首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dephosphorylated form of phosphorylase kinase was purified 700-fold from rabbit heart extract. The purified enzyme had a pH 6.8/pH 8.2 activity ratio of 0.04-0.08 and was completely dependent on Ca2+ with an apparent Ka value for Ca2+ of 2.59 microM at pH 6.8. At free Ca2+ concentrations between 0.057 microM and 400 microM, 1.5 microM rabbit heart troponin complex had no significant effect on the reaction. However, 1.5 microM rabbit skeletal muscle troponin complex stimulated the reaction 1.5-2-fold with a concomitant decrease in the Ka value for Ca2+ to 1.40 microM. No differences in the effects of these troponin complexes were observed when heart-type and skeletal muscle-type phosphorylase b isoenzymes from either rabbit or pig were used as substrate. Similar effects of heart and skeletal muscle troponin complexes were observed on the Ca2+-dependent reaction of the dephosphorylated form of phosphorylase kinase partially purified from rabbit skeletal muscle. A saturating concentration (1.36 microM) of bovine brain calmodulin stimulated 2-5-fold the Ca2+-dependent reaction of skeletal muscle phosphorylase kinase, but not the reaction of heart phosphorylase kinase. Heart troponin complex (12 microM) suppressed 80-100% the stimulatory effect of skeletal muscle troponin complex on the reactions of phosphorylase kinase isoenzymes, but had no significant effect on the stimulation by calmodulin of skeletal muscle phosphorylase kinase reaction.  相似文献   

2.
A four year-old Japanese boy with hepatomegaly and hypoglycemia has low activity of hepatic phosphorylase. A survey of enzymes involved in the phosphorylase activating system has revealed that liver phosphorylase kinase is deficient although adenosine 3′,5′-monophosphate (cyclic AMP)-dependent protein kinase and total phosphorylase measured in a mixture supplemented by rabbit muscle phosphorylase kinase show normal activities. The hormone receptor as well as adenyl cyclase system appears to be normal since cyclic AMP increases immediately after intravenous injection of glucagon. His muscle phosphorylase activating system is normal.  相似文献   

3.
S J Sulakhe  P V Sulakhe 《Enzyme》1979,24(2):137-140
A simple, rapid and reliable procedure of tissue preparation was devised to estimate glycogen phosphorylase activity in cardiac and skeletal muscle of normal and genetically dystrophic Syrian hamsters of various ages. Total phosphorylase activities of dystrophic skeletal muscle, compared to normal, were reduced. Except for the case of heart from the younger dystrophic animals (45 days old), in which higher phosphorylase activity was noted, hearts from dystrophic hamsters, compared to normal, also showed reduced phosphorylase activities. There were, however, no significances in the ratios of phosphorylase alpha to total phosphorylase between the normal and dystrophic tissues.  相似文献   

4.
Calcium transport into sarcoplasmic reticulum fragments isolated from dog cardiac and mixed skeletal muscle (quadriceps) and from mixed fast (tibialis), pure fast (caudofemoralis) and pure slow (soleus) skeletal muscles from the cat was studied. Cyclic AMP-dependent protein kinase and phosphorylase b kinase stimulated the rate of calcium transport although some variability was observed. A specific protein kinase inhibitor prevented the effect of protein kinase but not of phosphorylase b kinase. The addition of cyclic AMP to the sarcoplasmic reticulum preparations in the absence of protein kinase had only a slight stimulatory effect despite the presence of endogenous protein kinase. Cyclic AMP-dependent protein kinase catalyzed the phosphorylation of several components present in the sarcoplasmic reticulum fragments; a 19000 to 21 000 dalton peak was phosphorylated with high specific activity in sarcoplasmic reticulum preparations isolated from heart and from slow skeletal muscle, but not from fast skeletal muscle. Phosphorylase b kinase phosphorylated a peak of molecular weight 95000 in all of the preparations. Cyclic AMP-dependent protein kinase-stimulated phosphorylation was optimum at pH 6.8; phosphorylase b kinase phosphorylation had a biphasic curve in cardiac and slow skeletal muscle with optima at pH 6.8 and 8.0. The addition of exogenous phosphorylase b kinase or protein kinase increased the endogenous level of phosphorylation 25-100%. All sarcoplasmic reticulum preparations contained varying amounts of adenylate cyclase, phosphorylase b and a (b:a = 30.1), "debrancher" enzyme and glycogen (0.3 mg/mg protein), as well as varying amounts of protein kinase and phosphorylase b kinase which were responsible for a significant endogenous phosphorylation. Thus, the two phosphorylating enzymes stimulated calcium uptake in the sarcoplasmic reticulum of a variety of muscles possessing different physiologic characteristics and different responses to drugs. In addition, the phosphorylation catalyzed by these enzymes occurred at two different protein moieties which make physiologic interpretation of the role of phosphorylation difficult. While the role phosphorylation in these mechanisms is complex, the presence of a glycogenolytic enzyme system may be an important link in this phenomenon. The sarcoplasmic reticulum represents a new substrate for phosphorylase b kinase.  相似文献   

5.
Phosphorylase kinase was partially purified (530-970-fold) from chicken gizzard smooth muscle by a procedure involving ammonium sulfate fractionation, chromatography on 8-(6-aminohexyl)adenosine-5'-phosphate--Sepharose 4B and glycerol density gradient ultracentrifugation. The final and most efficient purification step takes advantage of the relatively high molecular mass of gizzard phosphorylase kinase, which was found to be similar to that of rabbit skeletal muscle enzyme. The gizzard kinase, further purified to near homogeneity by calmodulin-Sepharose 4 B affinity chromatography, showed one main protein band of 61 kDa, upon dodecyl sulfate acrylamide gel electrophoresis. Four minor protein bands of higher molecular mass were also present but no protein stain was seen at the position of the gamma subunit. The gizzard phosphorylase kinase showed a high pH 6.8/8.2 activity ratio of 0.53, it was stimulated by Ca2+, inhibited up to 80% by EGTA and it was activated about 1.9-fold by calmodulin. The km value for ATP was 0.45 mM, while the K0.5 for rabbit muscle phosphorylase b was extremely low, more than 200-fold lower than the Km of nonactivated skeletal muscle phosphorylase kinase for its protein substrate. High concentrations of phosphorylase b were found to be inhibitory. At 10 mg/ml phosphorylase b, the maximum activity of the kinase was inhibited fivefold. No evidence has been obtained indicating autophosphorylation or the existence of active and inactive forms of gizzard phosphorylase kinase. Limited proteolysis of the smooth muscle kinase with trypsin was accompanied by a twofold activation at pH 6.8.  相似文献   

6.
1. The properties of phosphorylase a, phosphorylase b, phosphorylase kinase and phosphorylase phosphatase present in a human haemolysate were investigated. The two forms of phosphorylase have the same affinity for glucose 1-phosphate but greatly differ in Vmax. Phosphorylase b is only partially stimulated by AMP, since, in the presence of the nucleotide, it is about tenfold less active than phosphorylase a. In a fresh human haemolysate phosphorylase is mostly in the b form; it is converted into phosphorylase a by incubation at 20degreesC, and this reaction is stimulated by glycogen and cyclic AMP. Once activated, the enzyme can be inactivated after filtration of the haemolysate on Sephadex G-25. This inactivation is stimulated by caffeine and glucose and inhibited by AMP and fluoride. The phosphorylase kinase present in the haemolysate can also be measured by the rate of activation of added muscle phosphorylase b, on addition of ATP and Mg2+. 2. The activity of phosphorylase kinase was measured in haemolysates obtained from a series of patients who had been classified as suffering from type VI glycogenosis. In nine patients, all boys, an almost complete deficiency of phosphorylase kinase was observed in the haemolysate and, when it could be assayed, in the liver. A residual activity, about 20% of normal, was found in the leucocyte fraction, whereas the enzyme activity was normal in the muscle. These patients suffer from the sex-linked phosphorylase kinase deficiency previously described by others. Two pairs of siblings, each time brother and sister, displayed a partial deficiency of phosphorylase kinase in the haemolysate and leucocytes and an almost complete deficiency in the liver. This is considered as being the autosomal form of phosphorylase kinase deficiency. Other patients were characterized by a low activity of total (a+b) phosphorylase and a normal or high activity of phosphorylase kinase in their haemolysate.  相似文献   

7.
Sarcoplasmic vesicles and β-glycogen particles 30–40 mµ in diameter were isolated from perfused rabbit skeletal muscle by the differential precipitation-centrifugation method. This microsomal fraction was subjected to zonal centrifugation on buffered sucrose gradients, in a B XIV Anderson type rotor, for 15 hr at 45,000 rpm in order to separate the two cytoplasmic organelles. Zonal profiles of absorbance at 280 mµ, proteins, glycogen, and enzymatic activities (phosphorylase b kinase, phosphorylase b, and glycogen synthetase) were performed. Whereas the entire synthetase activity was found combined with the glycogen particles, 39% of phosphorylase and 53% of phosphorylase b kinase activities, present in the microsomal fraction, were recovered in the purified vesicular fraction (d = 1.175). This latter fraction consists of vesicles, derived from the sarcoplasmic reticulum, and of small particles 10–20 mµ in diameter attached to the outer surface of the membranes. These particles disappear after α-amylase treatment. Incubation of the sarcovesicular fraction with 14C-labeled glucose-1-phosphate confirms the localization of a polysaccharide synthesis at the level of the membranes. "Flash activation" of phosphorylase b, i.e. Ca "activation" of phosphorylase kinase followed by a conversion of phosphorylase b into a, was demonstrated in the purified sarcovesicular fraction. Moreover, the active enzymatic sites were detected on the membranes by electron microscopy. The presence of binding sites between the membranes of the sarcoplasmic vesicles and a glycogen-enzyme complex suggests that this association plays a role in the glycogenolysis during muscle contraction.  相似文献   

8.
The activities of glycogen phosphorylases a and b from the body wall musculature of the marine worm Arenicola marina (Annelida, Polychaeta) were determined after various periods of anoxia. Already under normoxic conditions one third of the total activity was produced from the a form. During anoxia the ratio of both forms as well as the total activity did not change. The activity of soluble phosphorylase kinase was comparatively low in this tissue 4.3 +/- 1.2 nmol . min-1 . (g wet wt.)-1; the fast twitching tail muscle of shrimps, e.g., had a 10-fold higher phosphorylase kinase activity, whereas phosphorylase activities in both tissues were about the same 2.3 +/- 0.5 mumol . min-1 . (g wet wt.)-1. Glycogen phosphorylase b was purified from the body wall tissue of the marine worm in one step by 5'-AMP-Sepharose resulting in a single protein band in SDS-PAGE. This preparation was accepted as substrate by the phosphorylase kinase from rabbit muscle but a complete phosphorylation could not be achieved. The molecular mass of native phosphorylase was approximately 216 kDa, that of subunits 95 kDa indicating that the enzyme exists as a dimer. There were no isozymes in this preparation, the RF-value (0.17) of the single band in PAGE ranged between those of the isozymes from mice hearts. The activities of phosphorylases b and a were similarly dependent on pH and temperature but differed drastically in the affinities to phosphate and AMP. In presence of 1 mM AMP the app. Km of phosphorylase a for phosphate was 16 mM, that of phosphorylase b above 100 mM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Phosphorylase b kinase was extensively purified from rat liver. It was located in a form which could be activated 20--30-fold by a preincubation with adenosine 3':5'-monophosphate (cyclic AMP) and ATP-Mg. This activation was time-dependent, and was paralleled by a simultaneous incorporation of 32P from [gamma-32P]ATP into two polypeptides which comigrated in sodium dodecyl sulfate gel electrophoresis with the alpha and beta subunits of rabbit skeletal muscle phosphorylase b kinase. The liver enzyme was eluted from Sepharose 4B and Bio-Gel A-50m columns at the same place as muscle phosphorylase b kinase, which is indicative of a molecular weight of 1.3 x 10(6). After activation, the most purified liver preparation had a specific activity about 10-fold less than the homogeneous muscle enzyme at pH 8.2. The inactive enzyme form had a pronounced pH optimum around pH 6.0, whereas the activated form was mostly active above neutral pH. The activation of the enzyme reduced the Km for its substrate phosphorylase b severalfold. Liver phosphorylase b kinase was shown to be partially dependent on Ca2+ ions for its activity: addition of 0.5 mM [ethylenebis-(oxoethylenenitrilo)]tetraacetic acid (EGTA) to the phosphorylase b kinase assay increased the Km for phosphorylase b about twofold for both the inactive and the activated form of liver phosphorylase b kinase, but affected the V of the inactive species only.  相似文献   

10.
The kinetics of rabbit skeletal muscle phosphorylase kinase interaction with glycogen has been studied. At pH 6.8 the binding of phosphorylase kinase to glycogen proceeds only in the presence of Mg2+, whereas at pH 8.2 formation of the complex occurs even in the absence of Mg2+. On the other hand, the interaction of phosphorylase kinase with glycogen requires Ca2+ at both pH values. The initial rate of the complex formation is proportional to the enzyme and glycogen concentrations, suggesting the formation of the complex with stoichiometry 1:1 at the initial step of phosphorylase kinase binding by glycogen. According to the kinetic and sedimentation data, the substrate of the phosphorylase kinase reaction, glycogen phosphorylase b, favors the binding of phosphorylase kinase with glycogen. We suggest a model for the ordered binding of phosphorylase b and phosphorylase kinase to the glycogen particle that explains the increase in the tightness of phosphorylase kinase binding with glycogen in the presence of phosphorylase b.  相似文献   

11.
Protein phosphatase type 1 and type 2 activities (designated PP-1 and PP-2, respectively) from rabbit reticulocyte lysates have been identified and characterized based on criteria previously established for similar activities in rabbit skeletal muscle and rabbit liver. These include (a) chromatographic separation on DEAE-cellulose, (b) substrate specificity toward glycogen phosphorylase a and the alpha- and beta-subunits of phosphorylase kinase, (c) differential sensitivity to the heat-stable protein phosphatase inhibitors-1 and -2, and (d) sensitivity to MgATP. When total lysate phosphatases are assayed in the presence of 1 mM MnCl2, protein phosphatase type 2 represents 84% of lysate phosphorylase phosphatase activity. However, when phosphatase assays are carried out with MgATP concentrations similar to those in the lysate, type 2 activity is diminished, and the levels of type 1 (41%) and type 2 (59%) phosphatase activities are comparable. A small proportion (6%) of total lysate phosphatase is tightly bound to the ribosomes, where type 1 phosphatase predominates. At least five species of protein phosphatases can be identified in lysates. These constitute two forms of protein phosphatase type 1, one of which (designated FC) is dependent on MgATP and a lysate activator protein FA; both FC and FA have been identified previously in skeletal muscle. Three species of protein phosphatase type 2 have been identified and designated PP-2B, PP-2A1, and PP-2A2 based on criteria recently established for rabbit skeletal muscle and rabbit liver phosphatases, which display similar phosphatase profiles. Lysate protein phosphatases types 1, FC, 2A1, and 2A2 can all act on phosphorylase a and the alpha- (type 2) or beta-(type 1) subunit of phosphorylase kinase. PP-2B, a Ca2+/calmodulin-dependent phosphatase, specifically dephosphorylates the alpha-subunit of phosphorylase kinase, but does not act on phosphorylase alpha. The heat-stable protein phosphatase inhibitor-2 from skeletal muscle completely blocks the activity of the two type 1 phosphatases (PP-1, FC), but has no effect on the three species of type 2 protein phosphatase. A preliminary assay of the two heat-stable phosphatase inhibitors in lysates indicates significant levels of inhibitor-2, but little or no detectable inhibitor-1.  相似文献   

12.
The kinetics of the interaction of rabbit skeletal muscle phosphorylase kinase with glycogen was studied by the turbidimetric method at pH 6.8 and 8.2. Binding of phosphorylase kinase by glycogen occurs only in the presence of Ca2+ and Mg2+. The initial rate of complex formation is proportional to the enzyme and polysaccharide concentration; this suggests the formation of a complex with 1:1 stoichiometry in the initial step of phosphorylase kinase binding by glycogen. The kinetic data suggest that phosphorylase kinase substrate--glycogen phosphorylase b--favors the binding of phosphorylase kinase with glycogen. This conclusion is supported by direct experiments on the influence of phosphorylase b on the interaction of phosphorylase kinase with glycogen using analytical sedimentation analysis. The kinetic curves of the formation of the complex of phosphorylase kinase with glycogen obtained in the presence of ATP are characterized by a lag period. Preincubation of phosphorylase kinase with ATP in the presence of Ca2+ and Mg2+ causes the complete disappearance of the lag period. On changing the pH from 6.8 to 8.2, the rate of phosphorylase kinase binding by glycogen is appreciably increased, and complex formation becomes possible even in the absence of Mg2+. A model of phosphorylase kinase and phosphorylase b adsorption on the surface of the glycogen particle explaining the increase in the strength of phosphorylase kinase binding with glycogen in the presence of phosphorylase b is proposed.  相似文献   

13.
1. Calcium transport into microsomal vesicles of respiratory (tracheal) smooth muscle was characterized. This calcium transport was ATP dependent and stimulated by the presence of the oxalate ion. The magnitude of transport was similar to that reported for microsomes from other types of smooth muscle. 2. Bovine and rabbit, heavy and light microsomes were isolated from respiratory (tracheal) and vascular (aortic) smooth muscle. Preincubation of these vesicles with cyclic AMP and protein kinase did not alter the transport of calcium into the vesicles. There uas no evidence of phosphate incorporation into microsomal membrane proteins. Similar results were obtained if phosphorylase b kinase replaced the combination of cyclic AMP and protein kinase during the preincubation. 3. The phosphoprotein phosphatase activity of cardiac sarcoplasmic reticulum and smooth muscle microsomes was determined. The activity of this enzyme was found to be several-fold less in the cardiac sarcoplasmic reticulum than in various smooth muscle microsome preparations.  相似文献   

14.
Phosphorylase kinase (ATP: phosphorylase-b phosphotransferase, EC 2.7.1.38) from rabbit heart, when submitted to electrophoresis on Pevikon, separates into two discrete peaks A and B. The two peaks have been analyzed using reelectrophoresis, chromatography on DEAE-cellulose, thermal stability, inactivation by EGTA (ethyleneglycol-bis(beta-aminoethyl ether)-N,N'-tetraacetic acid) and reaction with an anti-muscle phosphorylase kinase antiserum. It can be concluded that rabbit heart extracts contain two isozymes of phosphorylase kinase. The more negatively charged isozyme seems to be identical with the muscle enzyme. The other isozyme resembles the liver enzyme but differs from the major fraction of the latter by its charge. It is likely that there exist at least three molecular types of phosphorylase kinase.  相似文献   

15.
1. Incubation of rabbit cardiac-muscle troponin I with phosphorylase b kinase leads to the incorporation of .07-1.2 mol of Pi/mol. 2. The major site of phosphorylation is a serine residue at position 72. 3. Lesser amounts of phosphate are incorporated into threonine-138, threonine-162 and serine 20. 4. Serine-20 is the only site that contains a significant amount of phosphate before incubation with phosphorylase b kinase. 5. Unlike the situation with serine-20, the extent of phosphorylation of serine-72 and threonine-138 in the perfused rabbit heart does not change when the heart is exposed to adrenaline (4 microM).  相似文献   

16.
We have examined the effect of several flavonoids on the activity of phosphorylase kinase from rabbit skeletal muscle. From 14 flavonoids tested, the flavones quercetin and fisetin were found to be efficient inhibitors of nonactivated phosphorylase kinase when assayed at pH 8.2, causing 50% inhibition at a concentration of about 50 microM, while the flavanone hesperetin stimulated phosphorylase kinase activity about 2-fold when tested at 250 microM. The efficiency of quercetin in inhibiting the kinase is higher when the enzyme is stimulated either by ethanol or by alkaline pH. Both casein and troponin phosphorylation by phosphorylase kinase and the autophosphorylation of the kinase were inhibited by quercetin. In addition, quercetin was found to be a competitive inhibitor of ATP for the phosphorylation of phosphorylase b at pH 8.2. These observations suggest that the inhibitory effect of the flavone is directly on the phosphorylase kinase molecule. Trypsin-activated phosphorylase kinase was inhibited by quercetin and stimulated by hesperetin, as for the native enzyme.  相似文献   

17.
Female (I/St X C57BL/St) F1 mice heterozygous at the sex-linked phosphorylase kinase deficiency locus (Phk) have phosphorylase kinase activities averaging 86% that of mice homozygous for the wild-type allele (C57BL/St), i.e., 72% greater than the sum of one-half the activities of the parental strains. Approximately one-half the phosphorylase kinase activity in the (I X C57BL) F1 muscle extracts had a stability at 42.5 C similar to that of the activity in C57BL extracts (t1/2 = 13.2 min); the other half of the activity in the F1 extracts was more labile (t1/2 = 3.9 min). Two species of phosphorylase kinase activity in F1 muscle extracts were also differentiated with an antiserum prepared in guinea pigs against purified rabbit skeletal muscle phosphorylase kinase. This anti-serum cross-reacted with phosphorylase kinase in C57BL muscle extracts but did not cross-react with skeletal muscle extracts of mice hemi- or homozygous for the mutant allele (I/LnJ). The guinea pig antiserum precipitated 52% as much protein from (I X C57BL)F1 muscle extracts compared to those of C57BL. However, an antiserum prepared against purified rabbit skeletal muscle phosphorylase kinase in the goat cross-reacted with the mutant phosphorylase kinase. The ratio C57BL:(I X C57BL)F1:I of immunoprecipitated protein from skeletal muscle extracts with this antiserum was 1:0.97:1.08. Polyacrylamide gel electrophoresis of the immunoprecipitates in the presence of 0.1% sodium dodecylsulfate showed three subunits for mouse phosphorylase kinase with molecular weights of 139,000, 118,000, and 41,000; these values are similar to the ones obtained with purified rabbit skeletal muscle phosphorylase kinase. These three subunits were also observed in immunoprecipitates from I/LnJ muscle extracts. These results offer substantial evidence (1) that in skeletal muscle extracts of mice heterozygous at the Phk locus the mutant phosphorylase kinase is active, (2) that the gene product of the mutant allele is an enzyme with an abnormal structure, and (3) that the phosphorylase kinase deficiency in I/LnJ skeletal muscle extracts is not the result of the absence of phosphorylase kinase or one of its subunits.  相似文献   

18.
Changes in cyclic AMP, protein kinase, phosphorylase kinase, and phosphorylase levels were examined during development in the rat. In liver, cyclic AMP increased prenatally and for the first 10 postnatal days; protein kinase levels (both cyclic AMP-dependent and independent activities) were high prenatally and declined during the first 10 postnatal days. Both phosphorylase and phosphorylase kinase in liver increased rapidly prenatally and more slowly postnatally. In heart and skeletal muscle cyclic AMP increased prenatally and for the first 10 days after birth, then declined. Protein kinase in both these tissues was highest prenatally and declined perinatally. In heart and skeletal muscle phosphorylase and phosphorylase kinase activities were extremely low prenatally although both enzymes were largely in their activated forms. Postnatally the nonactive form of both enzymes increased greatly throughout 30 postnatal days. In all three tissues, particularly heart and skeletal muscle, these changes could not be correlated with levels of tissue glycogen.  相似文献   

19.
A new method for purification and crystallization of pig skeletal muscle phosphorylase b is presented. The ease of crystallization in the presence of 1 mM AMP and 1 mM spermine has permitted the study of some physical, chemical and enzymatic properties of the enzyme. The crystalline pig phosphorylase b gave a single band on SDS polyacrylamide gels of the same mobility as rabbit muscle phosphorylase subunit. Ultracentrifugation experiments showed that pig phosphorylase b exists in a dimeric form (S20,w = 8.4 S). No association occurred at 20 degrees C under conditions where rabbit phosphorylase b can be tetramerized; pig phosphorylase b was only 30% associated from dimer to tetramer at 13 degrees C. Pig phosphorylase b is highly stable to freezing and its specific activity did not change appreciably upon prolonged storage in the cold. Pig and rabbit phosphorylases b have comparable Vmax and Km values towards the substrate and the activator. However, there is an essential difference between the two enzymes in that pig phosphorylase b is not significantly inhibited by glucose 6-phosphate, which is a powerful inhibitor of the rabbit enzyme. Two different crystal forms of pig phosphorylase b were obtained which are small for X-ray diffraction studies. Diffusion of spermine into tetragonal crystals of rabbit phosphorylase b resulted in a difference Fourier synthesis at 3 A resolution that showed no strong indication of specific binding.  相似文献   

20.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号