首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulatory role of HPr, a protein of the phosphotransferase system (PTS), was investigated in Listeria monocytogenes. By constructing mutations in the conserved histidine 15 and serine 46 residues of HPr, we were able to examine how HPr regulates PTS activity. The results indicated that histidine 15 was phosphorylated in a phosphoenolpyruvate (PEP)-dependent manner and was essential for PTS activity. Serine 46 was phosphorylated in an ATP-dependent manner by a membrane-associated kinase. ATP-dependent phosphorylation of serine 46 was significantly enhanced in the presence of fructose 1,6-diphosphate and resulted in a reduction of PTS activity. The presence of a charge at position 15 did not inhibit ATP-dependent phosphorylation of serine 46, a finding unique to gram-positive PEP-dependent PTSs studied to this point. Finally, HPr phosphorylated at serine 46 does not appear to possess self-phosphatase activity, suggesting a specific phosphatase protein may be essential for the recycling of HPr to its active form.  相似文献   

2.
3.
4.
5.
The bacterial pathogen Listeria monocytogenes induces internalization into mammalian cells and uses actin‐based motility to spread within tissues. Listeria accomplishes this intracellular life cycle by exploiting or antagonizing several host GTPases. Internalization into human cells is mediated by the bacterial surface proteins InlA or InlB. These two modes of uptake each require a host actin polymerization pathway comprised of the GTPase Rac1, nucleation promotion factors, and the Arp2/3 complex. In addition to Rac1, InlB‐mediated internalization involves inhibition of the GTPase Arf6 and participation of Dynamin and septin family GTPases. After uptake, Listeria is encased in host phagosomes. The bacterial protein GAPDH inactivates the human GTPase Rab5, thereby delaying phagosomal acquisition of antimicrobial properties. After bacterial‐induced destruction of the phagosome, cytosolic Listeria uses the surface protein ActA to stimulate actin‐based motility. The GTPase Dynamin 2 reduces the density of microtubules that would otherwise limit bacterial movement. Cell‐to‐cell spread results when motile Listeria remodel the host plasma membrane into protrusions that are engulfed by neighbouring cells. The human GTPase Cdc42, its activator Tuba, and its effector N‐WASP form a complex with the potential to restrict Listeria protrusions. Bacteria overcome this restriction through two microbial factors that inhibit Cdc42‐GTP or Tuba/N‐WASP interaction.  相似文献   

6.
7.
Listeria monocytogenes is a food-borne pathogen that is capable of living in harsh environments. It is believed to do this by forming biofilms, which are surface-associated multicellular structures encased in a self-produced matrix. In this paper we show that in L. monocytogenes extracellular DNA (eDNA) may be the only central component of the biofilm matrix and that it is necessary for both initial attachment and early biofilm formation for 41 L. monocytogenes strains that were tested. DNase I treatment resulted in dispersal of biofilms, not only in microtiter tray assays but also in flow cell biofilm assays. However, it was also demonstrated that in a culture without eDNA, neither Listeria genomic DNA nor salmon sperm DNA by itself could restore the capacity to adhere. A search for additional necessary components revealed that peptidoglycan (PG), specifically N-acetylglucosamine (NAG), interacted with the DNA in a manner which restored adhesion. If a short DNA fragment (less than approximately 500 bp long) was added to an eDNA-free culture prior to addition of genomic or salmon sperm DNA, adhesion was prevented, indicating that high-molecular-weight DNA is required for adhesion and that the number of attachment sites on the cell surface can be saturated.The food-borne pathogen Listeria monocytogenes is known to persist in food processing plants (28, 48), and it has been reported that some strains of this species are capable of forming biofilms (2, 16). The mechanisms of biofilm formation have not been elucidated, but this process seems to depend on factors such as temperature and inducing compounds (14). One inducing compound is NaCl (22), but ethanol, isopropanol (14), quorum sensing (36), and an increasing temperature (8, 14, 38) also seem to enhance attachment and biofilm formation, whereas an acidic pH reduces adhesion (17, 38, 43). Furthermore, at 30°C flagellum-based motility seems to be a specific determinant for the initial adhesion (23, 42) and biofilm formation (23); however, it has recently been reported that in time nonflagellated mutants can produce hyperbiofilms (42).Since bacteria adhering to surfaces, both in biofilms and as single cells, exhibit increased resistance to sanitizers and antimicrobial agents (10, 41), examining the essential steps in adhesion and biofilm formation is important in order to develop new and improved sanitation processes.Extracellular DNA (eDNA) is a ubiquitous component of the organic matter pool in soil, marine, and freshwater habitats (26), but it is also found in environments as diverse as tissue cultures and the blood of mammals (11, 25). The presence of eDNA in the matrix of multicellular structures has recently been reported to influence the initial attachment and/or biofilm structure of Pseudomonas (1, 47), Streptococcus (29), and Staphylococcus (21, 33, 34) species.The prevalence of eDNA in nature appears to be associated with both lysis of cells and active secretion. The concentrations of eDNA released can be up to 2 μg g−1 soil (30) and up to 0.5 g (m2)−1 in the top few centimeters of deep-sea sediment (where more than 90% of the DNA is extracellular) (5). In the deep sea eDNA plays a key role in the ecosystem, functioning as a nitrogen and phosphorus reservoir (5). At present, there are different theories concerning both the function and the release of eDNA in multicellular structures. The presence of eDNA could be a result of either cell lysis (33, 34) or vesicle release (47), whereas active transport is a more speculative explanation. The role of eDNA in biofilm structure has not been revealed yet, but various functions, including a role as a structural component, an energy and nutrition source, or a gene pool for horizontal gene transfer (HGT) in naturally competent bacteria, can be envisaged.Until now there have been no studies of L. monocytogenes eDNA as a possible matrix component in relation to adhesion and biofilm development. In this study, we determined for the first time the presence of L. monocytogenes eDNA, its origin, and its role as a matrix component for both single-cell adhesion and biofilm formation using static assays, as well as flow cell systems. Furthermore, we showed that an additional component is necessary for eDNA-mediated adhesion.  相似文献   

8.
9.
In alkaline conditions, Listeria monocytogenes cells develop higher proportions of branched-chain fatty acids (FAs), including more anteiso forms. In acid conditions, the opposite occurs. Reduced growth of pH-sensitive mutants at adverse pH (5.0/9.0) was alleviated by the addition of 2-methylbutyrate (an anteiso-FA precursor), suggesting that anteiso-FAs are important in adaptation to adverse pH. The balance between anteiso- and iso-FAs may be more important than changes in the amounts and/or degrees of saturation of FAs in pH adaptation.  相似文献   

10.
Listeria monocytogenes in Nature   总被引:14,自引:1,他引:13       下载免费PDF全文
Samples from 12 farms were examined during two successive spring and early autumn seasons. L. monocytogenes was isolated from vegetation or soil taken from 11 of the 12 farms and from 6 of the 7 nonagricultural sites. A total of 27 strains were isolated from the 19 sites. The organism was not isolated from any of the autumn collections.  相似文献   

11.
12.
13.
In alkaline conditions, Listeria monocytogenes cells develop higher proportions of branched-chain fatty acids (FAs), including more anteiso forms. In acid conditions, the opposite occurs. Reduced growth of pH-sensitive mutants at adverse pH (5.0/9.0) was alleviated by the addition of 2-methylbutyrate (an anteiso-FA precursor), suggesting that anteiso-FAs are important in adaptation to adverse pH. The balance between anteiso- and iso-FAs may be more important than changes in the amounts and/or degrees of saturation of FAs in pH adaptation.  相似文献   

14.
15.
16.
17.
18.
19.
Physiological conditions that could provide maximal rates of autolysis of Listeria monocytogenes were examined. L. monocytogenes was found to be refractory to most treatments that promote rapid autolysis in other bacteria. Best rates of autolysis were obtained after resuspending the cells in Tris-hydrochloride buffer at 37 degrees C with the pH optimum at 8.0. Autolysis was also efficiently promoted by the surfactant Triton X-100. Antibiotics that interfere with the biosynthesis of the cell wall murein (peptidoglycan) caused death of the cells without autolysis after prolonged incubation in the presence of the drug. Only nisin, which has been shown to bind in vitro to the murein precursors lipid I and lipid II brings about autolysis of L. monocytogenes cells, although with slower kinetics than in the case of Tris-HCl and Triton.  相似文献   

20.
Autolysis of Listeria monocytogenes   总被引:2,自引:1,他引:1       下载免费PDF全文
Autolytic curves of five representative strains of Listeria monocytogenes are described. Of 24 strains so far examined, the majority are unstable in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号