首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Isolated subunits of the crystalline cell surface layer (S-layer) protein of Bacillus stearothermophilus PV72/p2 were recrystallized on positively charged unilamellar liposomes. Liposomes were composed of dipalmitoylphosphatidylcholine (DPPC), cholesterol and hexadecylamine (HDA) in a molar ratio of 10:5:4 and they were prepared by the dehydration-rehydration method followed by an extrusion procedure. The S-layer protein to DPPC ratio was 5.7 nmol/micromol which approximately corresponds to the theoretical value estimated by using the areas occupied by the S-layer lattice and the lipid membrane. Coating of the positively charged liposomes with S-layer protein resulted in inversion of the zeta-potential from +29.1 mV to -27.1 mV. Covalent crosslinking of the recrystallized S-layer protein was achieved with glutaraldehyde. Chemical analysis revealed that almost all amino groups (>95%) from HDA in the liposomal membrane were involved in the reaction. To study the influence of an S-layer lattice on the stability of the liposomes, the hydrophilic marker carboxyfluoresceine (CF) was encapsulated and its release was determined for plain and S-layer-coated liposomes in the course of mechanical and thermal challenges. In comparison to plain liposomes, S-layer-coated liposomes released only half the amount of enclosed CF upon exposure to shear forces or ultrasonication as mechanical stress factors. Furthermore, temperature shifts from 25 degrees C to 55 degrees C and vice versa induced considerably less CF release from S-layer-coated than from plain liposomes. A similar stabilizing effect of the S-layer lattice was observed after glutaraldehyde treatment of plain and S-layer-coated liposomes.  相似文献   

2.
Many prokaryotic organisms (archaea and bacteria) are covered by a regularly ordered surface layer (S-layer) as the outermost cell wall component. S-layers are built up of a single protein or glycoprotein species and represent the simplest biological membrane developed during evolution. Pores in S-layers are of regular size and morphology, and functional groups on the protein lattice are aligned in well-defined positions and orientations. Due to the high degree of structural regularity S-layers represent unique systems for studying the structure, morphogenesis, and function of layered supramolecular assemblies. Isolated S-layer subunits of numerous organisms are able to assemble into monomolecular arrays either in suspension, at air/water interfaces, on planar mono- and bilayer lipid films, on liposomes and on solid supports (e.g. silicon wafers). Detailed studies on composite S-layer/lipid structures have been performed with Langmuir films, freestanding bilayer lipid membranes, solid supported lipid membranes, and liposomes. Lipid molecules in planar films and liposomes interact via their head groups with defined domains on the S-layer lattice. Electrostatic interactions are the most prevalent forces. The hydrophobic chains of the lipid monolayers are almost unaffected by the attachment of the S-layer and no impact on the hydrophobic thickness of the membranes has been observed. Upon crystallization of a coherent S-layer lattice on planar and vesicular lipid membranes, an increase in molecular order is observed, which is reflected in a decrease of the membrane tension and an enhanced mobility of probe molecules within an S-layer-supported bilayer. Thus, the terminology 'semifluid membrane' has been introduced for describing S-layer-supported lipid membranes. The most important feature of composite S-layer/lipid membranes is an enhanced stability in comparison to unsupported membranes.  相似文献   

3.
For cryo-EM structural studies, we seek to image membrane proteins as single particles embedded in proteoliposomes. One technical difficulty has been the low density of liposomes that can be trapped in the approximately 100nm ice layer that spans holes in the perforated carbon support film of EM grids. Inspired by the use of two-dimensional (2D) streptavidin crystals as an affinity surface for biotinylated DNA (Crucifix et al., 2004), we propose to use the crystals to tether liposomes doped with biotinylated lipids. The 2D crystal image also serves as a calibration of the image formation process, providing an absolute conversion from electrostatic potentials in the specimen to the EM image intensity, and serving as a quality control of acquired cryo-EM images. We were able to grow streptavidin crystals covering more than 90% of the holes in an EM grid, and which remained stable even under negative stain. The liposome density in the resulting cryo-EM sample was uniform and high due to the high-affinity binding of biotin to streptavidin. Using computational methods, the 2D crystal background can be removed from images without noticeable effect on image properties.  相似文献   

4.
Bacteriorhodopsin and the nicotinic acetylcholine receptor were biotinylated and reconstituted in lipidic membranes on silicon supports by fusion with proteoliposomes. The presence and distribution of the proteins were studied by binding with streptavidin. Radio-labelled streptavidin was employed for quantifying the amounts of protein remaining in the supported membranes after storage in buffer. The proteins within the membranes remained bound to the surface for weeks. The biological activity of reconstituted unlabelled receptor upon storage showed stability in membranes formed on silicon supports and a reduced stability when formed onto lipid monolayer covered supports. Atomic force microscopy studies on preparations in liquid showed bilayer structures but also attached, partly fused liposomes and membrane particles. In air, the surface was smoother and contained less of liposomes and more of stacked lipid layers. Preparations labelled with streptavidin conjugated to colloidal gold and imaged in air showed the proteins individually distributed, with no protein-rich patches or protein aggregates.  相似文献   

5.
The nucleotide sequence encoding the crystalline bacterial cell surface (S-layer) protein SbpA of Bacillus sphaericus CCM 2177 was determined by a PCR-based technique using four overlapping fragments. The entire sbpA sequence indicated one open reading frame of 3,804 bp encoding a protein of 1,268 amino acids with a theoretical molecular mass of 132,062 Da and a calculated isoelectric point of 4.69. The N-terminal part of SbpA, which is involved in anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, comprises three S-layer-homologous motifs. For screening of amino acid positions located on the outer surface of the square S-layer lattice, the sequence encoding Strep-tag I, showing affinity to streptavidin, was linked to the 5' end of the sequence encoding the recombinant S-layer protein (rSbpA) or a C-terminally truncated form (rSbpA(31-1068)). The deletion of 200 C-terminal amino acids did not interfere with the self-assembly properties of the S-layer protein but significantly increased the accessibility of Strep-tag I. Thus, the sequence encoding the major birch pollen allergen (Bet v1) was fused via a short linker to the sequence encoding the C-terminally truncated form rSpbA(31-1068). Labeling of the square S-layer lattice formed by recrystallization of rSbpA(31-1068)/Bet v1 on peptidoglycan-containing sacculi with a Bet v1-specific monoclonal mouse antibody demonstrated the functionality of the fused protein sequence and its location on the outer surface of the S-layer lattice. The specific interactions between the N-terminal part of SbpA and the secondary cell wall polymer will be exploited for an oriented binding of the S-layer fusion protein on solid supports to generate regularly structured functional protein lattices.  相似文献   

6.
The nucleotide sequence encoding the crystalline bacterial cell surface (S-layer) protein SbpA of Bacillus sphaericus CCM 2177 was determined by a PCR-based technique using four overlapping fragments. The entire sbpA sequence indicated one open reading frame of 3,804 bp encoding a protein of 1,268 amino acids with a theoretical molecular mass of 132,062 Da and a calculated isoelectric point of 4.69. The N-terminal part of SbpA, which is involved in anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, comprises three S-layer-homologous motifs. For screening of amino acid positions located on the outer surface of the square S-layer lattice, the sequence encoding Strep-tag I, showing affinity to streptavidin, was linked to the 5′ end of the sequence encoding the recombinant S-layer protein (rSbpA) or a C-terminally truncated form (rSbpA31-1068). The deletion of 200 C-terminal amino acids did not interfere with the self-assembly properties of the S-layer protein but significantly increased the accessibility of Strep-tag I. Thus, the sequence encoding the major birch pollen allergen (Bet v1) was fused via a short linker to the sequence encoding the C-terminally truncated form rSpbA31-1068. Labeling of the square S-layer lattice formed by recrystallization of rSbpA31-1068/Bet v1 on peptidoglycan-containing sacculi with a Bet v1-specific monoclonal mouse antibody demonstrated the functionality of the fused protein sequence and its location on the outer surface of the S-layer lattice. The specific interactions between the N-terminal part of SbpA and the secondary cell wall polymer will be exploited for an oriented binding of the S-layer fusion protein on solid supports to generate regularly structured functional protein lattices.  相似文献   

7.
Three variants of the liposome fusion (coalescence) method to produce supported lipid bilayers, containing the ganglioside GM1 on silicon nitride surfaces, were studied. The first procedure involved attachment and fusion of liposomes containing DMPC, GM1 and a small amount of biotinylated lipid (Biotin-LC-DPPE) to a streptavidin coated surface. Direct fusion of liposomes composed of a mixture of DPPC, DPPG, DPPE, GM1 and cholesterol to the surface were the second variant. The final method utilised the second type of liposomes, fused onto a streptavidin layer with a small amount of exposed hydrophobic tails. The methods produced similar lipid layers, but with different ways of attachment to the surface. The binding of cholera toxin B-subunit (CTB) towards these sensor surfaces was measured in a resonant mirror biosensor instrument and the activity and longer-term stability of the layers were examined. The prepared surfaces were also imaged by atomic force microscopy (AFM) in liquid to characterise the topography of the lipid layers. The binding efficiency of CTB towards these surfaces was discussed in terms of lipid fluidity and surface roughness.  相似文献   

8.
We have investigated the interaction of targeted liposomes with human erythrocytes, and K562 cells, a human leukemic line which expresses both glycophorin A and Fc receptors. Liposomes conjugated to monoclonal anti-human glycophorin A bind to human erythrocytes in 80-fold greater amounts than liposomes conjugated to a non-specific monoclonal antibody. Binding is inhibited by soluble anti-glycophorin but not by its Fab fragment. In contrast, binding of antibody-conjugated liposomes to K562 cells is very high irrespective of the specificity of the antibody. Liposomes conjugated to a nonspecific monoclonal antibody interact with K562 cells via an Fc receptor, and binding is inhibited by soluble human IgG. Liposomes conjugated to anti-human glycophorin A interact with K562 cells via an Fc receptor and glycophorin A. Binding is not inhibited by either human IgG or anti-glycophorin Fab alone. Binding is only partially inhibited by anti-glycophorin, or by human IgG in the presence of anti-glycophorin Fab, and completely inhibited only by human IgG in the presence of anti-glycophorin. Simultaneous binding of targeted liposomes to two cell membrane antigens is therefore partially resistant to inhibition by single soluble ligands even when they are present in large excess. We conclude that simultaneous binding to more than one receptor may be of considerable advantage for in vivo applications of targeted liposomes.  相似文献   

9.
The bacterial cell surface layer (S-layer) protein of Bacillus sphaericus CCM 2177 assembles into a square lattice structure and recognizes a distinct type of secondary cell wall polymer (SCWP) as the proper anchoring structure in the rigid cell wall layer. For generating a nanopatterned sensing layer with high density and well defined distance of the ligand on the outermost surface, an S-layer fusion protein incorporating the sequence of a variable domain of a heavy chain camel antibody directed against prostate-specific antigen (PSA) was constructed, produced, and recrystallized on gold chips precoated with thiolated SCWP. The S-layer protein moiety consisted of the N-terminal part which specifically recognized the SCWP as binding site and the self-assembly domain. The PSA-specific variable domain of the camel heavy chain antibody was selected by several rounds of panning from a phage display library of an immunized dromedary, and was produced by heterologous expression in Escherichia coli. For construction of the S-layer fusion protein, the 3'-end of the sequence encoding the C-terminally truncated form rSbpA(31)(-)(1068) was fused via a short linker to the 5'-end of the sequence encoding cAb-PSA-N7. The S-layer fusion protein had retained the ability to self-assemble into the square lattice structure. According to the selected fusion site in the SbpA sequence, the cAb-PSA-N7 moiety remained located on the outer surface of the protein lattice. After recrystallization of the S-layer fusion protein on gold chips precoated with thiolated SCWP, the monomolecular protein lattice was exploited as sensing layer in surface plasmon resonance biochips to detect PSA.  相似文献   

10.
It was reported that avidin and streptavidin induce lysis of prebiotinylated red blood cells via the alternative pathway of both homologous and heterologous complement. Both of these proteins have four biotin-binding sites, providing a polyvalent interaction with biotinylated components of the erythrocyte membrane. We have compared the effects of mono- and multipoint avidin attachment on the sensitivity of biotinylated erythrocytes to lysis by the complement system. In the presence of anti-avidin antibody, avidin-bearing biotinylated erythrocytes were rapidly lysed by heterologous serum. This lysis was independent from the mode of avidin attachment, implying that complement activation by the classical pathway triggered by interaction between C1 and avidin-bound antibody on the erythrocyte surface is independent from the avidin's ability of polyvalent (multipoint) binding with biotinylated membrane components. In the absence of anti-avidin antibody, biotinylated erythrocytes bearing polyvalently attached avidin were lysed by homologous complement better than cells bearing avidin, which possesses reduced ability for multipoint binding with biotinylated erythrocyte. Two independent approaches to reduce avidin's ability of multipoint binding were used: decrease in surface density of biotin on the erythrocyte membrane and blockage of biotin-binding sites of avidin. Both methods result in reduced lysis of avidin-bearing erythrocytes as compared with erythrocytes bearing an equal amount of polyvalent-bound avidin. Thus the activation of homologous complement via the alternative pathway depends on avidin's ability to 'cross-link' to the biotinylated components of the erythrocyte membrane.  相似文献   

11.
Ligand-bearing liposomes are used to enhance the agglutination ‘signal’ of a typical latex assay for the detection of human rheumatoid factor. Heat-denatured IgG, the antigen to which rheumatoid factor binds naturally, was covalently attached to latex spheres. The liposomes were covalently coated with a ‘second ligand’ which also recognizes rheumatoid factor, anti-human IgM Fab′ fragments. In the present test configuration, rheumatoid factor present in a patient's serum binds to the IgG attached to the latex particles. The liposomes, in turn, bind rapidly to rheumatoid factor-sensitized latex, via the second ligand, promoting the formation of large, clearly visible latex aggregates. When latex spheres bearing the same type and density of second ligand were used to replace the liposomes they failed to improve agglutination, suggesting that multivalent presentation of the second ligand is not sufficient to insure the improvement. These results suggest that fluidity of the liposomal membrane is a requirement for the effect. Sensitivity as well as ‘readability’ are improved by the liposomes while specificity remains unaffected. The principle of using ligand-bearing liposomes to enhance particle agglutination is applicable to a wide range of other diagnostic assays.  相似文献   

12.
Affinity chromatography-purified and non-purified rabbit immunoglobulin G (IgG) raised against human immunoglobulin M (IgM) or kappa chain was incorporated into carboxyfluorescein-containing small unilamellar liposomes composed of egg phosphatidylcholine, cholesterol and phosphatidic acid (molar proportions 7:7:1). IgG incorporation was carried out by co-sonicating the immunoglobulin with the lipids (30% incorporated) (method A) or by interacting it with preformed liposomes bearing goat anti-(rabbit IgG) IgG (63 and 70% incorporated) (method B). (1) Judging from liposomal carboxyfluorescein-latency values, incorporation of IgG by either method did not affect liposomal stability. Furthermore, treatment of liposomes with papain released 75.1% (method A) and 93.3% and 95.1% (method B) of the IgG, suggesting that most of its antigen-recognizing Fab regions were available on the liposomal surface. This was strongly supported by the immunoelectrophoretic detection of Fab in papain-released products. (2) Liposomes bearing purified anti-IgM IgG bound 30%, (method A) and 45% (method B) of IgM in buffer. These values wee about 6-fold greater (both methods) than those obtained with corresponding liposomes bearing non-purified IgG. Binding of liposomes bearing anti-(kappa chain) IgG to kappa chain in buffer was 37% of that added. In the presence of mouse blood or serum, binding of IgM to liposomes bearing purified anti-IgM IgG was decreased slightly (24 and 30% for methods A and B). However, because of the nearly complete abolition of IgM binding to liposomes bearing non-purified IgG, these values were now 20–25-fold greater than those obtained with liposomes bearing non-purified IgG. (3) In mice pre-injected with IgM, at least 36.1% and 37.7% of the antigen was bound to subsequently injected liposomes bearing anti-IgM IgG incorporated by methods A and B respectively. No binding occurred with liposomes bearing the non-purified IgG. (4) Cholesterol-rich small unilamellar liposomes bearing affinity chromatography-purified antibodies may prove useful for the specific binding of free antigens in vivo.  相似文献   

13.
The chimeric gene encoding a C-terminally-truncated form of the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and two copies of the Fc-binding Z-domain was constructed, cloned, and heterologously expressed in Escherichia coli HMS174(DE3). The Z-domain is a synthetic analogue of the B-domain of protein A, capable of binding the Fc part of immunoglobulin G (IgG). The S-layer fusion protein rSbpA(31-1068)/ZZ retained the specific properties of the S-layer protein moiety to self-assemble in suspension and to recrystallize on supports precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Due to the construction principle of the S-layer fusion protein, the ZZ-domains remained exposed on the outermost surface of the protein lattice. The binding capacity of the native or cross-linked monolayer for human IgG was determined by surface plasmon resonance measurements. For batch adsorption experiments, 3-microm-diameter, biocompatible cellulose-based, SCWP-coated microbeads were used for recrystallization of the S-layer fusion protein. In the case of the native monolayer, the binding capacity for human IgG was 5.1 ng/mm(2), whereas after cross-linking with dimethyl pimelimidate, 4.4 ng of IgG/mm(2) was bound. This corresponded to 78 and 65% of the theoretical saturation capacity of a planar surface for IgGs aligned in the upright position, respectively. Compared to commercial particles used as immunoadsorbents to remove autoantibodies from sera of patients suffering from an autoimmune disease, the IgG binding capacity of the S-layer fusion protein-coated microbeads was at least 20 times higher. For that reason, this novel type of microbeads should find application in the microsphere-based detoxification system.  相似文献   

14.
We have used biologically active derivatives of beta-nerve growth factor (NGF), modified by biotinylation via carboxyl groups, to target the specific binding of liposomes to cultured rat and human tumor cells bearing NGF receptors. Liposomes, to be used for targeting, were prepared by conjugating streptavidin to phospholipid amino groups on liposomes prepared by reverse-phase evaporation. Approximately 2,000 streptavidin molecules were incorporated per liposome. Addition of biotinylated NGF, but not of unmodified NGF, could mediate the subsequent binding of radiolabeled streptavidin-liposomes to rat pheochromocytoma PC12 cells in suspension at 4 degrees C. In contrast, incubation with biotinylated NGF did not mediate the binding of hemoglobin-conjugated liposomes. Under optimal incubation conditions, approximately 570 streptavidin-liposomes were specifically bound per cell. Biotinylated NGF was also used to obtain specific binding of streptavidin-liposomes containing encapsulated fluorescein isothiocyanate-labeled dextran to PC12 cells or human melanoma HS294 cells. When HS294 cells were incubated at 37 degrees C following targeted liposome binding at 4 degrees C, the cell-associated fluorescence appeared to become internalized, displaying a perinuclear pattern of fluorescence similar to that observed when lysosomes were stained with acridine orange. Trypsin treatment abolished cell-associated fluorescence when cells were held at 4 degrees C but did not alter the fluorescence pattern in cells following incubation at 37 degrees C. When liposomes containing carboxyfluorescein, a dye capable of diffusing out of acidic compartments, were targeted to HS294 cells, subsequent incubation at 37 degrees C resulted in diffuse cytoplasmic fluorescence, suggesting that internalized liposomes encounter lysosomal or prelysosomal organelles.  相似文献   

15.
In ungulates, intestinal absorption of maternal immunoglobulins from colostrum plays a vital role in the acquisition of passive immunity during early neonatal life. In the present study we used post-embedding colloidal gold labeling to examine the intracellular localization of IgG in the jejunal enterocytes of miniature piglets suckled for 2 hr. Quantitation of the immunolabeling revealed that the most sensitive technique for IgG detection was the streptavidin bridge-gold technique. In this method, the LR White-embedded sections were labeled sequentially with biotinylated anti-porcine IgG, streptavidin, and biotinylated BSA conjugated to 10-nm colloidal gold. With this approach, we found the following sequence of maternal IgG accumulation: passage of IgG from colostrum through the brush border; binding to the apical plasma membrane; uptake in noncoated pits and invaginations; transport in endocytotic vesicles; and accumulation in granules in the apical cytoplasm.  相似文献   

16.
We have developed liposome sensitization by a protein, latrotoxin (LT), using immobilization of biotinylated LT via streptavidin with biotinylated phosphatidylethanolamine contained in liposomes. The use of such liposomes in the complement-dependent homogeneous liposome immune lysis assay (LILA) has allowed us to detect in the test sample as little as 2 micrograms/ml of polyclonal and 50-100 ng/ml of monoclonal IgG and IgM antibodies to LT. LT concentration in solution was determined by inhibition of immune lysis by free LT. The sensitivity of the LT assay varied from 1 x 10(-9) to 5-50 x 10(-9) M when antiserum (polyclonal antibodies) and monoclonal antibodies to LT were correspondingly used. The results show that a streptavidin-biotin spacer can be used to immobilize protein antigens on liposomes for a subsequent application in LILA. The suggested technique greatly simplifies the sensitization procedure and extends the applicability of the LILA.  相似文献   

17.
The regular surface protein structure (S-layer) of Caulobacter crescentus was analyzed by electron microscopy and three-dimensional image reconstruction to a resolution of 2 nm. Projections showed that the S-layer is an array of ring structures, each composed of six subunits that are arranged on a lattice with p6 symmetry. Three-dimensional reconstructions showed that the ring subunits were approximately rod-shaped structures and were perpendicular to the plane of the array, with a linker arm emanating from approximately the middle of the rod, accounting for the connections between the rings. The calculated subunit mass was ca. 100 kDa, very close to the size of RsaA (the protein known to be at least the predominant species in the S-layer) predicted from the DNA sequence of the rsaA gene. The core region of the rings creates an open pore 2.5 to 3.5 nm in diameter. The size of the gaps between the neighboring unit cells is in the same range, suggesting a uniform porosity predicted to exclude molecules larger than ca. 17 kDa. Attempts to remove membrane material from S-layer preparations with detergents revealed that the structure spontaneously rearranged into a mirror-image double layer. Negative-stain and thin-section electron microscopy examination of colonies of C. crescentus strains with a mutation in a surface molecule involved in the attachment of the S-layer showed that shed RsaA protein organized into large sheets. The sheets in turn organized into stacks that tended to accumulate near the upper surface of the colony. Image reconstruction indicated that these sheets were also precise mirror-image double layers, and thickness measurements obtained from thin sections were consistent with this finding. The sheets were absent when these mutant strains were grown without calcium, supporting other data that calcium is involved in attachment of the S-layer to a surface molecule and perhaps in subunit-subunit interactions. We propose that when the membrane is removed from S-layer fragments by detergents or the attachment-related surface molecule is absent, the attachment sites of the S-layer align precisely to form a double layer via a calcium interaction.  相似文献   

18.
Biotin-avidin (or streptavidin) high affinity binding has been widely applied as a universal tool for basic research as well as diagnostic and therapeutic purposes. Here we studied the interaction of streptavidin with ionic channels formed by biotinylated gramicidin in planar bilayer lipid membranes (BLM) using the method of sensitized photoinactivation. As shown previously, the addition of streptavidin leads to a profound increase in the lifetime (tau) of gA5XB, a biotinylated analog of gramicidin A with a linker arm of five aminocaproyl groups (Rokitskaya et al. (2000) Biochemistry, 39, 13053-13058). The present study has revealed that the increase in tau is related to multivalent interaction of streptavidin with biotinylated gramicidin, i.e., to formation of a complex of streptavidin with several gramicidin channels, whereas binding of streptavidin to a single channel does not change the value of tau. A rather long linker arm attaching biotin to the C-terminus of gramicidin appeared to be required for the multivalent interaction of streptavidin with gramicidin channels, as the increase in tau was not observed with channels formed by gA2XB, the biotinylated gramicidin analog with a linker arm comprising only two aminocaproyl groups. However, the formation of a stoichiometric (1 : 1) complex of streptavidin with gA2XB apparently occurred. The multivalent interaction of streptavidin with gA5XB disappeared if biotinylated lipids were included into the diphytanoylphosphatidylcholine membrane. It is suggested that the slowing of gramicidin channel kinetics provoked by streptavidin binding is due to membrane-mediated elastic interactions between two neighboring channels.  相似文献   

19.
Does IgE bind to and activate eosinophils from patients with allergy?   总被引:3,自引:0,他引:3  
Human eosinophils have been reported to express both the mRNA and protein for the high affinity IgE receptor (FcepsilonRI); it is speculated that this receptor plays a role in eosinophil mediator release in allergic diseases. However, questions still remain. How much of the FcepsilonRI protein is actually expressed on the cell surface of the eosinophil? If they are present, are these IgE receptors associated with effector functions of eosinophils? To address these issues, we studied blood eosinophils from patients with ragweed hay fever. A high level of low affinity IgG receptor (FcgammaRII, CD32), but no expression of FcepsilonRI, was detectable on the eosinophil surface by standard FACS analysis. However, after in vitro sensitization with biotinylated chimeric IgE (cIgE), cell-bound cIgE was detected by PE-conjugated streptavidin. This cIgE binding was partially inhibited by anti-FcepsilonRI mAb, suggesting that eosinophils do express minimal amounts of FcepsilonRI detectable only by a sensitive method. Indeed, FACS analysis of whole blood showed that eosinophils express approximately 0.5% of the FcepsilonRI that basophils express. When stimulated with human IgE or anti-human IgE, these eosinophils did not exert effector functions; there was neither production of leukotriene C4 or superoxide anion nor any detectable degranulation response. In contrast, eosinophils possessed membrane-bound human IgG and showed functional responses when stimulated with human IgG or anti-human IgG. Thus, IgG and/or cytokines, such as IL-5, appear to be more important for eosinophil activation in allergic diseases than IgE.  相似文献   

20.
Dhawan S 《Peptides》2002,23(12):2099-2110
Spherical polystyrene microparticles expressing a large number of highly reactive functional groups were chemically engineered to generate antibody–enzyme conjugates as novel signal amplification systems. Chemically modified goat anti-human IgG and horseradish peroxidase (HRP) were combined in a 1:5 ratio and attached to 0.44 μm streptavidin microparticles or N-succinimidyl-S-acetylthioacetate (SATA)-activated 0.29 μm amino microparticles with highly reactive free sulfhydryl groups on their surface. The numbers of HRP molecules/microparticle were further increased by coupling HRP to primary amines on N-terminal biotinylated or bromoacetylated polypeptides containing 20 lysine residues prior to conjugation with streptavidin or sulfhydryl groups-containing microparticles. The antibody–poly-HRP immunoconjugates contained an estimated number of 105 HRP/streptavidin microparticle and 106 HRP/amino microparticle, respectively. These microparticle immunoconjugates efficiently bound to plasma anti-HIV-1 antibodies that had been captured by HIV antigens on 5 μm carboxyl magnetic microparticles and, upon reaction with orthophenyldiamine substrate, produced a detection signal with 5–8 times more sensitivity as compared to conventional HRP-conjugated goat anti-human IgG. The signal amplification technique by microparticle immunoconjugates may provide potentially novel tools for the development of highly sensitive diagnostic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号