggesting that initiation zones in mammals, like those in fission yeast, consist of multiple replication origins.  相似文献   

12.
13.
14.
Summary We demonstrated that the 1055 by restriction fragment containing OriA, a chloroplast DNA replication origin of Chlamydomonas reinhardtii, has electrophoretic anomalies characteristic of bent DNA. A tandem dimer of the region was constructed. Quantitative measurement of the relative gel mobility of a set of permuted fragments was used to extrapolate the approximate position of the bent DNA segment. By analyzing the gel mobility of short, sequenced fragments of the bent DNA region, the putative bending locus was identified. Two A4 tracts and two A5 tracts were located in the bending locus. Oligonucleotide-directed mutagenesis was then used to disrupt the A tract or the spacing between A tracts and the effect of site-specific mutation on electrophoretic mobility was analyzed. To assess the functional role of the bent DNA region, subclones containing the bending locus, mutated bending locus, and regions flanking the bending locus were constructed. Each subclone was used as template in an in vitro DNA replication system which preferentially initiated DNA replication at OriA. A 224 by subclone with the bending locus positioned in the middle displayed the highest replication function and was sufficient to initiate DNA replication in vitro. Site-specific mutations or alterations of the A tracts resulted in decreased DNA bending and decreased DNA replication activity.  相似文献   

15.
DNA sequence information that directs the translational positioning of nucleosomes can be attenuated by cytosine methylation when a short run of CpG dinucleotides is located close to the dyad axis of the nucleosome. Here, we show that point mutations introduced to re-pattern methylation at the (CpG)3 element in the chicken βA-globin promoter sequence themselves strongly influenced nucleosome formation in reconstituted chromatin. The disruptive effect of cytosine methylation on nucleosome formation was found to be determined by the sequence context of CpG dinucleotides, not just their location in the positioning sequence. Additional mutations indicated that methylation can also promote the occupation of certain nucleosome positions. DNase I analysis demonstrated that these genetic and epigenetic modifications altered the structural characteristics of the (CpG)3 element. Our findings support a proposal that the intrinsic structural properties of the DNA at the −1.5 site, as occupied by (CpG)3 in the nucleosome studied, can be decisive for nucleosome formation and stability, and that changes in anisotropic DNA bending or flexibility at this site explain why nucleosome positioning can be exquisitely sensitive to genetic and epigenetic modification of the DNA sequence.  相似文献   

16.
Synopsis To examine the relation between morphology and performance, notochordal morphology was correlated with notochordal mechanics and with steady swimming motions in white sturgeon, Acipenser transmontanus. In a still-water tank, motions of four sturgeon varied with changes in swimming speed and axial position along the body. For a 1..34 m sturgeon, slow and fast swimming modes were distinguished, with speeds at the fast mode more than two times those at the slow mode without changes in tailbeat frequency. This increase in speed is correlated with an increase in the body's maximal midline curvature (m–1), suggesting a role for curvature-related mechanical properties of the notochord. Maximal midline curvature also varied with axial position, and surprisingly was uncorrelated with axial changes in the notochord's cross-sectional shape - as measured by height, width, inner diameter, and lateral thickness of the sheaths. On the other hand, maximal midline curvature was negatively correlated with the axial changes in the notochord's angular stiffness (N m rad–1) and change in internal pressure (% change from baseline of 58.6 kPa), both of which were measured during in vitro bending tests. In vivo curvature and in vitro angular stiffness were then used to estimate the bending moments (Nm) in the notochord during swimming. In the precaudal notochord, the axial pattern of maximal stiffness moments was congruent with the pattern of maximal notochordal curvature in the precaudal region, but in the caudal notochord maximal angular stiffness was located craniad to maximal curvature. One interpretation of this pattern is that the precaudal notochord resists bending moments generated by the muscles and that the caudal notochord resists bending moments generated by hydrodynamic forces acting on the tail.  相似文献   

17.
The bending stiffness of double-stranded DNA (dsDNA) at high curvatures is fundamental to its biological activity, yet this regime has been difficult to probe experimentally, and literature results have not been consistent. We created a ‘molecular vise’ in which base-pairing interactions generated a compressive force on sub-persistence length segments of dsDNA. Short dsDNA strands (<41 base pairs) resisted this force and remained straight; longer strands became bent, a phenomenon called ‘Euler buckling’. We monitored the buckling transition via Förster Resonance Energy Transfer (FRET) between appended fluorophores. For low-to-moderate concentrations of monovalent salt (up to ∼150 mM), our results are in quantitative agreement with the worm-like chain (WLC) model of DNA elasticity, without the need to invoke any ‘kinked’ states. Greater concentrations of monovalent salts or 1 mM Mg2+ induced an apparent softening of the dsDNA, which was best accounted for by a kink in the region of highest curvature. We tested the effects of all single-nucleotide mismatches on the DNA bending. Remarkably, the propensity to kink correlated with the thermodynamic destabilization of the mismatched DNA relative the perfectly complementary strand, suggesting that the kinked state is locally melted. The molecular vise is exquisitely sensitive to the sequence-dependent linear and nonlinear elastic properties of dsDNA.  相似文献   

18.
In hair cells, mechanotransduction channels are located in the membrane of stereocilia tips, where the base of the tip link is attached. The tip-link force determines the system of other forces in the immediate channel environment, which change the channel open probability. This system of forces includes components that are out of plane and in plane relative to the membrane; the magnitude and direction of these components depend on the channel environment and arrangement. Using a computational model, we obtained the major forces involved as functions of the force applied via the tip link at the center of the membrane. We simulated factors related to channels and the membrane, including finite-sized channels located centrally or acentrally, stiffness of the hypothesized channel-cytoskeleton tether, and bending modulus of the membrane. Membrane forces are perpendicular to the directions of the principal curvatures of the deformed membrane. Our approach allows for a fine vectorial picture of the local forces gating the channel; membrane forces change with the membrane curvature and are themselves sufficient to affect the open probability of the channel.  相似文献   

19.
In hair cells, mechanotransduction channels are located in the membrane of stereocilia tips, where the base of the tip link is attached. The tip-link force determines the system of other forces in the immediate channel environment, which change the channel open probability. This system of forces includes components that are out of plane and in plane relative to the membrane; the magnitude and direction of these components depend on the channel environment and arrangement. Using a computational model, we obtained the major forces involved as functions of the force applied via the tip link at the center of the membrane. We simulated factors related to channels and the membrane, including finite-sized channels located centrally or acentrally, stiffness of the hypothesized channel-cytoskeleton tether, and bending modulus of the membrane. Membrane forces are perpendicular to the directions of the principal curvatures of the deformed membrane. Our approach allows for a fine vectorial picture of the local forces gating the channel; membrane forces change with the membrane curvature and are themselves sufficient to affect the open probability of the channel.  相似文献   

20.
Biological organisms exist over a broad temperature range of −15°C to +120°C, where many molecular processes involving DNA depend on the nanoscale properties of the double helix. Here, we present results of extensive molecular dynamics simulations of DNA oligomers at different temperatures. We show that internal basepair conformations are strongly temperature-dependent, particularly in the stretch and opening degrees of freedom whose harmonic fluctuations can be considered the initial steps of the DNA melting pathway. The basepair step elasticity contains a weaker, but detectable, entropic contribution in the roll, tilt, and rise degrees of freedom. To extend the validity of our results to the temperature interval beyond the standard melting transition relevant to extremophiles, we estimate the effects of superhelical stress on the stability of the basepair steps, as computed from the Benham model. We predict that although the average twist decreases with temperature in vitro, the stabilizing external torque in vivo results in an increase of ∼1°/bp (or a superhelical density of Δσ?+0.03Δσ?+0.03) in the interval 0–100°C. In the final step, we show that the experimentally observed apparent bending persistence length of torsionally unconstrained DNA can be calculated from a hybrid model that accounts for the softening of the double helix and the presence of transient denaturation bubbles. Although the latter dominate the behavior close to the melting transition, the inclusion of helix softening is important around standard physiological temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号