首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glycine uptake was investigated in cultured Y79 retinoblastoma cells containing different degrees of phospholipid fatty acid unsaturation. The modifications were produced by growing the retinoblastoma cells in medium supplemented with various unsaturated fatty acids. Glycine was taken up by the retinoblastoma cells through two kinetically distinguishable process. The high-affinity system is totally dependent upon extracellular Na+ and partially dependent upon Ca2+. Of the glycine taken up by retinoblastoma cells, 85-90% remains as free intracellular glycine and less than 30% is incorporated into cellular protein. When the cells are grown in a medium containing 10% fetal bovine serum as the only source of fatty acids, the phospholipids contained 23% polyunsaturated fatty acids. Under these conditions the high-affinity system has a K'm of 34.2 +/- 3.7 micrometers and a V'max of 91.2 +/- 16.2 pmol min-1 mg protein -1. The low-affinity system has a K'm of 2.7 +/- 0.4 mM and a V'max of 4.1 +/- 0.5 nmol min-1 mg protein-1. When the polyunsaturated fatty acid content of the phospholipids was increased by supplementing the medium with linolenic or docosahexaenoic acids (n-3 polyunsaturates) or linoleic or arachidonic acids (n-6 polyunsaturates), the K'm and V'max of the high-affinity glycine uptake system were increased three- to fourfold. By contrast, supplementing the medium with oleic acid, and n-9 monounsaturate, did not significantly alter the K'm or V'max for glycine uptake. The results with this model system suggest that one of the effects of the high polyunsaturated fatty acid content normally present in neural cell membranes may be a modulation of the high-affinity transport system so that it functions more efficiently in regulating glycine uptake.  相似文献   

2.
Abstract: The release of preloaded [3H]glycine and [3H]taurine in response to a depolarising stimulus (12.5-50 m M KCl) has been studied in the superfused rat retina. High external potassium concentration immediately increased the spontaneous efflux of [3H]glycine, the effect of 50 m M K+ apparently being abolished by omitting calcium from the superfusing medium. In contrast, although high potassium concentrations increased the spontaneous emux of [3H]taurine from the superfused rat retina, this release was not evident until the depolarising stimulus was removed from the superfusing medium. The magnitude of this "late" release of [3H]taurine was dependent on external K+ concentrations, and appeared immediately after cessation of the stimulus irrespective of whether it was applied for 4, 8, or 12 min. Potassium (50 m M )-induced release of taurine appeared partially calcium-dependent, being significantly reduced (p < 0.01) but not abolished by replacing calcium with 1 mM EDTA in the superfusate. High-affinity uptake systems for both [3H]glycine and [3H]taurine were demonstrated in the rat retina in vitro ( K m values, 1.67 μ M and 2.97 μ M ; Vmax values, 19.3 and 23.1 nmol/g wet weight tissue/h, respectively). The results are discussed with respect to the possible neuro-transmitter roles of both amino acids in the rat retina.  相似文献   

3.
Abstract: Choline uptake in Y79 human retinoblastoma cells occurs through two kinetically distinguishable processes. The high-affinity system shows little sodium or energy dependence, and it does not appear to be linked to acetyl CoA: choline O -acetyltransferase. When the cells are grown in a culture medium containing 10% fetal bovine serum, the high-affinity system has a K' m= 2.16 ± 0.13 μ m and V' max= 27.0 ± 2.9 pmol min−1 mg−1, whereas the low-affinity system has K' m= 20.4 ± 1.3 μ m and V' max= 402 ± 49 pmol min−1 mg−1. Under these conditions, the polyunsaturated fatty acid content of the cell membranes is relatively low. When the polyunsaturated fatty acid content of the microsomal membrane fraction was increased by supplementing the culture medium with linolenic or docosahexaenoic acids (n-3 polyunsaturated fatty acids) or arachidonic acid (n-6 polyunsaturated fatty acid), the K' m of the high-affinity choline transport system was reduced by 40–60%. The V' max also was reduced by 20–40%. Supplementation with oleic acid, the most prevalent monounsaturated fatty acid, did not affect either kinetic parameter. The results suggest that one functional effect of the high unsaturated fatty acid content of neural cell membranes is to facilitate the capacity of the high-affinity choline uptake system to transport low concentrations of choline. This effect appears to be specific for polyunsaturated fatty acids but not for a single type, for it is produced by members of both the n-3 and n-6 classes of polyunsaturated fatty acids.  相似文献   

4.
Saransaari P  Oja SS 《Amino acids》1999,17(4):323-334
Summary The release of taurine from cultured cerebellar granule neurons was studied in different cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress and in the presence of free radicals. The effects of both ionotropic and metabotropic glutamate receptor agonists on the release were likewise investigated. The release of [3H]taurine from the glutamatergic granule cells was increased by K+ (50mM) and veratridine (0.1 mM), the effect of veratridine being the greater. Hypoxia and ischemia produced an initial increase in release compared to normoxia but resulted in a diminished response to K. Hypoglycemia, oxidative stress and free radicals enhanced taurine release, and subsequent K treatment exhibited a correspondingly greater stimulation. A common feature of taurine release in all the bove conditions was a slow response to the stimulus evoked by K+ and particularly to that evoked by veratridine. All ionotropic glutamate receptor agonists potentiated taurine release, but only the action of kainate seemed to be receptor-mediated. Metabotropic receptor agonists of group I slightly stimulated the release. The prolonged taurine release seen in both normoxia and cell-damaging conditions may be of importance in maintaining homeostasis in the cerebellum and reducing excitability for a longer period than other neuroprotective mechanisms.Abbreviations AIDA (RS)-1-aminoindan-1,5-dicarboxylate - AMPA 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate - CNOX 6-cyano-7-nitroquinoxaline-2,3-dione - DCG IV (2S,2R,3R)-2-(2,3-dicarboxycyclo-propyl)glycine - DHPG (S)-3,5-dihydroxyphenylglycine - EGLU (2S)-2-ethylglutamate - L-AP3 L(+)-2-amino-3-phosphonopropionate - L-AP4 L(+)-2-amino-4-phosphonobutyrate - L-SOP o-phospho-l-serine - NBOX 6-nitro-7-sulphamoyl[f]quinoxaline-2,3-dione - NMDA n-methyl-d-aspartate - trans-ACPD (1S,3S)-1-aminocyclopentane-1,3-dicarboxylate  相似文献   

5.
Hydroxyindole-O-methyltransferase (HIOMT), the enzyme in the final step of melatonin synthesis, is present in the Y-79 human retinoblastoma cell line. Using electroblot immunolabellings, a single band corresponding to HIOMT was observed. Immunofluorescence, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and quantification of enzyme activity all revealed dramatic increases in HIOMT in cells attached to substrate compared to cells in suspension culture.  相似文献   

6.
gamma-Synuclein is a small cytoplasmic protein implicated in neurodegenerative diseases and cancer. However, the mechanism of its involvement in diseases is not clear. We studied the role of gamma-synuclein in the regulation of matrix metalloproteinases in retinoblastoma cell culture. Matrix metalloproteinases play important roles in the remodeling of extracellular matrix implicated in tumor progression and in the neurodegenerative diseases. Western blot and zymography data demonstrated a moderate elevation of matrix metalloproteinases-2 and significant upregulation of matrix metalloproteinases-9 in stable cell lines overexpressing gamma-synuclein. No effect of gamma-synuclein overexpression on matrix metalloproteinases-1 level or activity was found. Chloramphenicol-acetyltransferase assay demonstrated that overexpression of gamma-synuclein increases the efficiency of the matrix metalloproteinases-9 promoter. This increment of promoter activity may be mediated by the AP-1 binding site(s), since point mutations in one of these sites (Pr18 or Pr19) and elimination of the distal AP-1 site (Pr14) reduced the increment of promoter activity.  相似文献   

7.
Evidence is presented for the passive release of monoclonal antibodies (MCAB) from hybridoma cells grown in either batch or continuous-flow culture. This release is promoted at room temperature. Passively released MCAB is indistinguishable from that released by actively growing cells, as judged by SDS-polyacrylamide gel electrophoresis. The significance of these observations in relation to the continuous culture of hybridoma cells is discussed.Maximum MCAB content of TB/C3 hybridoma cells is about 55pg per cell, any additional MCAB produced is secreted.Abbreviations MCAB monoclonal antibodies - PBS phosphate buffered saline - RT room temperature - SDS sodium dodecyl sulphate  相似文献   

8.
9.
Cyclic AMP-Dependent Melatonin Production in Y79 Human Retinoblastoma Cells   总被引:4,自引:4,他引:0  
Abstract: Melatonin is rhythmically synthesized in some vertebrate retinas and has been implicated in the regulation of key rhythmic events in the photoreceptor-pigment epithelial complex. In human retina, melatonin is present; however, no information exists on the cellular regulation of this hormone. We report here that the established human retinoblastoma cell line Y79 synthesizes and releases melatonin. Treatments that elevate cyclic AMP (cAMP) levels (forskolin, 8-Br-cAMP, and the phosphodiesterase inhibitor 3-isobutyl-1 -meth-ylxanthine) all stimulate melatonin release from static cultures of Y79 cells. Other 8-bromo nucleotide analogues (cyclic GMP, ATP, and AMP) are not effective. These results suggest that Y79 human retinoblastoma cells require a cAMP-dependent mechanism for melatonin biosynthesis similar to that described previously in other vertebrates. This is the first demonstration of melatonin release from a cultured human cell line. These results support the idea that human retinal cells share homologies with pineal cells, as suggested by the condition trilateral retinoblastoma.  相似文献   

10.
Two-dimensional tryptic peptide analysis showed that pp60c-src from the human retinoblastoma cell line Y79 gave a unique phosphopeptide, which was not found in human fibroblast RT59. There was no significant difference in the extent of phosphorylation of other peptides between the two cell lines. Only phosphoserine was detected in this phosphopeptide. Both the fibroblast form and the neuronal form of pp60c-src from Y79 cells had this unique peptide phosphorylated to the same extent. The phosphorylation site was inferred to be serine 97 by comparing the tryptic map and the arginyl-endopeptidase map. The specific protein kinase activity of pp60c-src from Y79 cells was nearly equal to that of RT59 pp60c-src. This unique serine phosphorylation in the fibroblast form was discussed in relation to the oncogenic change of Y79 cells.  相似文献   

11.
C2-ceramide, a cell-permeable analogue of ceramide, induced significant, dose- and time-dependent death in human retinoblastoma Y79 cells. Dying cells strongly displayed the morphology of apoptosis as characterized by microscopic evidence of cell shrinkage, membrane blebbing, nuclear and chromatin condensation and degeneration of the nucleus into membrane-bound apoptotic bodies. Upon induction of apoptosis Y79 cells evidence early phosphatidylserine externalization, as shown by annexin V-FITC. Apoptosis was also assessed by monitoring changes in cell granularity by staining with the combined fluorescent dyes acridine orange and ethidium bromide. C2-ceramide induced these morphological changes without a concomitant production of oligonucleosomal fragments responsible for the DNA ladder and without changes in p53 protein level. Apoptosis was accompanied by accumulation of a modified Bcl-2 protein with a slower-mobility form, and by proteolytic cleavage of PARP. The effect seemed to be specific for C2-ceramide, as C2-dihydroceramide, or other amphiphilic lipid analogues, or products of ceramide hydrolysis were ineffective. The effect also depended on mRNA and protein synthesis as it was markedly inhibited by actinomycin D and cycloheximide. Sphingomyelinase and interleukin-l, which are known to activate the sphingomyelin turnover leading to ceramide generation, also induced apoptosis mimicking the effects of ceramide. These findings propose ceramide as an activator of the suicidal program in Y79 cells.  相似文献   

12.
The effect of physiological concentrations of ethanolamine on choline uptake and incorporation into phosphatidylcholine was investigated in human Y79 retinoblastoma cells, a multipotential, undifferentiated retinal cell line that has retained many neural characteristics. These cells have a high-affinity uptake system for choline, and the majority of the choline taken up was incorporated into phosphatidylcholine via the CDP-choline pathway. The presence of extracellular ethanolamine significantly decreased high-affinity choline uptake and, subsequently, the amount of choline incorporated into phosphatidylcholine. When 100 mumol/L ethanolamine was added, there was a decrease of about 8% in the phosphatidylcholine content. Ethanolamine had no effect on choline incorporation into phosphatidylcholine, however, once choline was taken up by the cell. The K'M and V'max for high-affinity choline uptake was increased from 0.93 to 9.74 microM and 19.60 to 79.25 pmol/min per mg protein, respectively, by the presence of 25 mumol/L ethanolamine. In contrast, 25 mumol/L choline had no effect on the kinetic parameters of high-affinity ethanolamine uptake. Therefore, the reduction in high-affinity choline transport by ethanolamine apparently is not simply due to competitive inhibition. 2,2-Dimethylethanolamine and 2-methylethanolamine both reduced choline uptake to a greater extent than ethanolamine. However, because these compounds exist at much lower concentrations than ethanolamine, they probably have little physiological influence. These results suggest that changes in ethanolamine concentration within the physiologic range can regulate the synthesis and content of phosphatidylcholine in a neural cell by influencing the uptake of choline.  相似文献   

13.
Phospholipid synthesis was investigated in human Y79 retinoblastoma cells, a cultured cell line of retinal origin that retains many neural characteristics. Ethanolamine is taken up by Y79 cells through a high-affinity transport system and is utilized to synthesize ethanolamine and choline phosphoglycerides. High-affinity ethanolamine uptake has a K'm of 40.6 microM and a V'max of 1.06 nmol/min/mg protein, and the process is Na+ dependent. Choline is the only compound tested that reduced ethanolamine uptake, and very high choline concentrations were required to produce this effect. The cells incorporate ethanolamine into phosphatidylethanolamine and ethanolamine plasmalogen at equivalent rates, and the rates of catabolism of these phospholipids are similar. Only a small quantity of ethanolamine is incorporated into phosphatidylcholine, but the amount is not reduced by the addition of choline. Serine is incorporated into phosphatidylserine, which then is converted to phosphatidylethanolamine. Ethanolamine reduces but does not abolish this conversion. Unlike ethanolamine, only a small amount of serine is incorporated into ethanolamine plasmalogen. It is possible that the ethanolamine high-affinity uptake system is necessary to provide a neural cell with enough free ethanolamine for ethanolamine plasmalogen synthesis.  相似文献   

14.
Abstract: Melatonin is synthesized by cultured Y79 human retinoblastoma cells and is secreted into the medium. Activity of the two key enzymes involved in the synthesis of melatonin, N -acetyltransferase (NAT) and hydroxyindole- O -methyl-transferase (HIOMT), are present in retinoblastoma cells. The activity of these enzymes and the resulting synthesis and release of melatonin are modulated by the addition of a cyclic AMP analogue and butyrate to the culture medium. Melatonin levels increase dramatically over control levels after the addition of dibutyryl cyclic AMP (dbcAMP), whereas melatonin levels decrease after butyrate treatment. HIOMT activity is inhibited by both dbcAMP and butyrate, and NAT activity is stimulated by both of these differentiating agents, suggesting that the rise in melatonin levels in response to dbcAMP is the result of increased activity of NAT, whereas the decline in melatonin levels in response to butyrate may be due to a drop in HIOMT activity. Melatonin synthesis is dose- and time-dependent, and the effect of dbcAMP is readily reversible, whereas the effect of butyrate does not appear to be reversible. These effects probably reflect basic differences in the regulatory mechanisms of the inducing agents.  相似文献   

15.
Human Y79 retinoblastoma cells are capable of synthesizing the putative retinal neurotransmitters dopamine and serotonin. Separation of the catecholamines and indolamines by high performance liquid chromatography combined with electrochemical detection showed that the cells readily convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA) and, to a lesser extent, dopamine. When DOPA was added, a large quantity of dopamine was produced, as well as norepinephrine, epinephrine, and 3,4-dihydroxyphenylacetic acid. Exogenous tryptophan added to the cells was partially converted to 5-hydroxytryptophan and serotonin. A larger quantity of serotonin was produced when 5-hydroxytryptophan was added. Y79 cells have a high- and low-affinity uptake system for dopamine and serotonin. The K'm and V'max for the high-affinity uptake of dopamine and serotonin are 2.34 +/- 0.64 and 3.63 +/- 1.15 microM and 4.77 +/- 1.12 and 3.20 +/- 1.20 pmol min-1 mg protein-1, respectively. These kinetic parameters are similar to those reported for other retinal preparations where dopamine and serotonin have been suggested to function as neurotransmitters. Tyrosine and tryptophan, the physiologic precursors of dopamine and serotonin, respectively, and phenylalanine are also taken up by high- and low-affinity transport systems. The kinetic parameters for their high-affinity uptake systems are all very similar, suggesting that they may be taken up by the same transporter. These studies show that a tumor cell line derived from the human retina synthesizes dopamine and serotonin and has high-affinity uptake systems for these compounds and their precursors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
Abstract: The metabolism of the n-3 class of polyunsaturated fatty acids, which occur in relatively high quantities in neural tissues, was studied in human Y79 retinoblastoma cells. These cells contained low levels of n-3 polyunsaturates when grown in culture media supplemented with fetal bovine serum. The cells readily incorporated preformed docosahexaenoic acid (22:6 n-3) into phospholipids, but human skin fibroblasts did this to a similar extent. When 10 to 30 μmol/ml linolenic acid (18:3 n-3) was added, the cells also accumulated 22:6 in phospholipids. The capacity to convert appreciable amounts of 18:3 to 22:6 appears to be a unique property of the retinoblastoma cells as compared with other continuously cultured cell lines. More 18:3 than linoleic acid (18:2 n-6) was incorporated into phospholipids by the retinoblastoma cultures, and 18:3 was channeled to a larger extent into the ethanolamine glycerophospholipid fraction. These findings indicate that retinoblastoma cells handle n-3 polyunsaturated fatty acids in a manner very similar to neural tissue in vivo . Based on the results obtained with this model system, it appears that three processes may contribute to the accumulation of 22:6 in retina and neural tissue: increased ability to incorporate 18:3, the capacity to convert 18:3 to 22:6, and channeling of 18:3 and its metabolites into ethanolamine glycerophospholipids.  相似文献   

18.
In the brain stem glycine is associated with multiple sensory and visceral regulations, being involved in, for instance, cardiovascular, respiratory and auditory functions. We here studied the mechanisms of the release of preloaded [3H]glycine from mouse brain stem slices in a superfusion system. A depolarizing concentration of K+ ions (50 mM) evoked glycine release, but in the absence of Ca2+ the effect was attenuated, indicating that a part of the evoked release represents Ca2+-dependent exocytosis. The Ca2+-independent release was enhanced by omission of Na+ and Cl. The stimulatory effect of extracellular glycine confirmed the involvement of transporters functioning in a reverse direction. A part of the release is mediated by Na+ and Cl channels, since it was inhibited by the inhibitors of these, riluzole and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulphonate, respectively. Glycine release was potentiated by the activation of protein kinase C and diminished by increasing cyclic guanosine monophosphate levels with a phosphodiesterase inhibitor, zaprinast. The release was also modulated by the phospholipase inhibitor quinacrine and the tyrosine kinase inhibitor genistein. Adenosine A1 receptors likewise regulate glycine release, since it was enhanced by their agonist R(−)N6-(2-phenylisopropyl)adenosine, which effect was blocked by the antagonist 8-cyclopentyl-1,3-dipropylxanthine. The ionotropic glutamate receptor agonists N-methyl-d-aspartate, kainate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate failed to have any effects contrary to their effects in higher brain regions, e.g., in the hippocampus. The group I and III metabotropic glutamate receptor agonists (S)-3,5-dihydroxyphenylglycine and O-phospho-l-serine, respectively, increased the release in a receptor-mediated manner. Glycine release in the brain stem was also markedly enhanced by cell-damaging conditions, including hypoxia, hypoglycemia and ischemia.  相似文献   

19.
目的利用硅酸盐细菌分离培养基,从昆明白泥山土壤样品中分离获得一株硅酸盐细菌——BN1。方法对分离获得的硅酸盐细菌——BM进行革兰染色、生理生化特征和16SrDNA测序分析,并对其解钾活性进行了初步研究。结果BN1初步鉴定为类芽胞杆菌属的菌株。结论该菌株——BN1对云母具有较强的解钾活性,为空白对照组的1.79倍。  相似文献   

20.
Nucleotides are released not only from neurons, but also from various other types of cells including fibroblasts, epithelial, endothelial and glial cells. While ATP release from non-neural cells is frequently Ca2+ independent and mostly non-vesicular, neuronal ATP release is generally believed to occur via exocytosis. To evaluate whether nucleotide release from neuroendocrine cells might involve a non-vesicular component, the autocrine/paracrine activation of P2Y12 receptors was used as a biosensor for nucleotide release from PC12 cells. Expression of a plasmid coding for the botulinum toxin C1 light chain led to a decrease in syntaxin 1 detected in immunoblots of PC12 membranes. In parallel, spontaneous as well as depolarization-evoked release of previously incorporated [3H]noradrenaline from transfected cells was significantly reduced in comparison with the release from untransfected cells, thus indicating that exocytosis was impaired. In PC12 cells expressing the botulinum toxin C1 light chain, ADP reduced cyclic AMP synthesis to the same extent as in non-transfected cells. Likewise, the enhancement of cyclic AMP synthesis either due to the blockade of P2Y12 receptors or due to the degradation of extracellular neucleotides by apyrase was not different between non-transfected and botulinum toxin C1 light chain expressing cells. However, the inhibition of cyclic AMP synthesis caused by depolarization-evoked release of endogenous nucleotides was either abolished or greatly reduced in cells expressing the botulinum toxin C1 light chain. Together, these results show that spontaneous nucleotide release from neuroendocrine cells may occur independently of vesicle exocytosis, whereas depolarization-evoked nucleotide release relies predominantly on exocytotic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号