首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Bacteria assemble complex structures by targeting proteins to specific subcellular locations. The protein coat that encases Bacillus subtilis spores is an example of a structure that requires coordinated targeting and assembly of more than 24 polypeptides. The earliest stages of coat assembly require the action of three morphogenetic proteins: SpoIVA, CotE, and SpoVID. In the first steps, a basement layer of SpoIVA forms around the surface of the forespore, guiding the subsequent positioning of a ring of CotE protein about 75 nm from the forespore surface. SpoVID localizes near the forespore membrane where it functions to maintain the integrity of the CotE ring and to anchor the nascent coat to the underlying spore structures. However, it is not known which spore coat proteins interact directly with SpoVID. In this study we examined the interaction between SpoVID and another spore coat protein, SafA, in vivo using the yeast two-hybrid system and in vitro. We found evidence that SpoVID and SafA directly interact and that SafA interacts with itself. Immunofluorescence microscopy showed that SafA localized around the forespore early during coat assembly and that this localization of SafA was dependent on SpoVID. Moreover, targeting of SafA to the forespore was also dependent on SpoIVA, as was targeting of SpoVID to the forespore. We suggest that the localization of SafA to the spore coat requires direct interaction with SpoVID.  相似文献   

3.
When challenged by stresses such as starvation, the soil bacterium Bacillus subtilis produces an endospore surrounded by a proteinaceous coat composed of >70 proteins that are organized into three main layers: an amorphous undercoat, lightly staining lamellar inner coat and electron-dense outer coat. This coat protects the spore against a variety of chemicals or lysozyme. Mutual interactions of the coat's building blocks are responsible for the formation of this structurally complex and extraordinarily resistant shell. However, the assembly process of spore coat proteins is still poorly understood. In the present work, the main focus is on the three spore coat morphogenetic proteins: SpoIVA, SpoVID and SafA. Direct interaction between SpoIVA and SpoVID proteins was observed using a yeast two-hybrid assay and verified by coexpression experiment followed by Western blot analysis. Coexpression experiments also confirmed previous findings that SpoVID and SafA directly interact, and revealed a novel interaction between SpoIVA and SafA. Moreover, gel filtration analysis revealed that both SpoIVA and SpoVID proteins form large oligomers.  相似文献   

4.
Spore formation in Bacillus subtilis involves the formation of a thick, proteinaceous shell or coat that is assembled around a specialized membrane known as the outer forespore membrane. Here we present evidence that the assembling coat is tethered to the outer forespore membrane by a 26-amino-acid peptide called SpoVM, which is believed to form an amphipathic helix. We show that proper localization of SpoVM is dependent on SpolVA, a morphogenetic protein that forms the basement layer of the spore coat, and conversely, that proper localization of SpoIVA is dependent on SpoVM. Genetic, biochemical and cytological evidence indicates that this mutual dependence is mediated in part by contact between an amino acid side-chain located near the extreme C-terminus of SpoIVA and an amino acid side-chain on the hydrophilic face of the SpoVM helix. Evidence is also presented that SpoVM adheres to the outer forespore membrane via hydrophobic, amino acid side-chains on the hydrophobic face of the helix. The results suggest that the SpoVM helix is oriented parallel to the membrane with the hydrophobic face buried in the lipid bilayer.  相似文献   

5.
6.
The capability of Bacillus subtilis spores to withstand extreme environmental conditions is thought to be conferred especially by their outermost proteinaceous protective layer, called the spore coat. Of the over 70 proteins that form the spore coat, only a small subset of them affect its morphogenesis, they are referred to as morphogenetic proteins. In this study we investigated the interaction between two spore coat morphogenetic proteins SpoVID and CotE. SpoVID is involved in the process of spore surface encirclement by individual coat proteins, these include CotE, which controls the assembly of the outer coat layer. Both proteins were proposed to be recruited to a common protein scaffold, but their direct association has not been previously shown. Here we studied the interactions between CotE and SpoVID in vitro for the first time by using molecule recognition force spectroscopy, which allows the detection of piconewton forces between conjugated biological pairs and also facilitates the investigation of dynamic processes. The most probable CotE–CotE unbinding force was 49.4 ± 0.1 pN at a loading rate of 3.16 × 103 pN/s while that of SpoVID–CotE was 26.5 ± 0.6 pN at a loading rate of 7.8 × 102 pN/s. We further analyzed the interactions with the bacterial two hybrid system and pull-down experiments, which also indicate that SpoVID interacts directly with CotE. In combination with the previously identified direct contacts among SpoIVA, SpoVID and SafA, our data imply that the physical association of key morphogenetic proteins forms a basic skeleton where other coat proteins could be attached.  相似文献   

7.
Morphogenetic proteins such as SpoVID and SafA govern assembly of the Bacillus subtilis endospore coat by guiding the various protein structural components to the surface of the developing spore. Previously, a screen for peptides able to interact with SpoVID led to the identification of a PYYH motif present in the C-terminal half of the SafA protein and to the subsequent demonstration that SpoVID and SafA directly interact. spoVID and safA spores show deficiencies in coat assembly and are lysozyme susceptible. Both proteins, orthologs of which are found in all Bacillus species, have LysM domains for peptidoglycan binding and localize to the cortex-coat interface. Here, we show that the interaction between SafA and SpoVID involves the PYYH motif (region B) but also a 13-amino-acid region (region A) just downstream of the N-terminal LysM domain of SafA. We show that deletion of region B does not block the interaction of SafA with SpoVID, nor does it bring about spore susceptibility to lysozyme. Nevertheless, it appears to reduce the interaction and affects the complex. In contrast, lesions in region A impaired the interaction of SafA with SpoVID in vitro and, while not affecting the accumulation of SafA in vivo, interfered with the localization of SafA around the developing spore, causing aberrant assembly of the coat and lysozyme sensitivity. A peptide corresponding to region A interacts with SpoVID, suggesting that residues within this region directly contact SpoVID. Since region A is highly conserved among SafA orthologs, this motif may be an important determinant of coat assembly in the group of Bacillus spore formers.  相似文献   

8.
During endospore formation in Bacillus subtilis, over two dozen polypeptides are assembled into a multilayered structure known as the spore coat, which protects the cortex peptidoglycan (PG) and permits efficient germination. In the initial stages of coat assembly a protein known as CotE forms a ring around the forespore. A second morphogenetic protein, SpoVID, is required for maintenance of the CotE ring during the later stages, when most of proteins are assembled into the coat. Here, we report on a protein that appears to associate with SpoVID during the early stage of coat assembly. This protein, which we call SafA for SpoVID-associated factor A, is encoded by a locus previously known as yrbA. We confirmed the results of a previous study that showed safA mutant spores have defective coats which are missing several proteins. We have extended these studies with the finding that SafA and SpoVID were coimmunoprecipitated by anti-SafA or anti-SpoVID antiserum from whole-cell extracts 3 and 4 h after the onset of sporulation. Therefore, SafA may associate with SpoVID during the early stage of coat assembly. We used immunogold electron microscopy to localize SafA and found it in the cortex, near the interface with the coat in mature spores. SafA appears to have a modular design. The C-terminal region of SafA is similar to those of several inner spore coat proteins. The N-terminal region contains a sequence that is conserved among proteins that associate with the cell wall. This motif in the N-terminal region may target SafA to the PG-containing regions of the developing spore.  相似文献   

9.
Bacterial spores are protected from the environment by a proteinaceous coat and a layer of specialized peptidoglycan called the cortex. In Bacillus subtilis, the attachment of the coat to the spore surface and the synthesis of the cortex both depend on the spore protein SpoIVA. To identify functionally important amino acids of SpoIVA, we generated and characterized strains bearing random point mutations of spoIVA that result in defects in coat and cortex formation. One mutant resembles the null mutant, as sporulating cells of this strain lack the cortex and the coat forms a swirl in the surrounding cytoplasm instead of a shell around the spore. We identified a second class of six mutants with a partial defect in spore assembly. In sporulating cells of these strains, we frequently observed swirls of mislocalized coat in addition to a coat surrounding the spore, in the same cell. Using immunofluorescence microscopy, we found that in two of these mutants, SpoIVA fails to localize to the spore, whereas in the remaining strains, localization is largely normal. These mutations identify amino acids involved in targeting of SpoIVA to the spore and in attachment of the coat. We also isolated a large set of mutants producing spores that are unable to maintain the dehydrated state. Analysis of one mutant in this class suggests that spores of this strain accumulate reduced levels of peptidoglycan with an altered structure.  相似文献   

10.
11.
The synthesis and proteolysis of the spore coat proteins, SpoIVA and YrbA, of Bacillus subtilis were analyzed using antisera. Almost no intact full-length proteins of either type were extracted from wild-type spores, while yabG mutant spores contained intact SpoIVA and YrbA proteins. We purified recombinant YrbA and YabG proteins from Escherichia coli transformants and found that YrbA was cleaved to the smaller moiety in the presence of YabG in vitro. These observations indicate that YabG is a protease involved in the proteolysis and maturation of SpoIVA and YrbA proteins, conserved with the cortex and/or coat assembly by B. subtilis.  相似文献   

12.
Clostridium difficile is a major nosocomial pathogen whose infections are difficult to treat because of their frequent recurrence. The spores of C. difficile are responsible for these clinical features, as they resist common disinfectants and antibiotic treatment. Although spores are the major transmissive form of C. difficile, little is known about their composition or morphogenesis. Spore morphogenesis has been well characterized for Bacillus sp., but Bacillus sp. spore coat proteins are poorly conserved in Clostridium sp. Of the known spore morphogenetic proteins in Bacillus subtilis, SpoIVA is one of the mostly highly conserved in the Bacilli and the Clostridia. Using genetic analyses, we demonstrate that SpoIVA is required for proper spore morphogenesis in C. difficile. In particular, a spoIVA mutant exhibits defects in spore coat localization but not cortex formation. Our study also identifies SipL, a previously uncharacterized protein found in proteomic studies of C. difficile spores, as another critical spore morphogenetic protein, since a sipL mutant phenocopies a spoIVA mutant. Biochemical analyses and mutational analyses indicate that SpoIVA and SipL directly interact. This interaction depends on the Walker A ATP binding motif of SpoIVA and the LysM domain of SipL. Collectively, these results provide the first insights into spore morphogenesis in C. difficile.  相似文献   

13.
14.
15.
Morphogenesis of the Bacillus anthracis spore   总被引:1,自引:0,他引:1       下载免费PDF全文
Bacillus spp. and Clostridium spp. form a specialized cell type, called a spore, during a multistep differentiation process that is initiated in response to starvation. Spores are protected by a morphologically complex protein coat. The Bacillus anthracis coat is of particular interest because the spore is the infective particle of anthrax. We determined the roles of several B. anthracis orthologues of Bacillus subtilis coat protein genes in spore assembly and virulence. One of these, cotE, has a striking function in B. anthracis: it guides the assembly of the exosporium, an outer structure encasing B. anthracis but not B. subtilis spores. However, CotE has only a modest role in coat protein assembly, in contrast to the B. subtilis orthologue. cotE mutant spores are fully virulent in animal models, indicating that the exosporium is dispensable for infection, at least in the context of a cotE mutation. This has implications for both the pathophysiology of the disease and next-generation therapeutics. CotH, which directs the assembly of an important subset of coat proteins in B. subtilis, also directs coat protein deposition in B. anthracis. Additionally, however, in B. anthracis, CotH effects germination; in its absence, more spores germinate than in the wild type. We also found that SpoIVA has a critical role in directing the assembly of the coat and exosporium to an area around the forespore. This function is very similar to that of the B. subtilis orthologue, which directs the assembly of the coat to the forespore. These results show that while B. anthracis and B. subtilis rely on a core of conserved morphogenetic proteins to guide coat formation, these proteins may also be important for species-specific differences in coat morphology. We further hypothesize that variations in conserved morphogenetic coat proteins may play roles in taxonomic variation among species.  相似文献   

16.
Clostridium taeniosporum spores have about 12 large, flat, ribbon-like appendages attached through a common trunk at one spore pole to a previously unknown surface layer outside the coat that is proposed to be called the 'encasement'. Appendages are about 4.5 microm long, 0.5 microm wide and 30 nm thick and taper at the attachment end into a semicircle that is twisted relative to the flat ribbon. Individual fibrils, about 45 nm in length with spherical heads and long thin tails, form a hair-like nap, visible along the appendage edge. Four appendage proteins have been detected: a paralogous pair of 29 kDa (designated P29a and P29b), a glycoprotein of about 37 kDa (designated GP85) and an orthologue of the Bacillus spore morphogenetic protein SpoVM. The P29 proteins consist of duplicated regions and each region includes a domain of unknown function 11. The GP85 glycoprotein contains a collagen-like region. The genes for P29a and b, GP85 and possibly related proteins are closely linked on two small chromosome fragments. Putative sigma(K)-dependent promoters upstream of the P29a and b genes indicate that they likely are expressed late in the mother cell, consistent with their deposition into the layer external to the coat.  相似文献   

17.
18.
Surface properties, such as adhesion and hydrophobicity, constrain dispersal of bacterial spores in the environment. In Bacillus subtilis, these properties are influenced by the outermost layer of the spore, the crust. Previous work has shown that two clusters, cotVWXYZ and cgeAB, encode the protein components of the crust. Here, we characterize the respective roles of these genes in surface properties using Bacterial Adherence to Hydrocarbons assays, negative staining of polysaccharides by India ink and Transmission Electron Microscopy. We showed that inactivation of crust genes caused increases in spore relative hydrophobicity, disrupted the spore polysaccharide layer, and impaired crust structure and attachment to the rest of the coat. We also found that cotO, previously identified for its role in outer coat formation, is necessary for proper encasement of the spore by the crust. In parallel, we conducted fluorescence microscopy experiments to determine the full network of genetic dependencies for subcellular localization of crust proteins. We determined that CotZ is required for the localization of most crust proteins, while CgeA is at the bottom of the genetic interaction hierarchy.  相似文献   

19.
The small 3 kDa SpoVM protein is essential for development of the spore in Bacillus subtilis. Genetic and biochemical experiments have shown that the function of SpoVM is to inhibit the proteolytic activity of FtsH during sporulation. We have used a combination of genetic and biophysical techniques to characterise the role of this small polypeptide. SpoVM was found to be widespread in Bacillus as well as in two Clostridia species, suggesting that SpoVM provides a common mechanism for inactivating the FtsH protease during spore differentiation. Using site-specific mutagenesis, we have identified C-terminal residues of SpoVM essential for biological activity. Analysis of SpoVM’s structure showed that it is able to assume an α-helical conformation in the presence of a lipid interface which may be important in interacting with FtsH.  相似文献   

20.
Recent in vivo experiments suggest that in the bacterium, Bacillus subtilis, the cue for the localization of the small sporulation protein, SpoVM, an essential factor in spore coat formation, is curvature of the bacterial plasma membrane. In vitro measurements of SpoVM adsorption to vesicles of varying sizes also find high sensitivity of adsorption to vesicle radius. This curvature-dependent adsorption is puzzling given the orders of magnitude difference in length scale between an individual protein and the radius of curvature of the cell or vesicle, suggesting protein clustering on the membrane. Here we develop a minimal model to study the relationship between curvature-dependent membrane adsorption and clustering of SpoVM. Based on our analysis, we hypothesize that the radius dependence of SpoVM adsorption observed in vitro is governed primarily by membrane tension, while for in-vivo localization of SpoVM, we propose a highly sensitive mechanism for curvature sensing based on the formation of macroscopic protein clusters on the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号