首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Syncephalastrum racemosum UT-70 and Cunninghamella elegans ATCC 36112 metabolized 7,12-dimethylbenz[a]anthracene (7,12-DMBA) to hydroxymethyl metabolites as well as 7-hydroxymethyl-12-methylbenz[a]anthracene trans-3,4-, -5,6-, -8,9-, and -10,11-dihydrodiols. The 7,12-DMBA metabolites were isolated by reversed-phase high-performance liquid chromatography and identified by their UV-visible absorption, mass, and nuclear magnetic resonance spectral characteristics. A comparison of the circular dichroism spectra of the K-region (5,6-position) dihydrodiol of both fungal strains with those of the 7,12-DMBA 5S,6S-dihydrodiol formed from 7,12-DMBA by rat liver microsomes indicated that the major enantiomer of the 7-hydroxymethyl-12-methylbenz[a]anthracene trans-5,6-dihydrodiol formed by both fungal strains had a 5R,6R absolute stereochemistry. Direct resolution of the fungal trans-5,6-dihydrodiols by chiral stationary-phase high-performance liquid chromatography indicated that the ratios of the R,R and S,S enantiomers were 88:12 and 77:23 for S. racemosum and C. elegans, respectively. These results indicate that the fungal metabolism of 7,12-DMBA at the K region (5,6-position) is highly stereoselective and different from that reported for mammalian enzyme systems.  相似文献   

2.
Syncephalastrum racemosum UT-70 and Cunninghamella elegans ATCC 36112 metabolized 7,12-dimethylbenz[a]anthracene (7,12-DMBA) to hydroxymethyl metabolites as well as 7-hydroxymethyl-12-methylbenz[a]anthracene trans-3,4-, -5,6-, -8,9-, and -10,11-dihydrodiols. The 7,12-DMBA metabolites were isolated by reversed-phase high-performance liquid chromatography and identified by their UV-visible absorption, mass, and nuclear magnetic resonance spectral characteristics. A comparison of the circular dichroism spectra of the K-region (5,6-position) dihydrodiol of both fungal strains with those of the 7,12-DMBA 5S,6S-dihydrodiol formed from 7,12-DMBA by rat liver microsomes indicated that the major enantiomer of the 7-hydroxymethyl-12-methylbenz[a]anthracene trans-5,6-dihydrodiol formed by both fungal strains had a 5R,6R absolute stereochemistry. Direct resolution of the fungal trans-5,6-dihydrodiols by chiral stationary-phase high-performance liquid chromatography indicated that the ratios of the R,R and S,S enantiomers were 88:12 and 77:23 for S. racemosum and C. elegans, respectively. These results indicate that the fungal metabolism of 7,12-DMBA at the K region (5,6-position) is highly stereoselective and different from that reported for mammalian enzyme systems.  相似文献   

3.
The degradation of 7,12-dimethylbenz[a]anthracene (DMBA), a carcinogenic polycyclic aromatic hydrocarbon, by cultures of Mycobacterium vanbaalenii PYR-1 was studied. When M. vanbaalenii PYR-1 was grown in the presence of DMBA for 136 h, high-pressure liquid chromatography (HPLC) analysis showed the presence of four ethyl acetate-extractable compounds and unutilized substrate. Characterization of the metabolites by mass and nuclear magnetic resonance spectrometry indicated initial attack at the C-5 and C-6 positions and on the methyl group attached to C-7 of DMBA. The metabolites were identified as cis-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a]anthracene (DMBA cis-5,6-dihydrodiol), trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a]anthracene (DMBA trans-5,6-dihydrodiol), and 7-hydroxymethyl-12-methylbenz[a]anthracene, suggesting dioxygenation and monooxygenation reactions. Chiral stationary-phase HPLC analysis of the dihydrodiols showed that DMBA cis-5,6-dihydrodiol had 95% 5S,6R and 5% 5R,6S absolute stereochemistry. On the other hand, the DMBA trans-5,6-dihydrodiol was a 100% 5S,6S enantiomer. A minor photooxidation product, 7,12-epidioxy-7,12-dimethylbenz[a]anthracene, was also formed. The results demonstrate that M. vanbaalenii PYR-1 is highly regio- and stereoselective in the degradation of DMBA.  相似文献   

4.
The enantiomers of 7,12-dimethylbenz[a]anthracene (DMBA) 5,6-epoxide were directly resolved by normal-phase high-performance liquid chromatography with an ionically bonded chiral stationary phase. The absolute configurations of the resolved enantiomers were determined by comparison of circular dichroism spectra of the methanolysis products formed from the epoxide enantiomers with that of a DMBA trans-5,6-dihydrodiol enantiomer of known absolute stereochemistry. DMBA 5R,6S-epoxide is hydrated by rat liver microsomal epoxide hydrolase predominantly (95%) to a 5S,6S-dihydrodiol. The results indicate that the 5S,6S-dihydrodiol formed from the metabolism of DMBA by microsomes prepared from the livers of 3-methylcholanthrene-treated rats is predominantly derived from a 5R,6S-epoxide intermediate.  相似文献   

5.
When benz[a] anthracene was oxidised in a reaction mixture containing ascorbic acid, ferrous sulphate and EDTA, the non-K-region dihydrodiols, trans-1,2-dihydro-1,2-dihydroxybenz[a] anthracene and trans-3,4-dihydro-3,4-dihydroxybenz[a] anthracene together with small amounts of the 8,9- and 10,11-dihydrodiols were formed. When oxidised in a similar system, 7,12-dimethylbenz[a] anthracene yielded the K-region dihydrodiol, trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a] anthracene and the non-K-region dihydrodiols, trans-3,4-dihydro-3,4-dihydroxy-7,12-dimethylbenz[a] anthracene, trans-8,9-dihydro-8,9-dihydroxy-7,12-dimethylbenz[a] anthracene, trans-10,11-dihydro-10,11-dihydroxy-7,12-dimethylbenz[a] anthracene and a trace of the 1,2-dihydrodiol. The structures and sterochemistry of the dihydrodiols were established by comparisons of their UV spectra and chromatographic characteristics using HPLC with those of authentic compounds or, when no authentic compounds were available, by UV, NMR and mass spectral analysis. An examination by HPLC of the dihydrodiols formed in the metabolism, by rat-liver microsomal fractions, of benz[a] anthracene and 7,12-dimethylbenz[a] anthracene was carried out. The metabolic dihydriols were identified by comparisons of their chromatographic and UV or fluorescence spectral characteristics with compounds of known structures. The principle metabolic dihydriols formed from both benz[a] anthracene and 7,12-dimethylbenz[a] anthracene were the trans-5,6- and trans-8,9-dihydrodiols. The 1,2- and 10,11-dihydrodiols were identified as minor products of the metabolism of benz [a] anthracene and the tentative identification of the trans-3,4-dihydriol as a metabolite was made from fluorescence and chromatographic data. The minor metabolic dihydriols formed from 7,12-dimethylbenz[a] anthracene were the trans-3,4-dihydrodiol and the trans-10,11-dihydriol but the trans-1,2-dihydrodiol was not detected in the present study.  相似文献   

6.
The syntheses of 7,12-dimethylbenz[a]anthracene 5,6-oxide, 7-acetoxymethyl-12-methylbenz[a]anthracene 5,6-oxide and a product that appears to be mainly 7-hydroxymethyl-12-methylbenz[a]anthracene 5,6-oxide are described. The compounds readily rearranged to phenols in the presence of mineral acid, and 7,12-dimethylbenz[a]anthracene 5,6-oxide and its 7-hydroxymethyl derivative reacted slowly with water to yield trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a] anthracene and trans-5,6-dihydro-5,6-dihydroxy-7-hydroxymethyl-12-methylbenz [a]anthracene respectively. Both epoxides were converted enzymically by rat liver microsomal fractions and homogenates into the related trans-dihydrodiols. The epoxides reacted chemically with GSH to form conjugates that were identical with the conjugates formed when the epoxides were incubated with rat liver homogenates. The GSH conjugates were more stable to acid than conjugates derived from other arene oxides. In the alkylation of 4-(p-nitrobenzyl)pyridine, 7,12-dimethyl-benz[a]anthracene 5,6-oxide was more active than the 5,6-oxides of 7-methylbenz[a]-anthracene and benz[a]anthracene.  相似文献   

7.
The K-region trans-5,6-dihydrodiols formed in the metabolism of 12-methylbenz[a]anthracene (12-MBA) by liver microsomal preparations from untreated, phenobarbital-treated and 3-methylcholanthrene-treated male Sprague-Dawley rats were found by chiral stationary-phase h.p.l.c. (c.s.p.-h.p.l.c.) analyses to contain (5S,6S)/(5R,6R) enantiomer ratios of 93:7, 88:12 and 97:3 respectively. The absolute stereochemistry of a 12-MBA trans-5,6-dihydrodiol enantiomer was elucidated by the exciton-chirality c.d. method. The 5,6-epoxides formed in the metabolism of 12-MBA by liver microsomal preparations from untreated, phenobarbital-treated and 3-methylcholanthrene-treated male Sprague-Dawley rats in the presence of the epoxide hydrolase inhibitor 3,3,3-trichloropropylene 1,2-oxide were isolated from a mixture of metabolites by normal-phase h.p.l.c., and their (5S,6R)/(5R,6S) enantiomer ratios were found by c.s.p.-h.p.l.c. analyses to be 73:27, 78:22 and 99:1 respectively. The absolute configurations of 12-MBA 5,6-epoxide enantiomers, resolved by c.s.p.-h.p.l.c., were determined via high-resolution (500 MHz) proton-n.m.r. and c.d. spectral analyses of the two isomeric methoxylation products derived from each of the 12-MBA 5,6-epoxide enantiomers. Enantiomeric pairs of the two methoxylation products were resolved by c.s.p.-h.p.l.c. The results indicate that enantiomeric 5S,6R-epoxide and 5S,6S-dihydrodiol were the major enantiomers preferentially formed in the metabolism at the K-region 5,6-double bond of 12-MBA by all three rat liver microsomal preparations. Optically pure 12-MBA 5S,6R-epoxide was hydrated predominantly at the C(6) position (R centre) to form 12-MBA trans-5,6-dihydrodiol with a (5S,6S)/(5R,6R) enantiomer ratio of 97:3. However, optically pure 12-MBA 5R,6S-epoxide was hydrated nearly equally at both C(5) and C(6) positions to form 12-MBA trans-5,6-dihydrodiol with a (5S,6S)/(5R,6R) enantiomer ratio of 57:43.  相似文献   

8.
The absolute configurations of the enantiomeric 5,6-arene oxides of 7,12-dimethylbenz[a]anthracene (DMBA) were recently assigned such that the late eluting enantiomer from a chiral HPLC column has 5R,6S absolute configuration. [Mushtaq et al. (1984) BBRC 125, 539]. The authors further concluded that the 5R,6S-enantiomer predominates on metabolism of DMBA by cytochrome P450c in liver microsomes from 3-methylcholanthrene-treated rats. Their chemical assignment of absolute configuration is incorrect. Thus, metabolism of DMBA by these microsomes as well as by homogeneous cytochrome P450c produces 5,6-oxide highly enriched (95%) in the 5S,6R-enantiomer in accord with theoretical predictions.  相似文献   

9.
Metabolism of 4-methylbenz[a]anthracene by the fungus Cunninghamella elegans was studied. C. elegans metabolized 4-methylbenz[a]anthracene primarily at the methyl group, this being followed by further metabolism at the 8,9- and 10,11-positions to form trans-8,9-dihydro-8,9-dihydroxy-4-hydroxymethylbenz[a]anthracene and trans-10,11-dihydro-10,11-dihydroxy-4-hydroxymethylbenz[a]anthracene. There was no detectable trans-dihydrodiol formed at the methyl-substituted double bond (3,4-positions) or at the 'K' region (5,6-positions). The metabolites were isolated by reversed-phase high-pressure liquid chromatography and characterized by the application of u.v.-visible-absorption-, 1H-n.m.r.- and mass-spectral techniques. The 4-hydroxymethylbenz[a]anthracene trans-8,9- and -10,11-dihydrodiols were optically active. Comparison of the c.d. spectra of the trans-dihydrodiols formed from 4-methylbenz[a]anthracene by C. elegans with those of the corresponding benz[a]anthracene trans-dihydrodiols formed by rat liver microsomal fraction indicated that the major enantiomers of the 4-hydroxymethylbenz[a]anthracene trans-8,9-dihydrodiol and trans- 10,11-dihydrodiol formed by C. elegans have S,S absolute stereochemistries, which are opposite to those of the predominantly 8R,9R- and 10R,11R-dihydrodiols formed by the microsomal fraction. Incubation of C. elegans with 4-methylbenz[a]anthracene under 18O2 and subsequent mass-spectral analysis of the metabolites indicated that hydroxylation of the methyl group and the formation of trans-dihydrodiols are catalysed by cytochrome P-450 mono-oxygenase and epoxide hydrolase enzyme systems. The results indicate that the fungal mono-oxygenase-epoxide hydrolase enzyme systems are highly stereo- and regio-selective in the metabolism of 4-methylbenz[a]anthracene.  相似文献   

10.
The K-region 5,6-epoxides, formed in the metabolism of benzo[c]phenanthrene (BcPh) in the presence of an epoxide hydrolase inhibitor 3,3,3-trichloropropylene 1,2-oxide (TCPO) by liver microsomes from untreated, phenobarbital-treated, 3-methylcholanthrene-treated, and polychlorinated biphenyls (Aroclor 1254)-treated rats of the Sprague-Dawley and the Long-Evans strains, were found by chiral stationary phase high-performance liquid chromatography analyses to be enriched (58-72%) in the 5S, 6R enantiomer. In the absence of TCPO, the metabolically formed BcPh trans-5,6-dihydrodiol was enriched (78-86%) in the 5S,6S enantiomer. The major enantiomer of the BcPh 3,4-epoxide metabolite was found to be enriched in the 3S,4R enantiomer which undergoes racemization under the experimental conditions. The major enantiomer of the 5,6-dihydrodiol metabolite was elucidated by the exciton chirality circular dichroism (CD) method to have a 5S,6S absolute stereochemistry. Absolute configurations of enantiomeric methoxylation products derived from each of the two BcPh 5,6-epoxide enantiomers. Optically pure BcPh 5S,6R-epoxide was enzymatically hydrated exclusively at the C6 position to form an optically pure BcPh 5S,6S-dihydrodiol. However, optically pure BcPh 5R,6S-epoxide was hydrated at both C5 and C6 positions to form a BcPh trans-5,6-dihydrodiol with a (5S,6S):(5R,6R) enantiomer ratio of 32:68.  相似文献   

11.
The degradation of 7,12-dimethylbenz[a]anthracene (DMBA), a carcinogenic polycyclic aromatic hydrocarbon, by cultures of Mycobacterium vanbaalenii PYR-1 was studied. When M. vanbaalenii PYR-1 was grown in the presence of DMBA for 136 h, high-pressure liquid chromatography (HPLC) analysis showed the presence of four ethyl acetate-extractable compounds and unutilized substrate. Characterization of the metabolites by mass and nuclear magnetic resonance spectrometry indicated initial attack at the C-5 and C-6 positions and on the methyl group attached to C-7 of DMBA. The metabolites were identified as cis-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a]anthracene (DMBA cis-5,6-dihydrodiol), trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a]anthracene (DMBA trans-5,6-dihydrodiol), and 7-hydroxymethyl-12-methylbenz[a]anthracene, suggesting dioxygenation and monooxygenation reactions. Chiral stationary-phase HPLC analysis of the dihydrodiols showed that DMBA cis-5,6-dihydrodiol had 95% 5S,6R and 5% 5R,6S absolute stereochemistry. On the other hand, the DMBA trans-5,6-dihydrodiol was a 100% 5S,6S enantiomer. A minor photooxidation product, 7,12-epidioxy-7,12-dimethylbenz[a]anthracene, was also formed. The results demonstrate that M. vanbaalenii PYR-1 is highly regio- and stereoselective in the degradation of DMBA.  相似文献   

12.
Two K-regions of 5-methylchrysene are sites of oxidative metabolism   总被引:1,自引:0,他引:1  
Two K-region trans-dihydrodiols were identified as products formed in the metabolism of 5-methylchrysene by liver microsomes from phenobarbital-treated male Sprague-Dawley rats. These two dihydrodiols were isolated from a mixture of metabolites by reversed-phase and normal-phase high-performance liquid chromatographies. Both K-region dihydrodiols were characterized by ultra-violet, mass, and circular dichroism spectral analyses. Chiral stationary phase high-performance liquid chromatographic analyses indicated that 5-methylchrysene 5,6-dihydrodiol and 11,12-dihydrodiol contain (S,S): (R,R) enantiomer ratios of 2:98 and 12:88, respectively. Although it is a bay-region dihydrodiol, the hydroxyl groups of 5-methylchrysene trans-5,6-dihydrodiol adopt a quasidiequatorial conformation.  相似文献   

13.
While metabolism of benz[a]anthracene by rat liver microsomes produced a (+)5R,6R-dihydrodiol as the major enantiomer, metabolism of 12-methylbenz[a]anthracene under similar conditions gave a (?)5S,6S-dihydrodiol as the major enantiomer. This is the first example indicating that the methyl substituent of a polycyclic aromatic hydrocarbon can drastically alter the stereoselective preference of the microsomal drug-metabolizing enzyme systems toward a substrate molecule in the formation of a dihydrodiol metabolite at an unsubstituted aromatic double bond.  相似文献   

14.
S K Yang  M Mushtaq  P P Fu 《Chirality》1990,2(1):58-64
1,12-Dimethylbenz[a]anthracene (1,12-DMBA) cis-5,6-dihydrodiol was synthesized by oxidation of 1,12-DMBA with osmium tetroxide in pyridine in low yield (less than or equal to 3%) and was purified by sequential use of reversed-phase and normal-phase HPLC. Two pairs of 1,12-DMBA cis-5,6-dihydrodiol enantiomers, derived from P (right-handed helix) and M (left-handed helix) conformers, were eluted as a single chromatographic peak on both reversed-phase and normal-phase HPLC. However, these four enantiomers were resolved by sequential use of two chiral stationary phase (CSP) HPLC columns. CSP (Pirkle type I) columns were packed with either (R)-N-(3,5-dinitrobenzoyl)phenylglycine or (S)-N-(3,5-dinitrobenzoyl)leucine, which is ionically bonded to gamma-aminopropylsilanized silica. Absolute configurations of enantiomers were determined by comparing their circular dichroism spectra with those of conformationally similar cis-5,6-dihydrodiol enantiomers of 4-methylbenz[a]anthracene and 7,12-dimethylbenz[a]anthracene with known absolute stereochemistry.  相似文献   

15.
The formation of dihydrodiols from 7-hydroxymethyl-12-methylbenz[alpha]anthracene by rat-liver microsomal fractions, by mouse skin in short-term organ culture and by chemical oxidation in an ascorbic acid/ferrous sulphate/EDTA system has been studied using a combination of thin-layer chromatography and high pressure liquie chromatography. The 3,4-, 8,9- and 10,11-dihydrodiols were formed in all three systems. The 5,6-dihydrodiol was formed in rat-liver microsomal fractions and in chemical oxidation but was not detected as a metabolite of [7-3H]hydroxymethyl-12-methylbenz[alpha]anthracene when this compound was incubated with mouse skin in short-term organ culture. The possible role of hydroxymethyl dihydrodiols in the in vivo metabolic activation of 7,12-dimethylbenz[alpha]anthracene in mouse skin has been studied using Sephadex LH-20 column chromatography. The results show that the hydrocarbon-nucleic acid products formed following the treatment of mouse skin in vivo with [7,12-3H]dimethylbenz[alpha]anthracene are not the same as those that are formed following the treatment of mouse skin under the same conditions with either 7-hydroxymethyl-12-methylbenz[alpha]anthracene or 7-methyl-12-hydroxymethylbenz[alpha]anthracene.  相似文献   

16.
The fungal metabolism of 7-methylbenz[a]anthracene (7-MBA) and 7-hydroxymethylbenz[a]anthracene (7-OHMBA) was studied. 7-MBA was metabolized by Cunninghamella elegans to form 7-OHMBA-trans-8,9-dihydrodiol and 7-OHMBA-trans-3,4-dihydrodiol as the predominant metabolites. Other metabolites were identified as 7-OHMBA, 7-MBA-trans-8,9-dihydrodiol and 7-MBA-trans-3,4-dihydrodiol, and 7-MBA-8,9,10,11-tetraol. Incubation of 7-OHMBA with C. elegans cells indicated that 7-OHMBA-trans-8,9-dihydrodiol and 7-OHMBA-trans-3,4-dihydrodiol were major metabolites. The metabolism of 7-MBA by rat liver microsomes from 3-methylcholanthrene-treated rats showed that the metabolites were qualitatively similar to those formed by C. elegans, except additional dihydrodiol metabolites were formed at the 5,6 and 10,11 positions. The metabolites formed were isolated by high-performance liquid chromatography and identified by comparing their chromatographic, UV-visible absorption and mass spectral properties with those of reference compounds.  相似文献   

17.
Through application of the exciton chirality method, absolute stereochemistry has been assigned to the (+)-and (-)-enantiomers of four of the five metabolically possible trans-dihydrodiols of the polycyclic hydrocarbon benzo[a]anthracene (BA). The (+)- and (-)-enantiomers of each of these dihydrodiols can be separated as their diastereomeric bis-esters with (-)-alpha-methoxy-alpha-trifluoromethylphenylacetic acid by high pressure liquid chromatography (HPLC). BA 3,4-, 5,6-, 8,9- and 10,11-dihydrodiol are formed in 38%, 36%, 78% and 66% enantiometric purity, respectively, by liver microsomes from phenobarbital-treated rats, whereas the liver microsomes from 3-methylcholanthrene(MC)-treated rats form BA 5,6-, 8,9- and 10,11-dihydrodiols with higher optical purity (62%, 96% and 96%, respectively). BA 3,4-dihydrodiol is formed from (+/-)-BA 3,4-oxide by microsomal epoxide hydrase in very high enantiometric purity (78%). The major enantiomer of the BA dihydrodiols formed by liver enzymes has R,R absolute stereochemistry in each case. In parallel with previous studies on the metabolism of benzo[a]pyrene, the more tumorigenic (-)-enantiomer is the predominant isomer of BA 3,4-dihydrodiol formed by liver microsomes from BA.  相似文献   

18.
The enantiomers of K-region benz[a]anthracene (BA) 5,6-epoxide and benzo[a]pyrene (BP) 4,5-epoxide were resolved by chiral stationary-phase high-performance liquid chromatography (CSP-HPLC). The K-region epoxides formed in the metabolism of BA by liver microsomes from untreated (control), phenobarbital (PB)-treated, and 3-methylcholanthrene (MC)-treated male Sprague-Dawley rats were determined by CSP-HPLC to have a 5R,6S/5S,6R enantiomer ratio of 25:75, 21:79, and 4:96, respectively. The K-region 4,5-epoxide formed in the metabolism of BP by the same rat liver microsomal preparations contained a 4R,5S/4S,5R enantiomer ratio of 48:52 (control), 40:60 (PB), and 5:95 (MC), respectively. The results indicate that various cytochrome P-450 isozymes of rat liver exhibit different stereoselective properties in catalyzing the epoxidation reactions at the K region of BA and of BP.  相似文献   

19.
The carcinogenic 7-methylbenz[a]anthracene and 7,12-dimethylbenz[a]anthracene were converted by rat liver microsomes into the corresponding hydroxymethyl derivatives and other metabolic products. The 7-methylbenz[a]anthracene incubation was carried out in H218O, and no incorporation of oxygen-18 was found in the hydroxymethyl metabolite isolated and purified by high pressure liquid chromatography, and analyzed by mass spectrometry. When 7-methylbenz[a]anthracene or 7,12-dimethylbenz[a]anthracene was incubated with 18O2, isotope incorporation was observed in the corresponding hydroxymethyl derivatives, indicating that such hydroxylation is a true oxygenase reaction.  相似文献   

20.
Oxidative metabolism of the carcinogen 6-fluorobenzo[c]phenanthrene (6-FB[c]Ph) was compared with that of benzo[c]phenanthrene (B[c]Ph) to elucidate the enhancement of carcinogenicity of B[c]Ph by the 6-fluoro substituent. Liver microsomes from untreated (control), phenobarbital-treated, and 3-methylcholanthrene-treated rats metabolized 6-FB[c]Ph at rates of 3.5, 1.5, and 7.7 nmol of products/nmol of cytochrome P-450/min, respectively. The rates of metabolism of B[c]Ph by the same microsomes were 2.9, 1.6, and 5.5 nmol of products/nmol of cytochrome P-450/min, respectively. Whereas the K-region 5,6-dihydrodiol was the major metabolite of B[c]Ph, the major metabolite of 6-FB[c]Ph was the K-region 7,8-oxide, which underwent slow rearrangement to an oxepin. Thus, the 6-fluoro substituent blocks oxidation at the 5,6-double bond and inhibits hydration of the K-region 7,8-oxide by epoxide hydrolase. Substitution with fluorine at C-6 caused an almost 2.5-fold increase in the percentages of the putative proximate carcinogens, i.e. benzo-ring dihydrodiols with bay-region double bonds, when liver microsomes from 3-methylcholanthrene-treated rats were used. Little or no increase was observed in their formation by liver microsomes from control or phenobarbital-treated rats. Interestingly, liver microsomes from control rats formed almost 3-fold as much 3,4-dihydrodiol as isosteric 9,10-dihydrodiol. The R,R-enantiomers of the 3,4- and 9,10-dihydrodiols and the S,S-enantiomer of the 7,8-dihydrodiol were predominantly formed by all three microsomal preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号