首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regeneration kinetics of cellulose from cellulose--NaOH--water gels immersed in a nonsolvent bath is studied in detail. Cellulose concentration, bath type, and temperature were varied, and diffusion coefficients were determined. The results were compared with data measured and taken from the literature on the regeneration kinetics of cellulose from cellulose--N-methylmorpholine-N-oxide (NMMO) monohydrate solutions. Different theories developed for the transport behavior of solutes in hydrogels or in porous media were tested on the systems studied. While the diffusion of NaOH from cellulose--NaOH--water gels into water has to be described with "porous media" approaches, the interpretation of NMMO diffusion is complicated because of the change of NMMO's state during regeneration (from solid crystalline to liquid) and the high concentration of NMMO in the sample. The activation energies were calculated from diffusion coefficient dependence on temperature for both systems and compared with the ones obtained from the rheological measurements. The activation energy of cellulose--NaOH--water systems does not depend on cellulose concentration or the way of measurement. This result shows that whatever the system is, pure NaOH--water solution, cellulose--NaOH--water solution, or cellulose--NaOH--water gel, it is NaOH hydrate with or without cellulose in solution, which is moving in the system. The swelling of cellulose in different nonsolvent liquids such as water or different alcohols during regeneration was investigated and interpreted using the Hildebrand parameter.  相似文献   

2.
New highly porous pure cellulose aerogel-like material called "aerocellulose" was prepared from aqueous cellulose/NaOH solutions. Solutions were gelled to obtain shaped three-dimensional objects, then cellulose was regenerated and dried in supercritical conditions using CO2. The porosity of aerocellulose is higher than 95% with pore sizes distribution from a few tens of nanometers to a few tens of micrometers. The internal specific surface area is around 200-300 m2/g, and density ranges from 0.06 to 0.3 g/cm3, depending on the preparation conditions. The influence of cellulose DP and concentration, of the addition of a surfactant leading to solution foaming, of gelation conditions and the temperature and acidity of regenerating bath on the morphology of aerocellulose has been studied. The results are compared with another type of aerocellulose that was prepared from cellulose/NMMO solutions.  相似文献   

3.
As an important direct solvent for cellulose, N-methyl morpholine N-oxide (NMMO) is environmentally friendly, and potentially very economical. Silk fibroin (SF) (Bombyx mori) can also be dissolved directly in NMMO.H2O. However, it is unexpectedly difficult to obtain a silk fibroin solution with a concentration higher than 10wt.% in this way, and extensive degradation of silk fibroin occurs if the dissolution temperature is higher than 110 degrees C. On the other hand, it is found that regenerated silk fibroin (RSF) film is much easier to dissolve in NMMO.H2O than ordinary SF. The RSF in NMMO.H2O can be easily concentrated to a range from 10 to 25wt.%. The structural differences between the degummed silk fiber and the RSF film lead to this different solubility in NMMO.H2O. The rheological behavior of concentrated RSF/NMMO.H2O solutions were also investigated. Regenerated silk fiber was spun from this type of solution, and its strength can reach up to 3.07 cN/dtex.  相似文献   

4.
The ionic liquids 1-ethyl-3-methylimidazolium acetate [emim]OAc, N,N,N,N-tetramethylguanidium propionate [TMGH]EtCO(2), and N,N,N,N-tetramethylguanidium acetate [TMGH]OAc, and the traditional cellulose solvent N-methylmorpholine N-oxide NMMO were characterized for their Kamlet-Taft (KT) values at several water contents and temperatures. For the ionic liquids and NMMO, thresholds of regeneration of cellulose solutions by water were determined using nephelometry and rheometry. Regeneration from wet IL was found to be asymmetric compared to dissolution into wet IL. KT parameters were found to remain almost constant at temperatures, between 20-100 °C, even at different water contents. Among the KT parameters, the β value was found to change most drastically, with an almost linear decrease upon addition of water. The ability of the mixtures to dissolve cellulose was best explained by the difference β-α (net basicity), rather than β alone. Regeneration of cellulose starts at thresholds values of approximately β < 0.8 (β-α < 0.35) and displayed four phases.  相似文献   

5.
Ionic liquid (IL)‐acid pretreatment is known to not only enhance the enzymatic hydrolysis efficiency of lignocellulose but also to generate deposits on the surface of fiber by conventional water regeneration, which retard the increment. In this study, ethanol aqueous solution regeneration was developed as a new method to change the substrates characteristics for IL‐acid pretreatment and their effects on the enzymatic hydrolysis were evaluated. Following the IL‐acid reaction, the biomass slurry was subjected to ethanol aqueous solution at various concentration. Results indicated that anti‐solvent choice significantly influenced the reconstruction of both hemicelluloses and lignin as a result of the competition between water and ethanol. The partial removal of hemicelluloses and suitable lignin re‐localization contributed to a more porous structure. Consequently, the cellulose digestibility of aqueous ethanol regenerated samples was dramatically enhanced to ~100% and approximately 11‐ and 2‐fold higher than that of untreated and conventional water regenerated pretreated samples, respectively. A giant leap in the initial rate of enzymatic hydrolysis was also detected in 50% ethanol aqueous solution regenerated samples and only about 10 hr was needed to convert 80% of cellulose to glucose due to the appearance of cellulose II hydrate‐like and more porous structure.  相似文献   

6.
A pulsed field gradient NMR was used to study lateral diffusion in the cholesterol-containing oriented bilayers of saturated (dipalmitoyl- and dimyristoyl-) phosphatidylcholines, upon their limiting hydration. Similar dependences of lateral diffusion coefficients on temperature and cholesterol concentration were observed, which agree with phase diagram showing the presence of the regions of disordered and ordered liquid-crystalline phases and a two-phase region. Under the same conditions, the lateral diffusion coefficient of dipalmitoylphosphatidylcholine is lower, which agrees qualitatively with its larger molecular weight. The comparison of data for dipalmitoylphosphatidylcholine with previous results for dipalmitoylsphingomyelin-cholesterol bilayers under the same conditions, in spite of similarity of phase diagrams, shows large (two–three times) differences in the lateral diffusion coefficient and a different profile of its dependence on cholesterol concentration. The comparison of data for dimyristoylphosphatidylcholine with previous results shows that the values of lateral diffusion coefficient and the shape of its dependence on cholesterol concentration coincide at high concentrations (>15 mol%) but differ at lower concentrations The revealed disagreement may be caused by the fact that the measurements were carried out at different water content in the system. At limiting hydration (more than 35% of water), the lateral diffusion coefficient for lipids decreases when cholesterol concentration rises, while at water content about 25% (as a result of equilibrium hydration from vapors) the lateral diffusion coefficient of phosphatidylcholine may be independent of cholesterol concentration. This is the consequence of the denser packing of molecules in the bilayer at reduced water content, an effect that competes with the ordering effect of cholesterol.  相似文献   

7.
Lateral diffusion in oriented bilayers of saturated cholesterol-containing phosphatidylcholines, dipalmitoylphosphatidylcholine and dimyrilstoylphosphatidylcholine upon their limiting hydration has been studied by NMR with impulse gradient of magnetic field. For both systems, similar dependences of the coefficient of lateral diffusion on temperature and cholesterol concentration were observed, which agree with the phase diagram showing the presence of regions of ordered and unordered liquid-crystalline phases and a two-phase region. Under similar conditions, the coefficient of lateral diffusion for dipalmytoylphosphatidylcholine has lower values, which is in qualitative agreement with its greater molecular mass. A comparison of data for dipalmytoylphosphatidylcholine with the results obtained earlier for dipalmytoylsphyngomyelin/cholesterol under the same conditions shows, despite a similarity in phase diagrams, greater (two- to threefold) differences in the values of the coefficient of lateral diffusion and a different mode of dependence of the coefficient on cholesterol concentration. A comparison of data for dimyrilstoylphosphatidylcholine with the results obtained previously shows that the values of the coefficient of lateral diffusion and the mode of its dependence on cholesterol concentration coincide in the region of higher concentrations (more than 15 mole %) and differ in the region of lower concentrations (below 15 mole %). The discrepancies may be explained by different contents of water in the systems during the measurements. At a limiting hydration (more than 35%) of water, the coefficient of lateral diffusion decreases with increasing cholesterol concentration. If the content of water is about 25% (as a result of equilibrium hydration from vapors), the coefficient of lateral diffusion of phosphatidylcholine is probably independent of cholesterol concentration. This results from a denser packing of molecules in the bilayer at a lower water concentration, an effect that competes with the ordering effect of cholesterol.  相似文献   

8.
A method has been developed measuring the diffusion coefficient of KCl in amylose films. The films were soaked in potassium chloride solutions, then immersed in pure water and conductivity measured as a function of time. Different concentrations of the soaking solution were used and the measurements were made at several temperatures. The diffusion coefficient of KCl was found to be independent of the soaking solution KCl concentration, but found to increase with increasing temperature. The diffusion coefficient values were about one quarter of those found in water and varied from 4.8×10−10 to 11×10−10 m2 s−1. The activation energy of diffusion was close to that found in water. Two values for the activation energy were obtained, 20.1 and 14 kJ mol−1, indicating a change in the film structure at 45 °C. Amylose films swelled equally in KCl-solutions and water. The thickness of amylose films doubled and the increase in mass was 100–200% corresponding the decrease of amylose content from about 87 to 37%, when the conditions changed from normal humidity conditions to water.  相似文献   

9.
1. Measurements of visual purple regeneration in solution have been made by a procedure which minimized distortion of the results by other color changes so that density changes caused by the regenerating substance alone are obtained. 2. Bleaching a visual purple solution with blue and violet light causes a greater subsequent regeneration than does an equivalent bleaching with light which lacks blue and violet. This is due to a photosensitive substance which has a gradually increasing effective absorption toward the shorter wavelengths. It is uncertain whether this substance is a product of visual purple bleaching or is present in the solution before illumination. 3. The regeneration of visual purple measured at 560 mµ is maximal at about pH 6.7 and decreases markedly at more acid and more alkaline pH''s. 4. The absorption spectrum of the regenerating material shows only a concentration change during the course of regeneration, but has a higher absorption at the shorter wavelengths than has visual purple before illumination. 5. Visual purple extractions made at various temperatures show no significant difference in per cent of regeneration. 6. The kinetics of regeneration is usually that of a first order process. Successive regenerations in the same solution have the same velocity constant but form smaller total amounts of regenerated substance. 7. In vivo, the frog retina shows no additional oxygen consumption while visual purple is regenerating.  相似文献   

10.
N-Methylmorpholine-N-oxide (NMMO) is capable of dissolving cellulose without any further addition of chemicals. The solution can be used to produce cellulosic staple fibres by pressing it through spinning jets into an aqueous spinning bath. Because of results from conventional biodegradation tests using non-adapted activated sludge, the solvent is generally considered being persistent. The object of the described work was to show, whether and how activated sludge can be adapted to N-methylmorpholine-N-oxide and whether it is possible to purify NMMO-containing wastewaters in conventional wastewater treatment plants. The experiments showed that the sludge can be adapted within about 15–20 days. Adapted sludge can degrade the substance itself and its most important metabolites to concentrations below their detection levels and retain this ability even during limited periods without solvent being present in the wastewater. The main requirement for a successful adaptation is a high sludge age. The degradation takes place in several steps. First, NMMO is reduced to N-methylmorpholine. The next step is a demethylation of N-methylmorpholine to morpholine. This step is crucial for the adaptation process. Once morpholine has been formed, the adaptation proceeds very quickly until none of the substances in question can be detected any longer. So the next step must be the cleavage of the morpholine ring structure.  相似文献   

11.
In this study, the pulsed field gradient (PFG) nuclear magnetic resonance (NMR) technique was used for the investigation of (1) concentration and compression effects on cation self-diffusion, and (2) restricted diffusion of cations in cartilage. Since physiologically relevant cations like Na+ are difficult to investigate owing to their very short relaxation times, the cations tetramethylammonium (TMA) and tetraethylammonium (TEA) were employed for diffusion studies in samples of explanted cartilage. Results indicated that the diffusion of monovalent cations shows strong similarities to observations already made in studies of the diffusion of water in cartilage: with increasing compression, i.e. decreasing water content, the diffusion coefficient of the cation decreases concomitantly. The diffusion coefficients also showed a decrease with increasing cation concentrations, basically reflecting the corresponding decrease in the water content. Both results could be explained by the well-established model of Mackie and Meares. This, together with the similarity of the diffusion coefficient D in cartilage relative to free solution (about 50%) for both cations, is consistent with the view that the water content and not the charge is the most important determinant of the intratissue diffusivity of monovalent cations. Diffusion studies with increasing observation times showed strong evidence of restricted diffusion, allowing the estimation of the geometry of barriers within cartilage.  相似文献   

12.
Cellulose-layered montmorillonite (MMT) nanocomposites were prepared by precipitation from N-methylmorpholine- N-oxide (NMMO)/water solutions. Two hybrid samples were obtained to investigate the influence of the reaction time on the extent of clay dispersion within the matrix. It was observed that longer contact times are needed to yield nanocomposites with a partially exfoliated morphology. The thermal and thermal oxidative properties of the hybrids, which might be of interest for fire-resistant final products, were investigated by thermogravimetry and chemiluminescence (CL). The nanocomposites exhibited increased degradation temperatures compared to plain cellulose, and the partially exfoliated sample showed the maximum stability. This result was explained in terms of hindered transfer of heat, oxygen, and degraded volatiles due to the homogeneously dispersed clay filler. Kinetic analysis of the decomposition process showed that the degradation of regenerated cellulose and cellulose-based hybrids occurred through a multistep mechanism. Moreover, the presence of nanoclay led to drastic changes in the dependence of the activation energy on the degree of degradation. CL analysis showed that longer permanence in NMMO/water solutions brought about the formation of carbonyl compounds on the polymer backbone. Moreover, MMT increased the rate of dehydration and oxidation of cellulose functional moieties. As a consequence, cellulose was found to be less stable at temperatures lower than 100 degrees C. Conversely, at higher temperatures, the hindering of oxygen transfer prevailed, determining an increase in thermo-oxidative stability.  相似文献   

13.
Using two-dimensional polyacrylamide gel electrophoresis to analyze proteins, we have found subsets of periaxonal and fast-transported axoplasmic proteins that are released in vitro from regenerating sciatic nerve into a surrounding bath. Of the fast-transported proteins that are released from nerve, there is a subset of at least five polypeptides that appears in greater relative abundance in the bath than in the nerve. Some of these released, fast-transported proteins are glycosylated. Several periaxonally synthesized polypeptides are released in significantly greater amounts from regenerating nerve, and of these polypeptides, two are released in greater amounts from nerve only at regions of regeneration or distal to regeneration. These released polypeptides do not represent the most abundant of the locally synthesized proteins. The released, fast-transported and periaxonal proteins may play a role in intercellular signaling or in modulation of the extracellular environment during nerve regeneration.  相似文献   

14.
Attempts were made to enhance cellulose saccharification by cellulase using cellulose dissolution as a pretreatment step. Four cellulose dissolution agents, NaOH/Urea solution, N-methylmorpholine-N-oxide (NMMO), ionic liquid (1-butyl-3-methylimidazolium chloride; [BMIM]Cl) and 85% phosphoric acid were employed to dissolve cotton cellulose. In comparison with conventional cellulose pretreatment processes, the dissolution pretreatments were operated under a milder condition with temperature <130 °C and ambient pressure. The dissolved cellulose was easily regenerated in water. The regenerated celluloses exhibited a significant improvement (about 2.7- to 4.6-fold enhancement) on saccharification rate during 1st h reaction. After 72 h, the saccharification yield ranged from 87% to 96% for the regenerated celluloses while only around 23% could be achieved for the untreated cellulose. Even with high crystallinity, cellulose regenerated from phosphoric acid dissolution achieved the highest saccharification rates and yield probably due to its highest specific surface area and lowest degree of polymerization (DP).  相似文献   

15.
The diffusion of lysozyme chloride in aqueous solution has been studied at 25 degrees C using the Goüy interferometric technique. The concentration dependence of the diffusion coefficient in water has been measured over the concentration range 1.1599-9.1556 gcm-3 and the results suggest a value of D 25, w at infinite dilution of 5.838 x 10(-6) cm2s-1. The variation in diffusion coefficient with ionic strength has also been considered by following the diffusion of 0.45% lysozyme chloride in a series of potassium chloride solutions. The value of D in 0.15 M KCl has been found to be approximately one quarter of that in water alone an the diffusion coefficient has been shown to increase markedly as the KCl concentration is reduced below 0.05 M. Interpretation of these observations involves consideration of solution electrostatic effects.  相似文献   

16.
Ion Diffusion Selectivity in Lecithin-Water Lamellar Phases   总被引:1,自引:0,他引:1       下载免费PDF全文
The diffusion coefficients of Na+, Rb+, and cl- were determined in lecithin-water lamellar phases at 18°C as a function of phase hydration. Diffusion was measured within the phase with no transfer between phase and bulk aqueous medium. The relative diffusion coefficients of anion and cation depended strongly on phase hydration. At low water content, the diffusion coefficient of Cl- was greater than that of Na+ or Rb+ whereas at high water content both cations diffused faster than the anion. The change in relative diffusion coefficient occurred at 0.24 g water/g phase (24% water). The possibility that a change in conformation of the lecithin polar head occurs at a phase water content of 24% is considered. The diffusion coefficients of all three ions decreased at the water content where the relative diffusion rates inverted. Freeze fracture and polarizing microscopy studies were carried out to obtain information on phase structure. The latter study indicated that a change in long-range organization of the phase occured at 24% water. This change accounts for the decrease in the ion diffusion coefficients at this water content. The change in conformation of the choline phosphate group proposed as an explanation for the change in ion selectivity could lead to changes in long-range organization of the phase as a second order-effect.  相似文献   

17.
Environmentally friendly microwave heating process was applied to the dissolution of cellulose in N-methylmorpholine-N-oxide (NMMO) with 105–490 W and 2450 MHz microwave energy until the dissolution completed. Microwave heating caused the decrease in the dissolution time and energy consumption. Cellulose/NMMO/water solutions with different cellulose concentrations were converted to the membrane to measure the crystallinity and degree of polymerization. It was shown that microwave heating with the power of 210 W is an alternative heating system for dissolution of cellulose in NMMO. The membranes obtained with two different heating methods showed the same crystallinity and degree of polymerization. As a result, microwave heating has an advantage in shortening reaction times, compared to conventional heating.  相似文献   

18.
Cyclic GMP (cGMP) is the intracellular messenger that mediates phototransduction in retinal rods. As photoisomerizations of rhodopsin molecules are local events, the longitudinal diffusion of cGMP in the rod outer segment should be a contributing factor to the response of the cell to light. We have employed the truncated rod outer segment preparation from bullfrog (Rana catesbeiana) and tiger salamander (Ambystoma tigrinum) to measure the cGMP diffusion coefficient. In this preparation, the distal portion of a rod outer segment was drawn into a suction pipette for measuring membrane current, and the rest of the cell was then sheared off with a glass probe, allowing bath cGMP to diffuse into the outer segment and activate the cGMP-gated channels on the surface membrane. Addition and removal of bath cGMP were fast enough to produce effectively step changes in cGMP concentration at the open end of the outer segment. When cGMP hydrolysis is inhibited by isobutylmethylxanthine (IBMX), the equation for the diffusion of cGMP inside the truncated rod outer segment has a simple analytical solution, which we have used to analyze the rise and decay kinetics of the cGMP-elicited currents. From these measurements we have obtained a cGMP diffusion coefficient of approximately 70 x 10(-8) cm2 s-1 for bullfrog rods and approximately 60 x 10(-8) cm2 s-1 for tiger salamander rods. These values are six to seven times lower than the expected value in aqueous solution. The estimated diffusion coefficient is the same at high (20-1000 microM) and low (5-10 microM) concentrations of cGMP, suggesting no significant effect from buffering over these concentration ranges.  相似文献   

19.
There are still several problems associated with the spinning of dialyzed silk fibroin solutions. In this work some of these problems have been examined. The calcium nitrate tetrahydrate-methanol system was used to dissolve the silk fibroin. A compositional phase diagram was constructed at various concentrations of the solvent system. Regenerated fibroin powders from undialyzed fibroin solution in several coagulants showed different conformations. Regenerated powders from several coagulants except methanol and ethanol were resoluble in water. Atomic absorption analysis revealed that the calcium cations strongly interact with fibroin molecules in dialyzed fibroin solution, which may interfere with the regeneration of a strong fiber. Kinetic studies to determine the diffusion coefficient of methanol into dialyzed and concentrated fibroin solution were reported. The properties of both original and regenerated fibroin such as solubility in water and thermal behaviors using DSC were compared. Regenerated fibroin fiber was spun by the wet spinning method. An X-ray diffractogram showed that the regeneration process decreased the crystallinity of regenerated fibroin fiber. SEM images of the surface and cross section of the regenerated fibroin fibers were discussed.  相似文献   

20.
Diffusion of water in cat ventricular myocardium   总被引:1,自引:0,他引:1       下载免费PDF全文
The rates of diffusion of tritiated water (THO) and [14C]sucrose across cat right ventricular myocardium were studied at 23 degrees C in an Ussing-type diffusion cell, recording the time-course of increase in concentration of tracer in one chamber over 4--6 h after adding tracers to the other. Sucrose data were fitted with a model for a homogeneous sheet of uneven thickness in which the tissue is considered to be an array of parallel independent pathways (parallel pathway model) of varying length. The volume of the sucrose diffusion space, presumably a wholly extracellular pathway, was 23% of the tissue or 27.4 +/-1.7% (mean +/- SEM; n=11) of the tissue water. The effective intramyocardial sucrose diffusion coefficient, D8, was 1.51 +/- 0.19 X 10(-6)cm2.s-1 (n=11). Combining these data with earlier data, D8 was 22.6 +/- 1.1% (n=95) of the free diffusion coefficient in aqueous solution D degrees 8. The parallel pathway model and a dead-end pore model, which might have accounted for intracellular sequestration of water, gave estimates of DW/D degrees W (observed/free) of 15%. Because hindrance to water diffusion must be less than for sucrose (where D8/D degrees 8=22.6%), this showed the inadequacy of these models to account simultaneously for the diffusional resistance and the tissue water content. The third or cell-matrix model, a heterogeneous system of permeable cells arrayed in the extracellular matrix, allowed logical and geometrically reasonable interpretations of the steady-state data and implied estimates of DW in the cellular and extracellular fluid of approximately 25% of the aqueous diffusion coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号